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Abstract: Expressing the measure of uncertainty, in terms of an interval instead of a crisp number,
provides improved results in fuzzy mathematics. Several such concepts are established, including the
interval-valued fuzzy set, the interval-valued intuitionistic fuzzy set, and the interval-valued picture
fuzzy set. The goal of this article is to enhance the T-spherical fuzzy set (TSFS) by introducing the
interval-valued TSFS (IVTSFS), which describes the uncertainty measure in terms of the membership,
abstinence, non-membership, and the refusal degree. The novelty of the IVTSFS over the pre-existing
fuzzy structures is analyzed. The basic operations are proposed for IVTSFSs and their properties are
investigated. Two aggregation operators for IVTSFSs are developed, including weighted averaging
and weighted geometric operators, and their validity is examined using the induction method.
Several consequences of new operators, along with their comparative studies, are elaborated.
A multi-attribute decision-making method in the context of IVTSFSs is developed, followed by
a brief numerical example where the selection of the best policy, among a list of investment
policies of a multinational company, is to be evaluated. The advantages of using the framework of
IVTSFSs are described theoretically and numerically, hence showing the limitations of pre-existing
aggregation operators.

Keywords: aggregation operators; interval-valued T-spherical fuzzy set; multi-attribute decision-
making; T-spherical fuzzy set

1. Introduction

Quantifying the uncertainty or imprecision of an event by a crisp number on a scale of zero to one
has always been a tough task. The story began with Zadeh’s model of the fuzzy set (FS) [1], where the
imprecision of an event is expressed by a crisp number from zero to one [0, 1]. Soon after the idea of
the FS was introduced, it was realized that it is indeed a tough job to describe the uncertainty using
crisp numbers. Therefore, the concept of the interval-valued fuzzy set (IVFS) [2] was developed, where
the membership grade is described in terms of a closed sub-interval of zero to one [0, 1] rather than
by crisp numbers. Representing the imprecision using an interval instead of a crisp number seems
more real.

In 1986, Atanassov developed the notion of the intuitionistic fuzzy set (IFS) [3], introducing
the concept of the non-membership grade along with a membership grade to model a real-life
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phenomenon, which was then enhanced to interval-valued IFS (IVIFS) [4]. It basically bounds the sum
of the membership and non-membership grades between zero and one. Pointing out the limitations
of IFS, Yager [5] introduced the idea of the Pythagorean fuzzy set (PyFS), which is also based on
two characteristic functions but with a larger domain, by bounding the sum of the squares of the
membership and non-membership grades between zero and one. Nevertheless, the PyFS failed to
justify the situation when the sum of two grades crosses the boundary of zero to one. To describe
such situations, Yager [6] introduced the notion of the q-rung ortho pair fuzzy sets (q-ROPFSs), which
generalize both IFS as well as PyFS by enlarging their domains. A q-ROPFS allows the sum of the
q-th power of the membership and non-membership grades to be between zero and one. The fuzzy
structures of the interval-valued PyFS (IVPyFS), as well as the interval-valued q-ROPFS (IVq-ROPFS),
have also been introduced by Peng and Yang [7] and Joshi et al. [8] due to the importance of expressing
fuzziness in terms of intervals instead of crisp numbers. Further research work on IFSs, PyFSs, IVIFSs,
and IVPyFSs is extensive [9–16].

Cuong [17] introduced a novel concept of the picture fuzzy set (PFS) by pointing out a special
situation where one needed four characteristic functions to model a real-life event, such as voting.
Cuong’s model of the PFS created a new dimension in the field of fuzzy algebraic structures and
scientists started to contribute to the development of PFSs due to its significance [18–21]. Cuong’s
PFS possessed the same problem as the IFS had, i.e., it bound the sum of the membership, abstinence,
and non-membership grades between zero and one. This restriction does not allow the decision
makers to select the values of three characteristic functions by their own choice. Realizing the issue,
Mahmood et al. [22] developed a new model of the spherical fuzzy set (SFS) and the T-spherical
fuzzy set (TSFS). A TSFS binds the sum of the q-th power of the membership, abstinence, and
non-membership between zero and one and, hence, was declared as a diverse structure compared to
the PFS, PyFS, and IFS. Due to the larger variety of characteristic functions with no limitation, several
much-needed ideas can be developed in the framework of TSFSs, such as the aggregation theory of
TSFSs, graphs of TSFSs, and similarity and distance measures of TSFSs. Some work on the aggregation
of TSFSs, relations of TSFSs, and similarity measures of TSFSs is abound [22,23].

MADM (multi-attribute decision-making) models, based on weighted averaging (WA) and
weighted geometric (WG) operators, are hot research topics in the field of fuzzy algebraic structures.
The theory of the WA and WG aggregation operators of IFSs has been developed by Xu [24] and
Xu and Yager [25], before being further applied in MADM problems. Some generalized WA,
induced generalized WA, and induced generalized WG aggregation operators for IFSs have also
been developed [26–28] and their applications in MADM problems have been demonstrated. The WA
and WG operators for IVIFSs are proposed by Wang [29] and Wei and Wang [30], respectively, while
some generalized WA and generalized WG operators for IVIFSs have been developed by Yu [31] and
Xu and Cai [32], respectively. Some other useful tools in the aggregation of IFSs and IVIFSs, along
with their applications, were also constructed [33–38]. For PyFSs, Rahman et al. [39] and Peng and
Yang [40] developed the Pythagorean fuzzy WA and WG aggregation operators. The WA and WG
aggregation tools for IVPyFSs [41,42] were formulated and the recent advancement on the theory of the
aggregation of PyFSs and IVPyFSs, alongside their applications in MADM, are discussed [43–47]. The
MADM and aggregation theory of hesitant fuzzy sets (HFSs) and bipolar-valued HFSs have also been
developed [48–50]. Due to their enhanced and diverse structure, PFSs have gained attention and some
WA, as well as WG, aggregation tools have been developed [51,52]. The weighted averaging operators
for TSFSs have been introduced by Ullah et al. [53] and their viability in MADM is demonstrated.

MADM is a rigorous research topic that has been thoroughly studied using WA and WG operators,
some distance and similarity measures, and some other techniques as well. Some T-spherical interactive
aggregation operators and their applications in MADM are studied [54]. The difficulty of undertaking
smart medical device selection using the neutrosophic TOPSIS method [55], as well as the problem of
risk management in economics [56], are some examples. To handle strategic planning, a neutrosophic
AHP and SWOT method is developed [57] and neutrosophic triangular numbers are utilized in
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MADM problems [58]. The issue of the supplier selection is reduced by using the neutrosophic group
ANP-TOPSIS method [59], while the evaluation of e-government websites uses the neutrosophic
VIKOR method [60]. Other interesting work on MADM is diverse in its direction [61–73].

Keeping in mind the structure of the TSFS and the importance of describing the membership
grades in terms of intervals, we henceforth introduce the concept of the IVTSFS, along with its
corresponding WA and WG aggregation operators, such that its viability in MADM is demonstrated.
The key goals of this manuscript are as follows:

1. To introduce the idea of the IVTSFS that incorporates the impression of an event with four
membership grades in terms of intervals with no limitations.

2. To propose aggregation tools that can be applied to those problems where the IVFS, IVIFS, and
IVPFS fail to be applied.

3. To study a MADM problem, utilizing the aggregation operators of IVTSFSs where the selection
of the best investment policy is carried out.

4. To prove that the proposed aggregation operators will reduce to match other pre-existing
aggregation operators, hence showing their superiority, by using some suitable constraints.

This article is organized as follows: In Section 1, a preamble of pre-existing ideas is studied
along with their WA and WG operators. Section 2 will describe some basic concepts and their mutual
relations. Section 3 is based on the importance of using interval-valued fuzzy frameworks instead of
crisp-valued fuzzy frameworks. Section 4 will be on some basic operations of the sum, product, scalar
multiplication, and power operation. The properties of these new operations are also investigated.
In Section 5, we will develop the theory of the WA aggregation operators, where we propose the
concept of the interval-valued T-spherical fuzzy weighted averaging (IVTSFWA) operator, which
is further extended to interval-valued T-spherical fuzzy ordered weighted averaging (IVTSFOWA)
and the interval-valued T-spherical fuzzy hybrid averaging (IVTSFHA) operator. The validity of
these aggregation operators will be validated using the induction method and their aggregation
associated properties are demonstrated. Section 6 will be on the interval-valued T-spherical fuzzy
weighted geometric (IVTSFWG), the interval-valued T-spherical fuzzy ordered weighted geometric
(IVTSFOWG), and the interval-valued T-spherical fuzzy hybrid geometric (IVTSFHG) operators.
Section 7 will be on the construction of a MADM process in the context of IVTSFSs and a MADM
problem will be solved using IVTSFWA and IVTSFWG operators. Section 8 will include a comparative
study of the proposed operators with the existing ones. The advantages of our proposed work will be
discussed in Section 9, followed by the conclusion in Section 10.

2. Preliminaries

In this section, the basic definitions of the IVIFS, IVPyFS, IVq-ROPFS, and IVPFS are proposed
to analyze their structures. The basic operations of these concepts are also analyzed. Note that
X will denote the universe of discourse and s, i, d and r will denote the membership, abstinence,
non-membership, and refusal degree of an element, respectively.

Definition 1. [8] An IVq-ROPFS is having the shape I = {(s(x), d(x)) : x ∈ X}, where
s(x ) and d(x) are mappings from X to some closed subinterval of [0, 1], such that s(x) =[
sl(x), su(x)

]
and d(x) =

[
dl(x), du(x)

]
with a restriction that 0 ≤ (su)q(x) + (du)q(x) ≤

1 for some q ∈ Z+. The term ‘hesitancy degree’ is denoted and defined by r(x) =([
rl(x), ru(x)

])
=

([(
1− (su)q(x)− (du)q) 1

q ,

((
1−

(
sl
)q
(x)−

(
dl
)q) 1

q

)])
and the pair (s(x), d(x))

=
([

sl(x), su(x)
]
,
[
dl(x), du(x)

])
is considered as the interval-valued q-rung ortho pair fuzzy number

(IVq-ROPFN).
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The following remark will explain the generalization of the IVq-ROPFS over the existing
fuzzy structures.

Remark 1. Definition 1 reduces to the definition of:

(1) q-ROPFS if we take sl(x) = su(x) and dl(x) = du(x). Yager [6]
(2) IVPyFS if we take q = 2. Peng and Yang [7]
(3) PyFS if we take q = 2, sl(x) = su(x) and dl(x) = du(x). Yager [5]
(4) IVIFS if we take q = 1. Atanassov and Gargov [4]
(5) IFS if we take q = 1, sl(x) = su(x) and dl(x) = du(x). Atanassov [3]
(6) IVFS if we take q = 1 and dl(x) = du(x) = 0. Gorzalczany [2]
(7) FS if we take q = 1, sl(x) = su(x) Zadeh [1].

Definition 2. [22] A TSFS is having the shape I = {(s(x), i(x), d(x)) : x ∈ X}, where s(x), i(x), and d(x)
are mappings from X to [0, 1] with a restriction that 0 ≤ sq(x) + iq(x) + dq(x) ≤ 1 for some q ∈ Z+. The

term ‘refusal degree’ is defined by r(x) = (1− (sq(x) + iq(x) + dq(x)))
1
q and the triplet (s(x), i(x), d(x)) is

considered to be a T-spherical fuzzy number (TSFN).

The generalization of the TSFS is made clear from the following remark:

Remark 2. Definition 2 reduces to the definition of:

(1) q-ROPFS if we take i(x) = 0. Yager [6]
(2) SFS if we take q = 2. Mahmood et al. [22]
(3) PyFS if we take q = 2 and i(x) = 0. Yager [5]
(4) PFS if we take q = 1. Cuong [17]
(5) IFS if we take q = 1 and i(x) = 0. Atanassov [3]
(6) FS if we take q = 1 and i(x) = 0 = d(x) Zadeh [1].

The basic operations for two PyFSs were proposed in the following definition:

Definition 3. [39,40] For PyFSs A, B and for λ > 0, we have:

(1) A
⊕B =

(√
s2

A + s2
B − s2

A.s2
B , dA.dB

)
.

(2) A
⊗B =

(
sA.sB ,

√
d2

A + d2
B − d2

A.d2
B

)
(3) λ .A =

(√
1−

(
1− s2

A
)λ, (dA)

λ
)

.

(4) Aλ =

(
(sA)

λ,
√

1−
(
1− d2

A
)λ
)

.

Based on the work discussed in this section, the concept of the IVTSFS is developed and its
generalization is proven with the help of some remarks.

3. The Significance of Interval-Valued Fuzzy Structures

The idea of representing the membership grade of a FS using an interval was developed by
Gorzalczany [2]. Sometimes, the impression of an event cannot be characterized by a crisp number.
In such occasions, the concept of the IVFS can be a useful tool. The interval-valued frameworks for the
IFS, PyFS, q-ROPFS, and PFS are developed in [4,7,8,17]. Now, we discuss the significance of using
interval-valued frameworks instead of the ordinary fuzzy framework numerically.
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Consider the following example in which the selection of the best candidate is to be carried out
among four candidates (Ci, i = 1, 2, 3, 4) based on four attributes (Gj, j = 1, 2, 3, 4) under the weight
vector w = (0.22, 0.34, 0.27, 0.17)T . In this case, the evaluation information of the candidates is in the
form of IVIFNs, which are given in Table 1.

Table 1. The decision matrix where Ci denote alternatives and Gj denote the attributes.

G1 G2 G3 G4

C1

(
[0.2, 0.3],
[0.0, 0.5]

) (
[0.5, 0.6],
[0.1, 0.3]

) (
[0.4, 0.5],
[0.2, 0.4]

) (
[0.7, 0.8],
[0.1, 0.2]

)
C2

(
[0.6, 0.7],
[0.2, 0.3]

) (
[0.5, 0.6],
[0.0, 0.3]

) (
[0.6, 0.7],
[0.2, 0.3]

) (
[0.6, 0.7],
[0.1, 0.2]

)
C3

(
[0.4, 0.5],
[0.3, 0.4]

) (
[0.3, 0.6],
[0.1, 0.3]

) (
[0.5, 0.6],
[0.3, 0.4]

) (
[0.6, 0.7],
[0.1, 0.3]

)
C4

(
[0.6, 0.7],
[0.2, 0.3]

) (
[0.5, 0.7],
[0.1, 0.3]

) (
[0.7, 0.8],
[0.1, 0.2]

) (
[0.3, 0.4],
[0.1, 0.2]

)

To aggregate the data provided in Table 1, Xu and Cai [32] developed the following aggregation
tool:

ci = IVIFWA(C1, C2, C3 . . . Cm)

=

([
1−

m
∏
j=1

(
1−

(
sl

j

))wj
, 1−

m
∏
j=1

(
1−

(
su

j

))wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
The aggregated results are:

c1 = IVIFWA(C11, C12, C13, C14)

= ([0.6235, 0.7569], [0.0000, 0.3386])

c2 = IVIFWA(C21, C22, C23, C24)

= ([0.6777, 0.8180], [0.0000, 0.2800])

c3 = IVIFWA(C31, C32, C33, C34)

= ([0.5730, 0.7745], [0.1713, 0.3454])

c4 = IVIFWA(C41, C42, C43, C44)

= ([0.6493, 0.8352], [0.1165, 0.2510])

The score of IVFN, I =
([

sl , su
]
,
[
dl , du

])
, is defined as [34]:

SC(I) =
1
2

(
sl − dl + su − du

)
Using this score’s functions, we have:

SC(c1) = 0.5209, SC(c2) = 0.6079, SC(c3) = 0.4154, SC(c4) = 0.5585

Clearly,
SC(c2) > SC(c4) > SC(c1) > SC(c3)

Hence, C2 is the suitable candidate, according to the MADM method based on the IVIFWA
operators.

Assigning a crisp value to the membership and non-membership grade of the above problem
reduces the information in Table 1 in the context of IFSs. Such information can be aggregated using the
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aggregation operators proposed by Xu [24]. The decision matrix for the problem discussed above in
the context of IFSs is given in Table 2.

Table 2. The decision matrix where Ci denote alternatives and Gj denote the attributes.

G1 G2 G3 G4

C1 (0.3, 0.5) (0.6, 0.3) (0.5, 0.4) (0.8, 0.2)
C2 (0.7, 0.3) (0.6, 0.3) (0.7, 0.3) (0.7, 0.2)
C3 (0.5, 0.4) (0.6, 0.3) (0.6, 0.4) (0.7, 0.3)
C4 (0.6, 0.2) (0.5, 0.1) (0.7, 0.1) (0.3, 0.1)

The weighted averaging aggregation operator of the IFSs, proposed by Xu [24], is given by:

ci = IFWA(C1, C2, C3 . . . Cm)

=

(
1−

m
∏
j=1

(
1−

(
sl

j

))wj
,

m
∏
j=1

(
dl

j

)wj

)

c1 = IFWA(C11, C12, C13, C14)

= (0.7569, 0.3386)

c2 = IFWA(C21, C22, C23, C24)

= (0.8180, 0.2800)

c3 = IFWA(C31, C32, C33, C34)

= (0.7745, 0.3454)

c4 = IFWA(C41, C42, C43, C44)

= (0.7489, 0.1165)

For the ranking of IFN I, the score function developed in [24] is given by:

SC(I) = s− d

Using this score function, we have:

SC(c1) = 0.4183, SC(c2) = 0.5380, SC(c3) = 0.4291, SC(c4) = 0.6324

Clearly,
SC(c4) > SC(c2) > SC(c3) > SC(c1)

Thus, C4 is the suitable candidate, according to the MADM method based on the IVIFWA
operators.

By analyzing both results, it is observed that the result obtained using the aggregation of the
IVIFS is significant compared to the one obtained using the IFS. This shows the importance of using
interval-valued fuzzy frameworks over crisp-valued fuzzy frameworks.

The concept of the TSFS developed in [22] is a generalization of the q-ROPFS, SFS, PyFS, PFS,
IFS, and FS. Therefore, the interval-valued structure for TSFSs would have a great impact, due to
the diverse structure of the TSFS. The concept of the IVTSFS will provide flexibility in assigning the
membership grades of the TSFS, in terms of the intervals rather than by a crisp number. Furthermore,
as discussed in the first section, there are some situations, such as voting or decision-making, where
opinions may involve more than two or three aspects. To deal with such situations, the TSFS has been
proven to be useful [22,23,62]. Therefore, the idea of TSFSs is further strengthened by the introduction
of the IVTSFS. In the next section, the definition of the IVTSFS is proposed and its superiority over the
existing fuzzy concepts is shown, with the help of some useful remarks.
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4. Interval-Valued T-Spherical Fuzzy Set

This section describes the concept of the IVTSFS and its comparison with pre-existing concepts. We
develop the basic operations for IVTSFSs and their properties are investigated. Note that IVTSFS(X)

will denote the set of all of the IVTSFSs.

Definition 4. An IVTSFS has the shape I = {(s(x), i(x), d(x)) : x ∈ X}, where s(x), i(x), and d(x) are
mappings from X to a closed subinterval of [0, 1], such that s(x) =

[
sl(x), su(x)

]
, i(x) =

[
il(x), iu(x)

]
,

and d(x) =
[
dl(x), du(x)

]
with a restriction that 0 ≤ (su)q(x) + (iu)q(x) + (du)q(x) ≤ 1

for some q ∈ Z+. The term ‘refusal degree’ is defined by r(x) =
([

rl(x), ru(x)
])

=([(
1− (su)q(x)− (iu)q(x)− (du)q) 1

q ,

((
1−

(
sl
)q

(x)−
(

il
)q

(x)−
(

dl
)q) 1

q

)])
and the pair

(s(x), i(x), d(x)) =
([

sl(x), su(x)
]
,
[
il(x), iu(x)

]
,
[
dl(x), du(x)

])
is considered to be the

interval-valued T-spherical fuzzy number (IVTSFN).

The existing frameworks will become special cases of the IVTSFS. Consider the following theorem:

Theorem 1. An IVTSFS reduces to:

(1) TSFS: if we consider sl = su, il = iu and dl = du [22].
(2) IVSFS: if we consider q = 2.
(3) SFS: if we consider q = 2 and sl = su, il = iu, and dl = du [22].
(4) IVPFS: if we consider q = 1 [17].
(5) PFS: if we consider q = 1 and sl = su, il = iu and dl = du [17].
(6) IVq-ROPFS: if we consider il = iu = 0 [8].
(7) q-ROPFS: if we consider sl = su, il = iu, and dl = du [6].
(8) IVPyFS: if we consider q = 2 and il = iu = 0 [7].
(9) PyFS: if we consider q = 2 and sl = su, il = iu = 0 and dl = du [5].
(10) IVIFS: if we consider q = 1 and il = iu = 0 [4].
(11) IFS: if we consider q = 1 and sl = su, il = iu = 0 and dl = du [3].
(12) IVFS: if we consider q = 1 and il = iu = dl = du = 0 [2].
(13) FS: if we consider q = 1 and sl = su, il = iu = 0 = dl = du [1].

Next, the operations of the sum, product, scalar multiplications, and power operation for IVTSFSs
will be introduced. With the help of a remark, it is shown that these operations are generalizations of
operations of existing ideas under some restrictions.

Definition 5. For A,B ∈ IVTSFS(X). The operations of the sum, product, scalar multiplications, and power
are defined as:

(1) A⊕B =


 q

√
sl

A
q(x) + sl

B
q(x)− sl

A
q(x).sl

B
q(x),

q
√

su
A

q(x) + su
B

q(x)− su
A

q(x).su
B

q(x)

,
[

il
A(x).il

B(x), iu
A(x).iu

B(x)
]
,
[
dl

A(x).dl
B(x), du

A(x).du
B(x)

]
(2) A⊗B =


[sl

A(x).sl
B(x), su

A(x).su
B(x)

]
,
[

il
A(x).il

B(x), iu
A(x).iu

B(x)
]
,

 q
√

dl
A

q(x) + dl
B

q(x)− dl
A

q(x).dl
B

q(x),
q
√

du
A

q(x) + du
B

q(x)− du
A

q(x).du
B

q(x)


(3) λA =

([
q
√

1−
(
1− sl

A
q
)λ, q

√
1−

(
1− su

A
q
)λ
]

,
[(

il
A

)λ
,
(
iu
A
)λ
]

,
[(

dl
A

)λ
,
(
du

A
)λ
])

(4) Aλ =

([(
sl

A

)λ
,
(
su

A
)λ
]

,
[(

il
A

)λ
,
(
iu
A
)λ
]

,
[

q
√

1−
(
1− dl

A
q
)λ, q

√
1−

(
1− du

B
q
)λ
])
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Remark 3. The operations in Definition 5 become valid for:

(1) TSFSs: if we consider sl = su, il = iu, and dl = du.
(2) IVSFSs: if we consider q = 2.
(3) SFSs: if we consider q = 2 and sl = su, il = iu and dl = du.
(4) IVPFSs: if we consider q = 1.
(5) PFSs: if we consider q = 1 and sl = su, il = iu and dl = du [52].
(6) IVq-ROPFSs: if we consider il = iu = 0.
(7) q-ROPFSs: if we consider sl = su, il = iu and dl = du.
(8) IVPyFSs: if we consider q = 2 and il = iu = 0 [41,42].
(9) PyFSs: if we consider q = 2 and sl = su, il = iu = 0 and dl = du [39,40] (Definition 3).
(10) IVIFSs: if we consider q = 1 and il = iu = 0 [29,30].
(11) IFSs: if we consider q = 1 and sl = su, il = iu = 0 and dl = du [24,25].
(12) IVFSs: if we consider q = 1 and il = iu = dl = du = 0.
(13) FSs: if we consider q = 1 and sl = su, il = iu = 0 = dl = du.

Theorem 2. The following properties hold true for A, B ∈ IVTSFS(X), where λ, λ1, λ3 > 0.

(1) A
⊕B = B⊕ A

(2) A
⊗B = B⊗ A

(3) λ(A
⊕B) = λA

⊕
λB

(4) (A
⊗B)λ = Aλ ⊗Bλ

(5) λ1 A
⊕

λ2 A = (λ1 + λ2)A
(6) Aλ1

⊗
Aλ2 = Aλ1+λ2

(7) (Ac)λ = (λA)c

(8) λ(Ac) =
(

Aλ
)c

(9) Ac ⊕Bc = (A
⊗B)c

(10) Ac ⊗Bc = (A
⊕B)c

Proof. Trivial. �

The ranking of two numbers in fuzzy algebraic structures has a certain importance, especially
in MADM problems, medical diagnostics problems, and in pattern recognition. There are several
rules defined for the ranking of two numbers of a certain fuzzy algebraic structure, as discussed in
Section 1 [1,2,38]. Here, we follow the idea of Joshi and Kumar [38], to define a score function for
an IVTSFN.

Definition 6. For an IVTSFN I = (sI(x), iI(x), dI(x)) =
([

sl , su
]
,
[
il , iu

]
,
[
dl , du

])
, the score function

is defined as:

SC(I) =

(
sl
)q(

1−
(

il
)q
−
(

dl
)q)

+ (su)q((1− (iu)n − (du)q))
3

and SC(A) ∈ [0, 1]

Remark 4. Using the restrictions stated in Theorem 1, the score value for the TSFS, IVSFS, SFS, IVPFS, and
PFS, as well as other fuzzy algebraic structures, can be obtained analogously.
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Example 1. Let I1 = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8]) and I2 = ([0.2, 0.4], [0.2, 0.3], [0.3, 0.8]) be two
IVTSFNs for q = 4. Then, using the score function defined in Definition 6, we have:

SC(I1) = 0.0227 and SC(I2) = 0.0066

Clearly, SC(I1) > SC(I2). So I1 > I2.

5. Averaging Aggregation Operators for Interval-Valued T-Spherical Fuzzy Sets

In this section, some aggregation operators for IVTSFSs will be proposed. These operators include
the IVTSFWA operator, IVTSFOWA operator, and IVTSFHA operator. The validation and basic
properties of these aggregation tools will be studied and supported by numerical examples. In our
study of aggregation, w = (w1, w2, w3, . . . wm)

T will denote the weight vector, such that wi ∈ [0, 1] for

i = 1, 2, 3 . . . m and
m
∑

i=1
wi = 1.

Definition 7. The IVTSFWA operator for IVTSFNs Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFWA(I1, I2, I3 . . . Im) =
m

∑
j=1

wj Ij

Theorem 3. The aggregated value of IVTSFNs Ij, using the IVTSFWA operator, is an IVTSFN which is
given as:

IVTSFWA(I1, I2, I3 . . . Im)

=

([
q

√
1−

m
∏
j=1

(
1−

(
sl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
su

j

)q)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(1)

Proof. Following the tradition, this result can be proven using mathematical induction.
For m = 2.

w1 I1 =

([
q

√
1−

(
1− sl

I1
q
)w1

, q

√
1−

(
1− su

I1
q
)w1

]
,
[(

il
I1

)w1
,
(

iu
I1

)w1
]
,
[(

dl
I1

)w1
,
(

du
I1

)w1
])

and

w2 I2 =

([
q

√
1−

(
1− sl

I2
q
)w2

, q

√
1−

(
1− su

I2
q
)w2

]
,
[(

il
I2

)w2
,
(

iu
I2

)w2
]
,
[(

dl
I2

)w2
,
(

du
I2

)w2
])



Symmetry 2019, 11, 357 10 of 27

w1 I1
⊕

w2 I2 =


([

q

√
1−

(
1− sl

I1
q
)w1

, q

√
1−

(
1− su

I1
q
)w1

]
,
[(

il
I1

)w1
,
(

iu
I1

)w1
]
,
[(

dl
I1

)w1
,
(

du
I1

)w1
])⊕([

q

√
1−

(
1− sl

I2
q
)w2

, q

√
1−

(
1− su

I2
q
)w2

]
,
[(

il
I2

)w2
,
(

iu
I2

)w2
]
,
[(

dl
I2

)w2
,
(

du
I2

)w2
])



=




q

√(
q

√
1−

(
1− sl

I1
q
)w1

)q

+

(
q

√
1−

(
1− sl

I2
q
)w2

)q

− q

√
1−

(
1− sl

I1
q
)w1

. q

√
1−

(
1− sl

I2
q
)w2

,

q

√(
q

√
1−

(
1− su

I1
q
)w1

)q

+

(
q

√
1−

(
1− su

I2
q
)w2

)q

− q

√
1−

(
1− su

I1
q
)w1

. q

√
1−

(
1− su

I2
q
)w2


[(

il
I1

)w1
.
(

il
I2

)w2
,
(

iu
I1

)w1
.
(

iu
I2

)w2
]

[(
dl

I1

)w1
.
(

dl
I2

)w2
,
(

du
I1

)w1
.
(

du
I2

)w2
]



=


[

q

√
1−

(
1− sl

I1
q
)w1

.
(

1− sl
I2

q
)w2

, q

√
1−

(
1− su

I1
q
)w1

.
(

1− su
I2

q
)w2

]
[(

il
I1

)w1
.
(

il
I2

)w2
,
(

iu
I1

)w1
.
(

iu
I2

)w2
]

[(
dl

I1

)w1
.
(

dl
I2

)w2
,
(

du
I1

)w1
.
(

du
I2

)w2
]


=

([
q

√
1−

2
∏
j=1

(
1− sl

Ij
q
)wj

, q

√
1−

2
∏
j=1

(
1− su

Ij
q
)wj

]
,

[
2
∏
j=1

(
il
Ij

q
)wj

,
2
∏
j=1

(
iu
Ij

q
)wj

]
,

[
2
∏
j=1

(
dl

Ij
q
)wj

,
2
∏
j=1

(
du

Ij
q
)wj

])

Hence, for m = 2, the result is true.
Supposedly, we claim that the result is valid for m = k, i.e.,

IVTSFWA(I1, I2, I3 . . . Ik)

=

([
q

√
1−

k
∏
j=1

(
1− sl

j
q
)wj

, q

√
1−

k
∏
j=1

(
1− su

j
q
)wj

]
,

[
k

∏
j=1

(
il
Ij

q
)wj

,
k

∏
j=1

(
iu
Ij

q
)wj

]
,

[
k

∏
j=1

(
dl

Ij
q
)wj

,
k

∏
j=1

(
du

Ij
q
)wj

])

To prove the result for m = k + 1, consider:

IVTSFWA(I1, I2, I3 . . . Ik, Ik+1) =
k+1
∑

j=1
wj Ij =

k
∑

j=1
wj Ij

⊕
wk+1 Ik+1

=


([

q

√
1−

k
∏
j=1

(
1− sl

j
q
)wj

, q

√
1−

k
∏
j=1

(
1− su

j
q
)wj

]
,

[
k

∏
j=1

(
il
Ij

q
)wj

,
k

∏
j=1

(
iu
Ij

q
)wj

]
,

[
k

∏
j=1

(
dl

Ij
q
)wj

,
k

∏
j=1

(
du

Ij
q
)wj

])⊕
([

q

√
1−

(
1− sl

k+1
q
)wk+1

, q

√
1−

(
1− su

k+1
q
)wk+1

]
,
[(

il
Ik+1

q
)wk+1

,
(

iu
Ik+1

q
)wk+1

]
,
[(

dl
Ik+1

q
)wk+1

,
(

du
Ik+1

q
)wk+1

])


Finally, we get:

IVTSFWA(I1, I2, I3 . . . Ik, Ik+1)

=

([
q

√
1−

k+1
∏
j=1

(
1− sl

j
q
)wj

, q

√
1−

k+1
∏
j=1

(
1− su

j
q
)wj

]
,

[
k+1
∏
j=1

(
il
Ij

q
)wj

,
k+1
∏
j=1

(
iu
Ij

q
)wj

]
,

[
k+1
∏
j=1

(
dl

Ij
q
)wj

,
k+1
∏
j=1

(
du

Ij
q
)wj

])

Hence, the result is valid for m = k + 1. So, using the induction method, it is proven that the
result is valid for all m ∈ Z+. In the following theorem, we state that the IVTSFWA operator satisfies
the basic characteristics of an aggregation operator. �

Theorem 4. For the IVTSFWA operator, the following properties hold true:

(1) Idempotency:

If Ij = I for all j = 1, 2, 3, . . . m, then:

IVTSFWA(I1, I2, I3 . . . Im) = I
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Proof. Let Ij = I =
([

sl , su
]
,
[
il , iu

]
,
[
dl , du

])
for all j, then:

IVTSFWA(I, I, I . . . I)

=

([
q

√
1−

m
∏
j=1

(
1−

(
sl
)q
)wj

, q

√
1−

m
∏
j=1

(
1− (su)q)wj

]
,

[
m
∏
j=1

(
il
)wj

,
m
∏
j=1

(iu)wj

]
,

[
m
∏
j=1

(
dl
)wj

,
m
∏
j=1

(du)wj

])

=

 q

√
1−

(
1−

(
sl
)q
) m

∑
i=1

wi
,

q

√
1−

(
1− (su)q) m

∑
i=1

wi

,

(il
) m

∑
i=1

wi
, (iu)

m
∑

i=1
wi

,

(dl
) m

∑
i=1

wi
, (du)

m
∑

i=1
wi


=
([

sl , su
]
,
[
il , iu

]
,
[
dl , du

])
= I

(2) Boundedness:

If I− = min
j

(
sj, ijdj

)
and I+ = max

j

(
sj, ijdj

)
are the least and greatest IVTSFNs, then:

I− ≤ IVTSFWA(I1, I2, I3 . . . Im) ≤ I+

�

Proof. Straightforward. �

(3) Monotonicity:

For the two collections of IVTSFNs, Ij and Pj. If Ij ≤ Pj ∀ j, then:

IVTSFWA(I1, I2, I3 . . . Im) ≤ IVTSFWA(P1, P2, P3 . . . Pm)

Proof. As
IVTSFWA(I1, I2, I3 . . . Im) = w1 I1 + w2 I2 + w3 I3 + . . . wm Im

and
IVTSFWA(P1, P2, P3 . . . Pm) = w1P1 + w2P2 + w3P3 + . . . wmPm

As Ij ≤ Pj ∀ j. So,

IVTSFWA(I1, I2, I3 . . . Im) ≤ IVTSFWA(P1, P2, P3 . . . Pm)

In MADM problems, sometimes the ordered position of the information has importance and
needs to be weighted. For this reason, the concept of the IVTSFOWA operator is proposed. �

Definition 8. The IVTSFOWA operator for IVTSFNs Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFOWA(I1, I2, I3 . . . Im) =
m

∑
j=1

wj Iα(j)

where Iα(j) denotes the jth largest value of Ij.

Theorem 5. The aggregated value of the IVTSFNs, Ij, using an IVTSFOWA operator, is an IVTSFN and is
given as:

IVTSFOWA(I1, I2, I3 . . . Im)

=

([
q

√
1−

m
∏
j=1

(
1−

(
sl

α(j)

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
su

α(j)

)q)wj

]
,

[
m
∏
j=1

(
il
α(j)

)wj
,

m
∏
j=1

(
il
α(j)

)wj

]
,

[
m
∏
j=1

(
dl

α(j)

)wj
,

m
∏
j=1

(
dl

α(j)

)wj

])
(2)
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Proof. This result can analogously be proven, like Theorem 3. �

Example 2. Let I1 = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8]), I2 = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8]), I3 =

([0.3, 0.3], [0.4, 0.5], [0.7, 0.8]), and I4 = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5]) be the four IVTSFNs for q = 4
and let w = (0.22, 0.34, 0.27, 0.17)T be the weight vector. Then, using the score function defined in Definition
6, we have SC(I1) = 0.0227, SC(I2) = 0.0055, SC(I3) = 0.0089, and SC(I4) = 0.0066. So, the IVTSFNs
are ranked as: I1 > I3 > I4 > I2 and we get:

Iα(1) = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8])

Iα(2) = ([0.3, 0.3], [0.4, 0.5], [0.7, 0.8])

Iα(3) = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5])

Iα(4) = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8])

Thus, the aggregated value of I1, I2, I3, and I4, using the IVTSFOWA operator, is given by:

IVTSFOWA(I1, I3, I4, I2)

= ([0.2691, 0.4573 ], [0.2532, 0.4485 ], [0.3994, 0.8000]).

As discussed, whenever the ordered position of IVTSFNs is necessary, we use the IVTSFOWA
operator. If the importance of their argument also needs to be weighted, then we develop the
IVTSFHA operator.

Definition 9. The IVTSFHA operator for the IVTSFN Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFHA(I1, I2, I3 . . . Im) =
m

∑
j=1

wj
.
Iα(j)

where
.
I j can be computed as

.
I j = mwIj,

.
Iα(j) denotes the jth largest value of

.
I j, and further w =

(w1, w2, w3 . . .wn)
T is the weight vector of Ij.

Theorem 6. The aggregated value of the IVTSFNs Ij, using the IVTSFHA operator, is an IVTSFN and is
given as:

IVTSFHA(I1, I2, I3 . . . Im)

=

([
q

√
1−

m
∏
j=1

(
1−

( .
sl

α(j)

)q)wj
, q

√
1−

m
∏
j=1

(
1−

( .
su

α(j)

)q)wj

]
,

[
m
∏
j=1

(
.
i
l
α(j)

)wj

,
m
∏
j=1

(
.
i
l
α(j)

)wj
]

,

[
m
∏
j=1

(
.
d

l
α(j)

)wj

,
m
∏
j=1

(
.
d

l
α(j)

)wj
])

(3)

Proof. This result can analogously be proven, similarly to the proof of Theorem 3. �

Example 3. Let I1 = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8]), I2 = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8]), I3 =

([0.3, 0.3], [0.4, 0.5], [0.7, 0.8]), and I4 = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5]) be the four IVTSFNs for
q = 4 and let ω = (0.22, 0.34, 0.27, 0.17)Tbe the weight vector of the IVTSFNs. Furthermore, let
w = (0.2, 0.1, 0.3, 0.4)T be the aggregated associated weight vector. Then, using

.
I j = mwIj, we have:

.
I1 = mwI1

=

([
4

√
1−

(
1− (0.3)4

)4×0.22
, 4

√
1−

(
1− (0.6)4

)4×0.22
]

,
[
(0.2)4×0.22, (0.7)4×0.22

]
,
[
(0.5)4×0.22, (0.8)4×0.22

])
= ([0.3466, 0.6379], [0.0004, 0.0528], [0.0138, 0.0901 ])
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Similarly,

.
I2 = mwI2 = ([0.1120, 0.2876], [0.0005, 0.0441], [0.0028, 0.1393])

.
I3 = mwI3 = ([0.2725, 0.2725], [0.0069, 0.0069], [0.0169, 0.1106])
.
I4 = mwI4 = ([0.3347, 0.5363], [0.0003, 0.0014], [0.0014, 0.0696])

Now, using the score function defined in Definition 6, we have SC
( .

I1

)
= 0.5240, SC

( .
I2

)
= 0.1900,

SC
( .

I3

)
= 0.3461, and SC

( .
I4

)
= 0.5003. So, the IVTSFNs

.
I j are ranked as:

I1 > I4 > I3 > I2

And we get:

.
Iα(1) = ([0.3466, 0.6379], [0.0004, 0.0528], [0.0138, 0.0901 ])

.
Iα(2) = ([0.3347, 0.5363], [0.0003, 0.0014], [0.0014, 0.0696])
.
Iα(3) = ([0.2725, 0.2725], [0.0069, 0.0069], [0.0169, 0.1106])
.
Iα(4) = ([0.1120, 0.2876], [0.0005, 0.0441], [0.0028, 0.1393])

Now, the aggregated value of
.
I1,

.
I2,

.
I3, and

.
I4, using the IVTSFHA operator, is given by:

IVTSFHA
( .

I1,
.
I4,

.
I3,

.
I1

)
= ([0.3129, 0.5153], [0.0008, 0.0066], [0.0050, 0.0903])

Theorem 7. If w =
(

1
m , 1

m , 1
m , . . . 1

m

)T
, then the IVTSFHA operator becomes the IVTSFWA operator.

Proof. As
.
I j = mwj Ij and w =

(
1
m , 1

m , 1
m , . . . 1

m

)T
. So wj

.
I j = wj Ij and

IVTSFHA(I1, I2, I3 . . . Im) =
m

∑
j=1

wj
.
Iσ(j) =

m

∑
j=1

wj Ij = IVTSFWA(I1, I2, I3 . . . Im)

�

6. Geometric Aggregation Operators for Interval-Valued T-Spherical Fuzzy Sets:

In this section, some geometric aggregation operators for IVTSFSs are proposed. These operators
include the IVTSFWG operator, IVTSFOWG operator, and IVTSFHG operator. The basic properties of
these aggregation tools will be studied and supported by numerical examples.

Definition 10. The IVTSFWG operator for the IVTSFNs Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFWG(I1, I2, I3 . . . Im) =
m

∏
j=1

I
wj
j
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Theorem 8. The aggregated value of the IVTSFNs Ij, using the IVTSFWG operator, is an IVTSFN and is
given as:

IVTSFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

m
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
du

j

)q)wj

])
(4)

Proof. Following the tradition, this result can be proven using mathematical induction.

For m = 2.

Iw1
1 =

([(
sl

I1

)w1
,
(

su
I1

)w1
]
,
[(

il
I1

)w1
,
(

iu
I1

)w1
]
,

[
q

√
1−

(
1− dl

I1
q
)w1

, q

√
1−

(
1− du

I1
q
)w1

])

and

Iw2
2 =

([(
sl

I2

)w2
,
(

su
I2

)w2
]
,
[(

il
I2

)w2
,
(

iu
I2

)w2
]
,

[
q

√
1−

(
1− dl

I2
q
)w2

, q

√
1−

(
1− du

I2
q
)w2

])

Iw1
1 ⊗ Iw2

2 =


([(

sl
I1

)w1
,
(

su
I1

)w1
]
,
[(

il
I1

)w1
,
(

iu
I1

)w1
]
,
[

q

√
1−

(
1− dl

I1
q
)w1

, q

√
1−

(
1− du

I1
q
)w1

])
⊗([(

sl
I2

)w2
,
(

su
I2

)w2
]
,
[(

il
I2

)w2
,
(

iu
I2

)w2
]
,
[

q

√
1−

(
1− dl

I2
q
)w2

, q

√
1−

(
1− du

I2
q
)w2

])


=



[(
sl

I1

)w1
.
(

sl
I2

)w2
,
(

su
I1

)w1
.
(

su
I2

)w2
]
,
[(

il
I1

)w1
.
(

il
I2

)w2
,
(

iu
I1

)w1
.
(

iu
I2

)w2
]
,

q

√(
q

√
1−

(
1− dl

I1
q
)w1

)q

+

(
q

√
1−

(
1− dl

I2
q
)w2

)q

− q

√
1−

(
1− dl

I1
q
)w1

. q

√
1−

(
1− dl

I2
q
)w2

,

q

√(
q

√
1−

(
1− du

I1
q
)w1

)q

+

(
q

√
1−

(
1− du

I2
q
)w2

)q

− q

√
1−

(
1− du

I1
q
)w1

. q

√
1−

(
1− du

I2
q
)w2




=


[(

sl
I1

)w1
.
(

sl
I2

)w2
,
(

su
I1

)w1
.
(

su
I2

)w2
]
,
[(

il
I1

)w1
.
(

il
I2

)w2
,
(

iu
I1

)w1
.
(

iu
I2

)w2
]
,[

q

√
1−

(
1− dl

I1
q
)w1

.
(

1− dl
I2

q
)w2

, q

√
1−

(
1− du

I1
q
)w1

.
(

1− du
I2

q
)w2

]


=

([
2
∏
j=1

(
sl

j

)wj
,

2
∏
j=1

(
su

j

)wj

]
,

[
2
∏
j=1

(
il
j

)wj
,

2
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

2
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

2
∏
j=1

(
1−

(
du

j

)q)wj

])

Hence, for m = 2, the result is true.
Based on this assumption, we claim that the result is valid for m = k i.e.,

IVTSFWG(I1, I2, I3 . . . Ik)

=

([
k

∏
j=1

(
sl

j

)wj
,

k
∏
j=1

(
su

j

)wj

]
,

[
k

∏
j=1

(
il
j

)wj
,

k
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

k
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

k
∏
j=1

(
1−

(
du

j

)q)wj

])

To prove the result for m = k + 1, consider:

IVTSFWG(I1, I2, I3 . . . Ik, Ik+1) =
k+1
∏
j=1

I
wj
j =

k
∏
j=1

I
wj
j ⊗ Iwk+1

k+1

=


([

k
∏
j=1

(
sl

j

)wj
,

k
∏
j=1

(
su

j

)wj

]
,

[
k

∏
j=1

(
il
j

)wj
,

k
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

k
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

k
∏
j=1

(
1−

(
du

j

)q)wj

])
⊗([(

sl
Ik+1

)wk+1
,
(

su
Ik+1

)wk+1
]
,
[(

il
Ik+1

)wk+1
,
(

iu
Ik+1

)wk+1
]
,
[

q

√
1−

(
1− dl

Ik+1
q
)wk+1

, q

√
1−

(
1− du

Ik+1
q
)wk+1

])

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Finally, we get:

IVTSFWG(I1, I2, I3 . . . Ik, Ik+1)

=

([
k+1
∏
j=1

(
sl

j

)wj
,

k+1
∏
j=1

(
su

j

)wj

]
,

[
k+1
∏
j=1

(
il
j

)wj
,

k+1
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

k+1
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

k+1
∏
j=1

(
1−

(
du

j

)q)wj

])

Hence, the result is valid for m = k + 1. Consequently, using the induction method, it is proven
that the result is valid for all m ∈ Z+. �

In the following theorem, we state that the IVTSFWG operator satisfies the basic characteristics of
aggregation operators.

Theorem 9. For an IVTSFWG operator, the following properties hold true.

(1) Idempotency:

If Ij = I for all j = 1, 2, 3, . . . m, then:

IVTSFWG(I1, I2, I3 . . . Im) = I

(2) Boundedness:

If I− = min
j

(
sj, ijdj

)
and I+ = max

j

(
sj, ijdj

)
are the least and greatest IVTSFNs, then:

I− ≤ IVTSFWG(I1, I2, I3 . . . Im) ≤ I+

(3) Monotonicity:

For the two collections of IVTSFNs, Ij and Pj, if Ij ≤ Pj ∀ j then:

IVTSFWA(I1, I2, I3 . . . Im) ≤ IVTSFWA(P1, P2, P3 . . . Pm)

These results can be proven analogously.
We have developed the IVTSFOWA operator to handle situations where the ordered position of

the information is important. Now, the concept of the IVTSFOWG operator is proposed.

Definition 11. The IVTSFOWG operator for IVTSFNs Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFOWG(I1, I2, I3 . . . Im) =
m

∏
j=1

I
wj
α(j)

where Iα(j) denotes the jth largest value of Ij.

Theorem 10. The aggregated value of the IVTSFNs Ij, using the IVTSFOWG operator, is an IVTSFN and is
given as:

IVTSFOWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

α(j)

)wj
,

m
∏
j=1

(
su

α(j)

)wj

]
,

[
m
∏
j=1

(
il
α(j)

)wj
,

m
∏
j=1

(
iu
α(j)

)wj

]
,

[
q

√
1−

m
∏
j=1

(
1−

(
dl

α(j)

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
du

α(j)

)q)wj

])
(5)

Example 4. Let I1 = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8]), I2 = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8]), I3 =

([0.3, 0.3], [0.4, 0.5], [0.7, 0.8]), and I4 = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5]) be the four IVTSFNs for q = 4
and let w = (0.22, 0.34, 0.27, 0.17)T be the weight vector. Then, using the score function defined in Definition
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6, we have SC(I1) = 0.0227, SC(I2) = 0.0055, SC(I3) = 0.0089, and SC(I4) = 0.0066. So, the IVTSFNs
are ranked as:

I1 > I3 > I4 > I2

And we get:
Iα(1) = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8])

Iα(2) = ([0.3, 0.3], [0.4, 0.5], [0.7, 0.8])

Iα(3) = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5])

Iα(4) = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8])

Now, the aggregated value of I1, I2, I3, and I4, using the IVTSFOWA operator, is given by:

IVTSFOWG(I1, I3, I4, I2)

= ([0.2081, 0.4212], [0.2532, 0.4336], [0.5844, 0.7626])

Next, the notion of the IVTSFHG operator is proposed.

Definition 12. The IVTSFHG operator for IVTSFNs Ij (j = 1, 2, 3 . . . m) is of the form:

IVTSFHG(I1, I2, I3 . . . Im) =
m

∏
j=1

.
I

wj
α(j)

where
.
I j can be computed as

.
I j = Imw

j ,
.
Iα(j) denotes the jth largest value of

.
I j, andw = (w1, w2, w3 . . .wn)

T

is the weight vector of Ij.

Theorem 11. The aggregated value of IVTSFNs Ij, using the IVTSFHG operator, is an IVTSFN and is given as:

IVTSFHG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

( .
sl

α(j)

)wj
,

m
∏
j=1

( .
su

α(j)

)wj

]
,

[
m
∏
j=1

(
.
i
l
α(j)

)wj

,
m
∏
j=1

( .
i
u
α(j)

)wj

]
,

[
q

√
1−

m
∏
j=1

(
1−

(
.
d

l
α(j)

)q)wj

, q

√
1−

m
∏
j=1

(
1−

( .
d

u
α(j)

)q
)wj

])
(6)

Proof. This result can analogously be proven as similar to that of the proof of Theorem 8. �

Example 5. Let I1 = ([0.3, 0.6], [0.2, 0.7], [0.5, 0.8]), I2 = ([0.2, 0.4], [0.2, 0.6], [0.3, 0.8]), I3 =

([0.3, 0.3], [0.4, 0.5], [0.7, 0.8]), and I4 = ([0.1, 0.5], [0.2, 0.2], [0.3, 0.5]) be the four IVTSFNs for
q = 4 and let w = (0.22, 0.34, 0.27, 0.17)Tbe the weight vector of IVTSFNs. Furthermore, let w =

(0.2, 0.1, 0.3, 0.4)T be the aggregated associated weight vector. Then, using
.
I j = Imw

j , we have:

.
I1 = Imw

1

=

([
(0.3)4×0.22, (0.6)4×0.22

]
,
[
(0.2)4×0.22, (0.7)4×0.22

]
,

[
4

√
1−

(
1− (0.5)4

)4×0.22
, 4

√
1−

(
1− (0.8)4

)4×0.22
] )

= ([0.0018, 0.0285], [0.0004, 0.0528], [0.5434, 0.8217])

Similarly,

.
I2 = Imw

2 = ([0.0005, 0.0087], [0.0005, 0.0441], [0.1945, 0.7382])

.
I3 = Imw

3 = ([0.0022, 0.0022], [0.0069, 0.0069], [0.4730, 0.7858])
.
I4 = Imw

4 = ([0.0003, 0.0044 ], [0.0003, 0.0014], [0.4410, 0.8592])
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Now, using the score function defined in Definition 6, we have SC
( .

I1

)
= 0.0020, SC

( .
I2

)
= 0.0011,

SC
( .

I3

)
= 0.0013, and SC

( .
I4

)
= 0.0004. So, the IVTSFNs

.
I j are ranked as:

.
I1 >

.
I3 >

.
I2 >

.
I4

Now, the aggregated value of
.
I1,

.
I2,

.
I3, and

.
I4, using the IVTSFHG operator, is given by:

IVTSFHG(I1, I3, I2, I4) = ([0.0008, 0.0055], [0.0008, 0.0066], [0.4681, 0.8235])

Theorem 12. If w =
(

1
m , 1

m , 1
m , . . . 1

m

)T
, then the IVTSFHG operator becomes the IVTSFWG operator.

Proof. As
.
I j = I

mwj
j and w =

(
1
m , 1

m , 1
m , . . . 1

m

)T
. So

.
I

wj
j = I

wj
j and

IVTSFHG(I1, I2, I3 . . . Im) =
m

∏
j=1

.
I

wj
α(j) =

m

∏
j=1

I
wj
j = IVTSFWG(I1, I2, I3 . . . Im)

�

7. Multi-Attribute Decision-Making Investment Planning

MADM is one of the most suitable areas where the aggregation of the tools of fuzzy structures is
applied to get useful results. A detailed literature survey of MADM problems has been discussed in
Section 1. In this section, our aim is to develop the MADM method in the context of IVTSFSs.

In a MADM problem, the selection of the best or most suitable option is carried out using a list of
options. Consider a list of m alternatives, denoted by Ai, being observed by decision makers with k
attributes, denoted by Hk. The decision makers evaluated the m number of alternatives with k attributes
and provided their information in the form of IVTSFNs. Furthermore, w = (w1, w2, w3, . . . wk)

T

denoted the weight vector of the attributes. The detailed steps of the MADM process are given as:

Step 1: The decision makers assess the alternatives, given the attributes, and provide their information
in the form of a decision matrix.

Step 2: Apply the proposed aggregation tools to the decision matrix obtained in Step 1.
Step 3: Compute the scores of the IVTSFNs obtained in Step 2.
Step 4: Analyze the score values of the alternatives and rank them to obtain the best alternative.

The following example demonstrates the proposed MADM algorithm in detail.

Example 6. A multinational company needed to announce its policy on its investment for the upcoming
financial year. Keeping in mind its previous performance, the company needed to evaluate its financial policies to
launch the best investment. It had four policies to be evaluated after some initial screening. These four policies
included four possible places (countries) for investments i.e., A1: To invest in Pakistan, A2 : To invest in Iran,
A3; To invest in the UAE, and A4 : To invest in Bangladesh. Assuming that all of the attributes are of benefit,
the four investment plans were evaluated based on the following attributes: H1 : Comfort zone, H2 : Government
regulations, H3 : Interest of the people, and H4 : Competition in the markets. The attribute H1 shows that
evaluation policies are based on the law and considers the situation of the country for the investment. The
attribute H2 allows the decision makers to evaluate the policy, keeping in mind the relevant government policies
that directly affect the business policies. The attribute H3 allows the decision makers to evaluate the policy based
on the cultural values and overall lifestyle of the people of the country, as any investment policy is directly
linked to the consumers and distributors. The fourth attribute, H4, provides a chance for the decision makers to
evaluate the policy by considering the competition in the market. If the competition in the market is low, then the
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success of the policy may be assured. All of the four factors had a great impact on the success of the policy and the
decision makers provided their evaluations with all four attributes in mind. Let w = (0.22, 0.34, 0.27, 0.17)T

be the weight vector of the attributes. The policy makers gave their opinions in the form of IVTSFNs, as follows.

The description of imprecise information, in terms of intervals instead of crisp numbers, provides
consistent and improved results numerically, as described in Section 3. Furthermore, the description of
imprecision using the four membership grades, i.e., membership, abstinence, non-membership, and
the refusal degree, improves the accuracy of the human opinion about an uncertain event. Therefore,
the evaluation of the investment policy, in this case, is studied in the environment of IVTSFSs, using the
WA and WG aggregation operators. The stepwise demonstration of the MADM process is as follows:
Step 1: The evaluation of alternatives, Ai, by the decision makers in the form of decision matrix Dij.

D4×4 =



H1 H2 H3 H4

A1

 [0.3, 0.5],
[0.4, 0.6],
[0.2, 0.6]


 [0.1, 0.5],

[0.3, 0.6],
[0.4, 0.7]


 [0.2, 0.7],

[0.4, 0.4],
[0.3, 0.5]


 [0.4, 0.9],

[0.5, 0.6],
[0.3, 0.4]


A2

 [0.4, 0.5],
[0.2, 0.7],
[0.6, 0.7]


 [0.4, 0.7],

[0.3, 0.6],
[0.5, 0.8]


 [0.4, 0.8],

[0.2, 0.4],
[0.1, 0.6]


 [0.3, 0.8],

[0.4, 0.6],
[0.2, 0.2]


A3

 [0.8, 0.8],
[0.0, 0.3],
[0.5, 0.6]


 [0.2, 0.7],

[0.1, 0.2],
[0.4, 0.8]


 [0.7, 0.9],

[0.3, 0.3],
[0.4, 0.8]


 [0.3, 0.4],

[0.4, 0.8],
[0.4, 0.4]


A4

 [0.2, 0.2],
[0.5, 0.5],
[0.2, 0.6]


 [0.5, 0.7],

[0.3, 0.6],
[0.3, 0.3]


 [0.2, 0.8],

[0.3, 0.4],
[0.1, 0.3]


 [0.1, 0.9],

[0.3, 0.7],
[0.5, 0.6]




The selection of the best location for investment is carried out using two approaches. Firstly,

by using the IVTSFWA operators and secondly, by using IVTSFWG operators. It can be seen that all of
the values in the decision matrix are IVTSFNs for q = 5. For a lesser q, some values are not IVTSFNs.
Therefore, we take q = 5.
Step 2: By applying the IVTSFWA operators to the decision matrix provided in Step 1, we get:

A1 = IVTSFWA(A11, A12, A13, A14)

= ([0.2986, 0.7225], [0.3768, 0.5378], [0.3026, 0.5618])

A2 = IVTSFWA(A21, A22, A23, A24)

= ([0.3891, 0.7365], [0.2583, 0.5563], [0.2884, 0.5679])

A3 = IVTSFWA(A31, A32, A33, A34)

= ([0.6634, 0.7986], [0.0000, 0.3088 ], [0.4201, 0.6675])

A4 = IVTSFWA(A41, A42, A43, A44)

= ([0.4050, 0.7725], [0.3357, 0.5304], [0.2225, 0.3931])

Step 3: This step involves the computation of the score values as such:

SC(A1) = 0.1083, SC(A2) = 0.1423, SC(A3) = 0.3846, and SC(A4) = 0.1846

Step 4: In this step, the score values obtained in Step 3 are analyzed. Based on the score values, the
ranking of the alternatives is given:

SC(A3) > SC(A4) > SC(A2) > SC(A1)
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The ranking analysis shows that A3 has the greatest value, hence the policy of making
investments in the UAE is the best, according to the proposed decision-making method using the
IVTSFWA operators.

Now, the same data is analyzed to find the best policy of investment using IVTSFWG operators.
Step 1: We use the same evaluation of alternatives, Ai, in the form of decision matrix Dij as above.
Step 2: By applying the IVTSFWG operators to the decision matrix provided in Step 1, we get:

A1 = IVTSFWG(A11, A12, A13, A14)

= ([0.1944, 0.6051 ], [0.3768, 0.5378], [0.3413, 0.6132])

A2 = IVTSFWG(A21, A22, A23, A24)

= ([0.3809, 0.6894 ], [0.2583, 0.5563], [0.4900, 0.7090])

A3 = IVTSFWG(A31, A32, A33, A34)

= ([0.4077, 0.7015], [0.0000, 0.3088], [0.4312, 0.7455])

A4 = IVTSFWG(A41, A42, A43, A44)

= ([0.2427, 0.5749], [0.3357, 0.5304], [0.3627, 0.5040])

Step 3: This step involves the computation of the score values as:

SC(A1) = 0.0520, C(A2) = 0.0993, SC(A3) = 0.1263, and SC(A4) = 0.0589

Step 4: In this step, the score values obtained in Step 3 are analyzed. Based on the score values, the
ranking of alternatives is given as:

SC(A3) > SC(A2) > SC(A4) > SC(A1)

The ranking analysis shows that A3 has the greatest value, thus the policy of making investments
in the UAE is the best, according to the proposed decision-making method using IVTSFWG operators.
Hence, in this case, we obtain the same results by using IVTAFWA operators as we do by using
IVTSFWG operators. However, we will not necessarily always obtain the same results using different
aggregation tools, i.e., the results obtained using IVTSFWA and IVTSFWG operators may differ. Thus,
this type of information cannot be processed by using the pre-existing aggregation tools because of
their limited structures. Our proposed aggregation operators, on the other hand, can aggregate such
types of information. The other interesting fact is that the information provided in this problem is
similar to human opinion, as it describes the degree membership, abstinence, non-membership, and
the refusal degree. Furthermore, if we used only a single crisp value for each membership grade
instead of intervals, then the result would drastically change, as illustrated in Section 3.

8. Consequences of the Proposed Work and a Comparative Study

The aim of this section is to analyze some consequences of our proposed work. It can be seen that,
in some fuzzy algebraic structures, work on the aggregation tools is yet to be initiated. Therefore, some
weighted averaging and weighted geometric aggregation tools for other fuzzy algebraic structures
will be proposed. If the aggregation tools of a fuzzy framework already exist, then those aggregation
tools will be compared with the new proposed aggregation tools.

Consider the IVTSFWA and IVTSFWG operators, as in Equations (1) and (4) respectively.

IVTSFWA(I1, I2, I3 . . . Im)

=

([
q

√
1−

m
∏
j=1

(
1−

(
sl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
su

j

)q)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
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IVTSFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
q

√
1−

m
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
du

j

)q)wj

])

(1) If we use sl = su = s, il = iu = i, and dl = du = d, then the weighted averaging and the weighted
geometric aggregation operators of TSFSs are obtained and are given as:

TSFWA(I1, I2, I3 . . . Im) =

 q

√√√√1−
m

∏
j=1

(
1−

(
sj
)q
)wj

,
m

∏
j=1

(
ij
)wj ,

m

∏
j=1

(
dj
)wj

 (7)

TSFWG(I1, I2, I3 . . . Im)

 m

∏
j=1

(
sj
)wj ,

m

∏
j=1

(
ij
)wj , q

√√√√1−
m

∏
j=1

(
1−

(
dj
)q
)wj

 (8)

(2) If we use q = 2, then the weighted averaging and the weighted geometric aggregation operators
of IVSFSs are obtained and are given as:

IVSFWA(I1, I2, I3 . . . Im)

=

([√
1−

m
∏
j=1

(
1−

(
sl

j

)2
)wj

,

√
1−

m
∏
j=1

(
1−

(
su

j

)2
)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(9)

IVSFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[√
1−

m
∏
j=1

(
1−

(
dl

j

)2
)wj

,

√
1−

m
∏
j=1

(
1−

(
du

j

)2
)wj

])
(10)

(1) If we use q = 2, sl = su = s, il = iu = i, and dl = du = d, then the weighted averaging and the
weighted geometric aggregation operators of SFSs are obtained and are given as:

SFWA(I1, I2, I3 . . . Im) =

√√√√1−
m

∏
j=1

(
1−

(
sj
)2
)wj

,
m

∏
j=1

(
ij
)wj ,

m

∏
j=1

(
dj
)wj

 (11)

SFWG(I1, I2, I3 . . . Im)

 m

∏
j=1

(
sj
)wj ,

m

∏
j=1

(
ij
)wj ,

√√√√1−
m

∏
j=1

(
1−

(
dj
)2
)wj

 (12)

(2) If we use q = 1, then the weighted averaging and the weighted geometric aggregation operators
of IVPFSs are obtained and are given as:

IVPFWA(I1, I2, I3 . . . Im)

=

([
1−

m
∏
j=1

(
1−

(
sl

j

))wj
, 1−

m
∏
j=1

(
1−

(
su

j

))wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(13)

IVPFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
1−

m
∏
j=1

(
1−

(
dl

j

)2
)wj

, 1−
m
∏
j=1

(
1−

(
du

j

)2
)wj

])
(14)

(3) If we use q = 1, sl = su = s, il = iu = i, and dl = du = d, then the weighted averaging and the
weighted geometric aggregation operators of PFSs are obtained and are given as:

PFWA(I1, I2, I3 . . . Im) =

(
1−

m

∏
j=1

(
1−

(
sj
))wj ,

m

∏
j=1

(
ij
)wj ,

m

∏
j=1

(
dj
)wj

)
(15)
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PFWG(I1, I2, I3 . . . Im)

(
m

∏
j=1

(
sj
)wj ,

m

∏
j=1

(
ij
)wj , 1−

m

∏
j=1

(
1−

(
dj
))wj

)
(16)

Note that this PFWA operator is the same as the one proposed by Garg [50].
(4) If we use il = iu = i = 0, then the weighted averaging and the weighted geometric aggregation
operators of the newly developed IVq-ROPFSs are obtained and are given as:

IVQROPFWA(I1, I2, I3 . . . Im)

=

([
q

√
1−

m
∏
j=1

(
1−

(
sl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
su

j

)q)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(17)

IVQROPFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
q

√
1−

m
∏
j=1

(
1−

(
dl

j

)q)wj
, q

√
1−

m
∏
j=1

(
1−

(
du

j

)q)wj

])
(18)

(5) If we use sl = su = s, il = iu = i = 0, and dl = du = d, then the weighted averaging and the
weighted geometric aggregation operators of the newly developed q-ROPFSs are obtained and are
given as:

QROPFWA(I1, I2, I3 . . . Im) =

 q

√√√√1−
m

∏
j=1

(
1−

(
sj
)q
)wj

,
m

∏
j=1

(
dj
)wj

 (19)

QROPFWG(I1, I2, I3 . . . Im)

 m

∏
j=1

(
sj
)wj , q

√√√√1−
m

∏
j=1

(
1−

(
dj
)q
)wj

 (20)

(6) If we use q = 2 and il = iu = i = 0, then the weighted averaging and the weighted geometric
aggregation operators of the IVPyFSs are obtained and are given as:

IVPyFWA(I1, I2, I3 . . . Im)

=

([√
1−

m
∏
j=1

(
1−

(
sl

j

)2
)wj

,

√
1−

m
∏
j=1

(
1−

(
su

j

)2
)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(21)

IVPyFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[√
1−

m
∏
j=1

(
1−

(
dl

j

)2
)wj

,

√
1−

m
∏
j=1

(
1−

(
du

j

)2
)wj

])
(22)

Note that these IVPyFWA and IWPyFWG operators are the same as those proposed by
Rehman et al. [41,42].
(7) If we use q = 2, sl = su = s, il = iu = i = 0, and dl = du = d, then the weighted averaging and
the weighted geometric aggregation operators of the PyFSs are obtained and are given as:

PyFWA(I1, I2, I3 . . . Im) =

√√√√1−
m

∏
j=1

(
1−

(
sj
)2
)wj

,
m

∏
j=1

(
dj
)wj

 (23)

PyFWG(I1, I2, I3 . . . Im)

 m

∏
j=1

(
sj
)wj ,

√√√√1−
m

∏
j=1

(
1−

(
dj
)2
)wj

 (24)

Note that these PyFWA and PyFWG operators are the same as those proposed by Rahman et al.
and Peng and Yang [39,40].
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(8) If we use q = 1 and il = iu = i = 0, then the weighted averaging and the weighted geometric
aggregation operators of the IVIFSs are obtained and are given as:

IVIFWA(I1, I2, I3 . . . Im)

=

([
1−

m
∏
j=1

(
1−

(
sl

j

))wj
, 1−

m
∏
j=1

(
1−

(
su

j

))wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])
(25)

IVIFWG(I1, I2, I3 . . . Im)

=

([
m
∏
j=1

(
sl

j

)wj
,

m
∏
j=1

(
su

j

)wj

]
,

[
m
∏
j=1

(
il
j

)wj
,

m
∏
j=1

(
iu
j

)wj

]
,

[
1−

m
∏
j=1

(
1−

(
dl

j

)2
)wj

, 1−
m
∏
j=1

(
1−

(
du

j

)2
)wj

])
(26)

Note that these IVIFWA and IVIFWG operators are the same as those proposed by Wang et al.
and Wei and Wang [29,30].
(9) If we use q = 1, sl = su = s, il = iu = i = 0, and dl = du = d, then the weighted averaging and
the weighted geometric aggregation operators of the PFSs are obtained and are given as:

IFWA(I1, I2, I3 . . . Im) =

(
1−

m

∏
j=1

(
1−

(
sj
))wj ,

m

∏
j=1

(
dj
)wj

)
(27)

IFWG(I1, I2, I3 . . . Im)

(
m

∏
j=1

(
sj
)wj , 1−

m

∏
j=1

(
1−

(
dj
))wj

)
(28)

Note that these IFWA and IFWG operators are the same as those proposed by Xu and Yager [24,25].
Hence, using the proposed definitions of the IVTSFWA and IVTSFWG operators and with the

help of some restrictions, we successfully proposed weighted averaging and weighted geometric
aggregation operators for the IVq-ROPFSs, q-ROPFSs, TSFSs, IVSFSs, SFSs, IVPFSs, and PFSs.
Furthermore, it is also shown that the proposed operators are generalizations of the aggregation
tools of PFSs, PyFSs, IVPyFSs, IFSs, and IVIFs.

Now, we discuss the viability of the proposed IVTSF aggregation operators in the problems of the
existing frameworks.

Firstly, consider the MADM problem discussed by Mahmood et al. [22], with three alternatives
and three attributes. The decision matrix is shown in Table 3.

Table 3. The decision matrix with alternatives Ai and attributes Hj.

H1 H2 H3

A1 (0.8, 0.5, 0.4) (0.7, 0.4, 0.4) (0.3, 0.5, 0.4)
A2 (0.9, 0.2, 0.4) (0.6, 0.3, 0.2) (0.4, 0.1, 0.7)
A3 (0.5, 0.5, 0.5) (0.8, 0.2, 0.3) (0.6, 0.4, 0.3)

This type of MADM problem can easily be solved by placing sl = su = s, il = iu = i and
dl = du = d into the proposed IVTSFWA and IVTSFWG operators, i.e., by applying Equation (7) and
Equation (8).

Now, consider the MADM problem studied by Garg [51], with four alternatives and four attributes.
The decision matrix is shown in Table 4.

Table 4. The decision matrix with alternatives Ai and attributes Hj.

H1 H2 H3 H3

A1 (0.2, 0.1, 0.6) (0.5, 0.3, 0.1) (0.5, 0.1, 0.3) (0.4, 0.3, 0.2)
A2 (0.1, 0.4, 0.4) (0.6, 0.3, 0.1) (0.5, 0.2, 0.2) (0.2, 0.1, 0.7)
A3 (0.3, 0.2, 0.2 ) (0.6, 0.2, 0.1) (0.4, 0.1, 0.3) (0.3, 0.3, 0.4)
A4 (0.3, 0.1, 0.6) (0.1, 0.2, 0.6) (0.1, 0.3, 0.5) (0.2, 0.3, 0.2)
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This type of MADM problem can easily be solved by placing q = 1, sl = su = s, il = iu = i, and
dl = du = d into the proposed IVTSFWA operator, i.e., by using Equation (15).

Similarly, the MADM problem solved by Wang et al. [52] can also be solved using Equations (15)
and (16).

9. Advantages

In this section, the advantages of the proposed new aggregation tools over the pre-existing
aggregation tools are discussed and further demonstrated with a numerical example.

If we consider Example 6 of Section 7, it becomes quite clear that none of the existing aggregation
tools used in Equations (9) to (30) of the fuzzy algebraic frameworks could solve the data involved in
that problem, thus showing the limitations of the existing operators.

On the other hand, if we consider an example in the context of the existing fuzzy structure, then
such a problem can easily be solved by using the proposed aggregation tools of the IVTSFSs (by using
Equations (7) and (8)). For instance, consider a decision matrix of four alternatives and three attributes
in the MADM discussed by Garg [10].

D4×3 =



H1 H2 H3

A1

(
[0.4, 0.5],
[0.3, 0.4]

) (
[0.4, 0.6],
[0.2, 0.4]

) (
[0.1, 0.3],
[0.5, 0.6]

)

A2

(
[0.6, 0.7],
[0.2, 0.3]

) (
[0.6, 0.7],
[0.2, 0.3]

) (
[0.4, 0.7],
[0.1, 0.2]

)

A3

(
[0.3, 0.6],
[0.3, 0.4]

) (
[0.5, 0.6],
[0.3, 0.4]

) (
[0.5, 0.6],
[0.1, 0.3]

)

A4

(
[0.7, 0.8],
[0.1, 0.2]

) (
[0.6, 0.7],
[0.1, 0.3]

) (
[0.3, 0.4],
[0.1, 0.2]

)


Here, the four alternatives denote four possible policies of investment and our aim is to find the

best policy. Now, this problem can easily be solved using the aggregation operators of the IVTSFNs
(using Equations (7) and (8)) by including q = 2 and il = iu = i = 0. The IVTSFWA operator for q = 2
and il = iu = i = 0, as discussed in Equation (23), becomes:

IVPyFWA(I1, I2, I3 . . . Im)

=

([√
1−

m
∏
j=1

(
1−

(
sl

j

)2
)wj

,

√
1−

m
∏
j=1

(
1−

(
su

j

)2
)wj

]
,

[
m
∏
j=1

(
dl

j

)wj
,

m
∏
j=1

(
du

j

)wj

])

The aggregation results are:

A1 = IVTSFWA(A11, A12, A13) = ([0.2692, 0.4079], [0.3955, 0.5206])

A2 = IVTSFWA(A11, A12, A13) = ([0.4586, 0.6408], [0.1995, 0.3153])

A3 = IVTSFWA(A11, A12, A13) = ([0.3972, 0.5612], [0.2197, 0.3946])

A4 = IVTSFWA(A11, A12, A13) = ([0.4910, 0.6024], [0.1565, 0.2736])

Using the score function, we get:

SC(A2) > SC(A4) > SC(A3) > SC(A1)

Hence, the score values show that A2 is the best policy to be implemented. This result is well
in accordance with the results obtained by Garg [10]. Therefore, the claim that the IVTSFWA and
IVTSFWG operators can deal with data in the form of pre-existing fuzzy structures is proven to be true.
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10. Conclusions

The concept of the IVTSFS is defined and its novelty and significance are demonstrated. The
basic operations of IVTSFSs are developed and, with the help of some restrictions, it is shown that
the proposed new operations are more applicable than the existing ones. The theory of aggregation
operators for IVTSFSs have also been developed as some weighted averaging and weighted geometric
aggregation operators have been introduced. The validity of the averaging and geometric aggregation
operators was analyzed using the induction method and the characteristics of the monotonicity,
boundedness, and idempotency were studied. Some ordered weighted averaging (geometric) and
hybrid averaging (geometric) aggregation operators were also developed, keeping in mind the ranking
of importance. Adhering to some restrictions over the proposed work, aggregation operators for
IVq-ROPFSs, q-ROPFSs, and IVPFSs were also developed. The MADM method in the context of the
IVTSFS was established and a numerical example was solved using both IVTSFWA and IVTSFWG
operators to understand the proposed MADM method. The advantages of the new proposed work are
discussed with the help of examples. It is clearly explained that the concept of the IVTSF can process
the information which is sufficiently close to human nature, but it can also handle the information
provided in the context of IFSs, PFSs, PyFSs, q-ROPFs, IVIFSs, IVPyFSs, and IVq-ROPFS. On the
other hand, none of the pre-existing operators could process such information. In the future, we aim
to develop some similarity, as well as distance, measures for IVTSFSs and study their usefulness in
pattern recognition, MADM, and clustering. Furthermore, the McLaurin symmetric mean operator
and the Bonferroni mean operator can also be developed for IVTSFSs. We also aim to develop the
idea of Einstein and interactive operators for IVTSFSs and to study their viability in MADM for
future research.
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