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properties of Boole type polynomials and numbers are presented. By applications of partial derivative
and functional equations for these functions, derivative formulas, recurrence relations and finite
combinatorial sums involving the Apostol-Euler polynomials, the Stirling numbers and the Daehee
numbers are given.

Keywords: Apostol-Euler polynomials and numbers; Peters polynomials and numbers;
Boole polynomials and numbers; Stirling numbers; Daehee numbers; generating functions;
Changheenumbers and polynomials

MSC: 05A10; 05A15; 11B68; 11B73; 11B83; 26C05

1. Introduction

In literature, there are various different and useful manuscripts related to not only Boole type
polynomials and numbers, but also the Peters type polynomials and numbers. Some of those have
been recently given by Boas [1], Jordan [2], Kim et al. [3–10], Kucukoglu et al. [11], Kruchinin [12],
Roman [13], Simsek [14–20], Simsek and So [21], and also Srivastava et al. [22,23]. By using generating
function method, we give many important and fundamental properties of Boole type polynomials and
numbers of higher order. We need the following notations:

N = {1, 2, 3, . . . }, N0 = {0, 1, 2, 3, . . . }. Z, R, C and Zp demonstrate respectively sets of integer
numbers, real numbers, complex numbers, and p-adic integers. Marking that for n = 0, 0n = 1 and for
n ∈ N, 0n = 0.

(x)v = x(x− 1) · · · (x− v + 1),

(x)0 = 1 and (
x
v

)
=

x(x− 1) · · · (x− v + 1)
v!

,

where v ∈ N0 (cf. [1–32]).
The definition of the Apostol-Euler polynomials of order v, shown by En(x, λ), is given below.

FE (t, x; λ, v) =
(

2
λet + 1

)v
etx =

∞

∑
n=0
E (v)n (x, λ)

tn

n!
(1)

(cf. [25,28,29,31,32]; and the references cited therein).
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Setting v = 1 in (1), we have the Apostol-Euler polynomials

En(x, λ) = E (1)n (x, λ).

When x = 0, we also have the Apostol-Euler numbers

En(λ) = En(0, λ).

When λ = 1, the above equation reduces to the well-known the Euler numbers

En = En(1)

(cf. [1–32]).
The definition of the Stirling numbers of the first kind, shown by S1(n, k), is given below.

FS1(t, k) =
(log(1 + t))k

k!
=

∞

∑
n=0

S1(n, k)
tn

n!
(2)

If k > n, then
S1(n, k) = 0

(cf. [2–30,32]).
The definition of the Stirling numbers of the second kind, shown by S2(n, k), is given below.

FS(t, k) =
(et − 1)k

k!
=

∞

∑
n=0

S2(n, k)
tn

n!
. (3)

If k > n, then
S2(n, k) = 0

(cf. [2–30,32]).
The Peters polynomials are one of the members of the Sheffer polynomials, which are a very

broad family of polynomial sequences. The definition of the Peters polynomials, shown by sn (x; λ, µ),
is given below.

FP (t, x; λ, µ) =
(1 + t)x(

1 + (1 + t)λ
)µ =

∞

∑
n=0

sn (x; λ, µ)
tn

n!
, (4)

where x, t ∈ C (cf. [1,2,13]).

Remark 1. Recently, there have been various studies and papers about the Peters (type) polynomials.
For example, see for detail, Boas [1], Jordan [2], Kim et al. [3–10], Kucukoglu et al. [11], Kruchinin [12],
Roman [13], Simsek [14–20], Simsek and So [21], and also Srivastava et al. [22,23].
We now present some appropriate values of the sn (x; λ, µ).
When x = 0, we have the Peters numbers:

sn(λ, µ) = sn(0; λ, µ)

(cf. [15,22]). When µ = 1, we have the Boole polynomials:

ξ(x, λ) = sn(x; λ, 1)

(cf. [2,13]). If λ = µ = 1, we get the Changhee polynomials

Chn(x) = 2sn(x; 1, 1)
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(cf. [3,4]).

The definition of the Daehee numbers, shown by Dn, is given below.

FD(t, k) =
log(1 + t)

t
=

∞

∑
n=0

Dn
tn

n!
(5)

(cf. [5]). For further information and generalization see also (cf. [11,15–18,23]). Recently, the first author
defined the following combinatorial numbers and polynomials, respectively:

F(t, λ) =
2

λ(1 + λt)− 1
=

∞

∑
n=0

Yn(λ)
tn

n!

and

F(t, x, λ) = (1 + λt)xF(t, λ) =
∞

∑
n=0

Yn(x; λ)
tn

n!

(cf. [18] ).
Let d be an odd integer and χ be a Dirichlet character. That is χ(x+ d) = χ(x). The first author [18]

[Equation-(2.3)] defined the following interesting p-adic integral representation and equation:

∫
X

λx(1 + λt)xχ(x)dµ−q(x) =
1 + q

(λq)d(1 + λt)d + 1

d−1

∑
j=0

(−1)jχ(j)(λq)j(1 + λt)j,

where p is a fixed prime and d is a fixed positive integer with (p, d) = 1, hence

X = Xd = lim
←
N

Z/dpNZ,

X1 = Zp,

µq(x) = µq(x + pNZp) =
qx

[pN ]
,

where q ∈ Zp with | 1− q |p< 1 (see for detail, [26]) and

[x]q =
1− qx

1− q
.

Here q is an indeterminate. If q ∈ C, we assume that |q| < 1. It is well-known that

lim
q→1

[x]q = x

(see, for detail, [18] [Equation-(2.3)]).
By using the previous equation, we have

(1 + q)∑d−1
j=0 (−1)jχ(j)(λq)j(1 + λt)j+z

(λq)d(1 + λt)d + 1
=

∞

∑
n=0

Chn,χ(z; λ, q)
tn

n!
,

where the polynomials Chn,χ(z; λ, q), which are the so-called generalized Apostol-Changhee
polynomials, are given by

Chn,χ(z; λ, q) =
n

∑
j=0

(
n
j

)
λn−j(z)n−jChj,χ(λ, q)
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where the numbers Chn,χ(λ, q), which are the so-called generalized Apostol-Changhee numbers, are
given by

Chn,χ(λ, q) =
∫
X

λx+n(x)nχ(x)dµ−q (x) (6)

(see, for detail, [18] [Equations-(2.4) and (2.5)]).
In light of the previous equations, the authors [21] defined the following special polynomials

y7,n(x; λ, q, d):

Kd(t, x; λ, q) =
(1 + q)(1 + λt)x

(λq)d(1 + λt)d + 1
=

∞

∑
n=0

y7,n(x; λ, q, d)
tn

n!
. (7)

When x = 0, we have the special combinatorial numbers:

y7,n(λ, q, d) = y7,n(0; λ, q, d).

Substituting d = 1 into (7), we also have the special combinatorial polynomials:

y7,n(x; λ, q) = y7,n(x; λ, q, 1)

(cf. [19,21]).
Here, brief information about notations and index for the above special combinatorial numbers

and polynomials is given as follows:
The first author has recently defined many different Peters and Boole type combinatorial numbers

and polynomials. He gave some notations for these numbers and polynomials. For instance, in order
to distinguish them from each other, these polynomials are labeled by the following symbols:

yj,n(x; λ, q), j = 1, 2, ..., 7, and also Yn(x; λ). Therefore, the number 7 is only used for index
representation for these polynomials (cf. [16–21]).

Results of this paper are briefly summarized below.
Some fundamental properties of Boole type numbers of higher order and Boole type polynomials

of higher order. We derive some fundamental properties of these numbers, and polynomials are given
in Section 2.

PDEs and functional equations related to generating functions for Boole type polynomials of
higher order, the Daehee numbers and logarithm function are given. Using these equations, derivative
formulae and recurrence relations are given in Section 3.

2. Generating Function for the Polynomials y7,n(x; λ, q, d) of Order v and the Numbers y7,n(λ, q, d)
of Order v

In this section, we define the generalization of the numbers y7,n(λ, q, d) as follows:

Fv(t; λ, q, d) =
(

1 + q
(λq)d(1 + λt)d + 1

)v
=

∞

∑
n=0

y(v)7,n(λ, q, d)
tn

n!
. (8)

We also define the generalization of the polynomials y7,n(x; λ, q, d) as follows:

Gv(t, x; λ, q, d) = (1 + λt)xFv(t; λ, q, d) =
∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
. (9)

We investigate some properties of the polynomials y7,n(x; λ, q, d) and the numbers y7,n(λ, q, d).
We give identities and formulas involving these numbers and polynomials, the Apostol-Euler numbers,
and the Stirling numbers.

By (8) and (9), we have
y(v)7,n(λ, q, d) = y(v)7,n(0; λ, q, d),
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and
y7,n(x; λ, q, d) = y(1)7,n(x; λ, q, d).

In order to give a computation formula for the numbers y(v)7,n(λ, q, d), we set

(
1 + q

(λq)d(1 + λt)d + 1

)v
=

(
1 + q

2

)v
(

2
(λq)ded log(1+λt) + 1

)v

.

Combining the above equation with (1) and (2), we get

∞

∑
m=0

y(v)7,m(λ, q, d)
tm

m!
=

(
1 + q

2

)v ∞

∑
n=0
E (v)n (λdqd)

dn(log(1 + λt))n

n!

=

(
1 + q

2

)v ∞

∑
m=0

m

∑
n=0

dnλmE (v)n (λdqd)S1(m, n)
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, a computation formula for

the numbers y(v)7,m(λ, q, d) is given by the following theorem:

Theorem 1. Let q > 0, v, d, m ∈ N and λ ∈ C. Then we have

y(v)7,m(λ, q, d) =
(

1 + q
2

)v
λm

m

∑
n=0

dnE (v)n (λdqd)S1(m, n).

Using (8), we obtain

(1 + q)v =
v

∑
j=0

(
v
j

)
(λq)dj(1 + λt)dj

∞

∑
n=0

y(v)7,n(λ, q, d)
tn

n!
.

From the previous equation, we have

(1 + q)v =
∞

∑
n=0

v

∑
j=0

(
v
j

)
(λq)dj

(
dj
n

)
λntn

∞

∑
n=0

y(v)7,n(λ, q, d)
tn

n!
.

Hence

(1 + q)v =
∞

∑
n=0

n

∑
k=0

v

∑
j=0

(
n
k

)(
v
j

)
(λq)dj(dj)kλky(v)7,n−k(λ, q, d)

tn

n!
.

Making some straightforward calculations in the previous equation, a recurrence relation for
y(v)7,n(λ, q, d) is obtained. This relation is given by the following theorem:

Theorem 2. Let

y(v)7,0 (λ, q, d) =
(

1 + q
(λq)d + 1

)v
.

For n ∈ N, we have

n

∑
k=0

v

∑
j=0

(
n
k

)(
v
j

)
(λq)dj(dj)kλky(v)7,n−k(λ, q, d) = 0.

With the help of Equation (8), setting the following equation:

Fv1+v2(t; λ, q, d) = Fv1(t; λ, q, d)Fv2(t; λ, q, d).
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Making some calculations in the previous equation, another recurrence relation for y(v)7,n(λ, q, d) is
also obtained. This relation is given by the following theorem:

Theorem 3. Let q > 0, v1, v2, d, n ∈ N and λ ∈ C. Then we have

y(v1+v2)
7,n (λ, q, d) =

n

∑
j=0

(
n
j

)
y(v1)

7,j (λ, q, d)y(v2)
7,n−j(λ, q, d). (10)

Setting v1 = v2 = 1 in (10), we compute the following few values of the numbers y(2)7,n(λ, q, d):

y(2)7,0 (λ, q, d) =
(

1 + q
(λq)d + 1

)2
,

y(2)7,1 (λ, q, d) = −2dλ(λq)d(1 + q)2

((λq)d + 1)3

and

y(2)7,2 (λ, q, d) =
8(dλ)2(λq)2d(1 + q)2

((λq)d + 1)4

− (λ2(λq)d((d)2 + (2d)2(λq)d)(1 + q)2

((λq)d + 1)4 .

A relation between the numbers y(v)7,n(λ, q, d) and the polynomials y(v)7,n(x; λ, q, d) is given by the
following theorem.

Theorem 4. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

y(v)7,n(x; λ, q, d) =
n

∑
j=0

(
n
j

)
(x)jλ

jy(v)7,n(λ, q, d).

Proof.

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
= (1 + λt)x

∞

∑
n=0

y(v)7,n(λ, q, d)
tn

n!

=
∞

∑
n=0

(
x
n

)
(λt)n

∞

∑
n=0

y(v)7,n(λ, q, d)
tn

n!

=
∞

∑
n=0

n

∑
j=0

(
n
j

)
(x)jλ

jy(v)7,n(λ, q, d)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we have the
derived result.

Using definition of the numbers y(v)7,n(x; λ, q, d), we have

(1 + λt)x =

(
1 + q

(λq)d(1 + λt)d + 1

)−v ∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.

After elementary calculation, we obtain

∞

∑
n=0

(x)nλn tn

n!
=

∞

∑
n=0

y(−v)
7,n (x; λ, q, d)

tn

n!

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.
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Making some straightforward calculations in the previous equation, and after that comparing the
coefficients of tn

n! on both sides of the above equation, we have the following theorem:

Theorem 5. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

(x)n =
1

λn

n

∑
j=0

(
n
j

)
y(−v)

7,n−j(x; λ, q, d)y(v)7,j (x; λ, q, d).

Substituting λt = ez − 1 into (9), we have

(
1 + q

2

)v ( 2
(λq)dezd + 1

)v
ezx =

∞

∑
m=0

y(v)7,m(x; λ, q, d)
(ez − 1)m

λmm!
.

Combining the previous equation with (1) and (3), we obtain

(
1 + q

2

)v ∞

∑
n=0

dnE (v)n

( x
d

; λdqd
) zn

n!
=

∞

∑
m=0

y(v)7,m(x; λ, q, d)
λm

∞

∑
n=0

S2(n, m)
zn

n!
.

Since S2(n, m) = 0 for m > n, we have

(
1 + q

2

)v ∞

∑
n=0

dnE (v)n

( x
d

; λdqd
) zn

n!
=

∞

∑
n=0

 n

∑
m=0

y(v)7,m(x; λ, q, d)
λm S2(n, m)

 zn

n!
.

Comparing the coefficients of zn

n! on the both sides of the above equation, we derive the
following theorem:

Theorem 6. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

(
1 + q

2

)v
E (v)n

( x
d

; λdqd
)
=

1
dn

 n

∑
m=0

y(v)7,m(x; λ, q, d)
λm S2(n, m)

 .

Setting

Fv+k(t; λ, q, d) = Fv(t; λ, q, d)Fk(t; λ, q, d).

Using the previous equation, we derive the following theorem:

Theorem 7. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

y(v)7,n(x + y; λ, q, d) =
n

∑
j=0

(
n
j

)
(x + y)jy

(v)
7,n−j(λ, q, d). (11)

Proof.

∞

∑
n=0

y(v)7,n(x + y; λ, q, d)
tn

n!
= (1 + λt)x+y

(
1 + q

(λq)d(1 + λt)d + 1

)v

=
∞

∑
n=0

(y)nλn tn

n!

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we have the
derived result.
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Combining the following the Chu-Vandermonde identity with (11)

k

∑
j=0

(
m
j

)(
n−m
k− j

)
=

(
n
k

)
. (12)

we have

y(v)7,n(x + y; λ, q, d) =
n

∑
j=0

(
n
j

)
(x)n−jy

(v)
7,n(x; λ, q, d)

and

y(v)7,n(x + y; λ, q, d) =
n

∑
j=0

(
n
j

)
(y)n−jy

(v)
7,n(λ, q, d).

Combining (12) with (11), we arrive at the following corollary:

Corollary 1. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

y(v)7,n(x + y; λ, q, d) =
n

∑
j=0

(
n
j

) j

∑
k=0

(x)k(y)j−ky(v)7,n−j(λ, q, d).

Kucukoglu [27] defined the following generating functions:

Fd(t; λ, q, v) =
(

log(1 + λt)
(λq)d(1 + λt)d − 1

)v
=

∞

∑
n=0

I(v)n,d (λ, q)
tn

n!
(13)

and

Gd(t, x; λ, q, v) = (1 + λt)xFd(t; λ, q, v) =
∞

∑
n=0

I(v)n,d (x; λ, q)
tn

n!
. (14)

Combining (14) with (9), we have

Gv(t, x; λ, q, d)Gd(t, x; λ, q, v) = (1 + λt)2x (1 + q)v(log(1 + λt))v

((λq)2d(1 + λt)2d − 1)v .

From the above equation, we get

Gv(t, x; λ, q, d)Gd(t, x; λ, q, v) = (1 + q)vG2d(t, 2x; λ, q, v).

From the equality in (14) with 2d and 2x instead of d respectively x, we arrive at the following one:

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!

∞

∑
n=0

I(v)n,d (x; λ, q)
tn

n!
= (1 + q)v

∞

∑
n=0

I(v)n,2d(2x; λ, q)
tn

n!
.

Using the Cauchy product and comparing the coefficients of tn

n! on both sides of the above equation,
we have the following theorem:

Theorem 8. Let q > 0, v, d, n ∈ N and λ ∈ C. Then we have

I(v)n,2d(t, 2x; λ, q) =
1

(1 + q)v

n

∑
j=0

(
n
j

)
I(v)j,d (x; λ, q)y(v)7,n−j(x; λ, q, d). (15)

Remark 2. When v = 1, (15) reduce to

In,2d(t, 2x; λ, q) =
1

1 + q

n

∑
j=0

(
n
j

)
Ij,d(x; λ, q)y7,n−j(x; λ, q, d)
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(cf. [21]).

3. Partial Derivative Equations and Their Applications

In this section, we deal with some partial derivative equations and functional equations involving
generating functions for the polynomials y(v)7,n(x; λ, q, d), the Daehee numbers and logarithm function.

By using these equations, we derive derivative formulas for the polynomials y(v)7,n(x; λ, q, d), and some
identities including these polynomials, recurrence relations of these polynomials, the Daehee numbers
and finite combinatorial sums.

3.1. Partial Derivative Equations and Derivative Formulas

Differentiating both side of (9) with respect to x, we get the following partial differential equations:

∂

∂x
{Gv(t, x; λ, q, d)} = log(1 + λt)Gv(t, x; λ, q, d) (16)

and
∂

∂x
{Gv(t, x; λ, q, d)} = λtFD(λt)Gv(t, x; λ, q, d). (17)

By using the above derivative equations, here we derive two derivative formulas for the
polynomials y(v)7,n(x; λ, q, d). Using these formulas, we derive a combinatorial sums including these
polynomials and the Daehee numbers.

Combining (9) with (16), we get

∞

∑
n=0

∂

∂x

{
y(v)7,n(x; λ, q, d)

} tn

n!
=

∞

∑
n=1

(−1)n−1λn tn

n

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.

After some elementary calculations from the above equation, we arrive at the following theorem:

Theorem 9. Let n ∈ N. Then we have

∂

∂x

{
y(v)7,n(x; λ, q, d)

}
=

n−1

∑
j=0

(−1)j
(

n
j + 1

)
j!λj+1y(v)7,n−1−j(x; λ, q, d). (18)

Combining (9) with (17), we get

∞

∑
n=0

∂

∂x

{
y(v)7,n(x; λ, q, d)

} tn

n!
=

∞

∑
n=0

λn+1Dn
tn+1

n!

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.

Therefore

∞

∑
n=0

∂

∂x

{
y(v)7,n(x; λ, q, d)

} tn

n!
=

∞

∑
n=0

n
n−1

∑
j=0

(
n− 1

j

)
Djλ

j+1y(v)7,n−1−j(x; λ, q, d)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the
following theorem:

Theorem 10. Let n ∈ N. Then we have

∂

∂x

{
y(v)7,n(x; λ, q, d)

}
= n

n−1

∑
j=0

(
n− 1

j

)
Djλ

j+1y(v)7,n−1−j(x; λ, q, d). (19)
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Using (5), the following well-known explicit formula for the Daehee numbers is given by

Dj = (−1)j j!
j + 1

(cf. [2,5]). Combining (19) and (18) with this formula, we derive the following finite combinatorial sum:

Corollary 2. Let n ∈ N. Then we have

n
n−1

∑
j=0

(
n− 1

j

)
Djλ

j+1y(v)7,n−1−j(x; λ, q, d) =
n−1

∑
j=0

(−1)j
(

n
j + 1

)
j!λj+1y(v)7,n−1−j(x; λ, q, d). (20)

3.2. Recurrence Relations

Here, we give partial differential equations for generating functions Gv(t, x; λ, q, d). With the help
of these equations, two recurrence relations for the polynomials y(v)7,n+1(x; λ, q, d) are given.

Differentiating both sides of (9) with respect to t, we obtain the following partial
derivative equations:

∂

∂t
{Gv(t, x; λ, q, d)} = xλGv(t, x− 1; λ, q, d) (21)

−vdqdλd+1

1 + q
Gv+1(t, x + d− 1; λ, q, d)

and

∂

∂t
{Gv(t, x; λ, q, d)} = λx

1 + λt
Gv(t, x; λ, q, d) (22)

−vdqdλd+1

1 + q
G1(t, d− 1; λ, q, d)Gv(t, x; λ, q, d).

Combining (9) with (21), we get

∞

∑
n=0

y(v)7,n+1(x; λ, q, d)
tn

n!

= xλ
∞

∑
n=0

y(v)7,n(x− 1; λ, q, d)
tn

n!
− vdqdλd+1

1 + q

∞

∑
n=0

y(v+1)
7,n (x + d− 1; λ, q, d)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the
following theorem:

Theorem 11. Let n ∈ N0. Then we have

y(v)7,n+1(x; λ, q, d) = xλy(v)7,n(x− 1; λ, q, d)

−vdqdλd+1

1 + q
y(v+1)

7,n (x + d− 1; λ, q, d).

Assume that |λt| < 1. Combining (9) with (22), we get, with y7,n(d − 1; λ, q, d) = y(1)7,n(d −
1; λ, q, d),
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∞

∑
n=0

y(v)7,n+1(x; λ, q, d)
tn

n!

= λx
∞

∑
n=0

(−λt)n
∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!

−vλd(λq)d

1 + q

∞

∑
n=0

y7,n(d− 1; λ, q, d)
tn

n!

∞

∑
n=0

y(v)7,n(x; λ, q, d)
tn

n!
.

Therefore

∞

∑
n=0

y(v)7,n+1(x; λ, q, d)
tn

n!

= λx
∞

∑
n=0

n

∑
j=0

(−1)j
(

n
j

)
j!λjy(v)7,n−j(x; λ, q, d)

tn

n!

−vdqdλd+1

1 + q

∞

∑
n=0

n

∑
j=0

(
n
j

)
y7,j(d− 1; λ, q, d)y(v)7,n−j(x; λ, q, d)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the
following theorem:

Theorem 12. Let n ∈ N0. Then we have

y(v)7,n+1(x; λ, q, d) = λx
n

∑
j=0

(−1)j
(

n
j

)
j!λjy(v)7,n−j(x; λ, q, d)

−vdqdλd+1

1 + q

n

∑
j=0

(
n
j

)
y7,j(d− 1; λ, q, d)y(v)7,n−j(x; λ, q, d).

4. Conclusion

In the recent extensive written works about the theory of special functions, especially special
numbers and polynomials, there are widespread manuscripts and books including special numbers and
polynomials such as combinatorial numbers and polynomials, Apostol type numbers and polynomials,
Peters type polynomials and numbers, Boole polynomials and numbers, Stirling numbers, Changhee
numbers and Daehee numbers. In this paper, we give some new families of combinatorial numbers,
which are generalizations and unifications of the Peters and Boole polynomials and numbers with the
help of generating functions. By using these functions and their PDEs and functional equations, we
derived various interesting properties and identities of these polynomials and numbers. Appropriate
relationships of our polynomials and numbers and the results of this paper are compared with earlier
results. Consequently, the results of this paper may potentially be used, not only in analytic number
theory and for special numbers and polynomials, but also in other areas.
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