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Abstract: The main purpose of this article is to find the upper bound of the third Hankel determinant
for a family of g-starlike functions which are associated with the Ruscheweyh-type g-derivative
operator. The work is motivated by several special cases and consequences of our main results, which
are pointed out herein.
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1. Introduction

We denote by A (U) the class of functions which are analytic in the open unit disk
U={z:zeC and lz| <1},

where C is the complex plane. Let A be the class of analytic functions having the following
normalized form:

f(z)=z+) az" (VzelU) 1)
n=2
in the open unit disk U, centered at the origin and normalized by the conditions given by
f(0)=0 and f'(0)=1.

In addition, let S C A be the class of functions which are univalent in U. The class of starlike
functions in U will be denoted by &*, which consists of normalized functions f € A that satisfy the
following inequality:

zf' (z) ,
%(f(z))>o, (VzeU). @)
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If two functions f and g are analytic in U, we say that the function f is subordinate to g and write
in the form:

f=g or f(z)=<g(z),
if there exists a Schwarz function w which is analytic in U, with

w0)=0 and |w(z)] <1,

such that
fz)=38(w(2)).
In particular, if the function g is univalent in U, then it follows that (cf., e.g., [1]; see also [2])

f(z) <g(z) (zeU)= f(0)=g(0) and f(U) C g(U).

Moreover, for two analytic functions f and g given by
flz)=z+ ) a.z" (VzeU)
n=2

and -
gz)=z+ ) b2" (VzeU),
n=2

the convolution (or the Hadamard product) of f and g is defined as follows:

flz)*xg(z) =z+ ianbnz”.

We next denote by P the class of analytic functions p which are normalized by
p() =14, puz", ®)

n=1

such that
R(p(z)) >0 (zel).

We now recall some essential definitions and concept details of the basic or quantum (g-) calculus,
which are used in this paper. We suppose throughout the paper that 0 < g < 1 and that

N={1,23--}=No\{0} (No={0,1,2,3,---}).

Definition 1. Let g € (0,1) and define the g-number [A], by

(AeC)
(Al =

n—1
qu:1+q+q2++qn71 ()\:TIEN)
k=0
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Definition 2. Let g € (0,1) and define the q-factorial [n] ! by

1 (n=0)

MK, — (eN).
k=1

Definition 3. Let g € (0,1) and define the generalized q-Pochhammer symbol [A] qn bV

1 (n=0)
Mon =19 u

H[/\+k]q (n e N).

k=0

Definition 4. For w > 0, let the q-gamma function I'y(w) be defined by
Ij(w+1) =[w] T (w) and Ty(1):=1

Definition 5. (see [3,4]) The q-derivative (or the g-difference) operator D, of a function f in a given subset of
C is defined by

z) — f(qz
TSR
(Dgf) (2) = )
f ' (0) (z=0),
provided that f' (0) exists.
We note from Definition 5 that
, o LD ()
qlirfl_ (qu) (Z) - ql_lﬁn_ (1 _ q) > - f (Z) ’
for a differentiable function f in a given subset of C. It is readily deduced from (1) and (4) that
(Dyf) (z) =1+ Z [n]qanz”*l. (5)
n=2

The operator D, plays a vital role in the investigation and study of numerous subclasses of the
class of analytic functions of the form given in Definition 5. A g-extension of the class of starlike
functions was first introduced in [5] by using the g-derivative operator (see Definition 6 below).
A background of the usage of the g-calculus in the context of Geometric Funciton Theory was actually
provided and the basic (or g-) hypergeometric functions were first used in Geometric Function Theory
by Srivastava (see, for details, [6]). Some recent investigations associated with the g-derivative operator
D, in analytic function theory can be found in [7-13] and the references cited therein.

Definition 6. (see [5]) A function f € A (U) is said to belong to the class Sy if

fO)=f(0)-1=0 (6)

and
z 1 1
W(qu)(z)_ﬂ éq

The notation S5 was first used by Sahoo et al. (see [14]).

(VzeU). @)
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It is readily observed that, as § — 1—, the closed disk given
becomes the right-half plane and the class S; reduces to S*. Equivalently, by using the principle of

subordination between analytic functions, we can rewrite the conditions in (6) and (7) as follows
(see [15]):

Aon@=<p (F-122).

Definition 7. (see [16]) For a function f € A(U), the Ruscheweyh-type q-derivative operator is
defined as follows:

RIF(z) = plg,0+ Lz s f () =2+ Yo puran” (2€U; 6> 1), ®)
n=2
where -
$(q6+1z) =24+ ) ¥, 12" )
n=2
and
l"q (5+Tl) [”+1]n71q

L T N PTGV R T I (10)

From (8) it can be seen that
Rof(z) = f(z) and Ryf (z) = zDyf (),
2D} f (z) (2" f (2))

RIF (2) = ol (m e N),
g
. z
q1—1>1%1— $(q,0+1z) = m
and ,

lim R‘Sf( )= f(z)*

g—=1- (1—2z)°t

This shows that, in case of § — 1—, the Ruscheweyh-type g-derivative operator reduces
to the Ruscheweyh derivative operator D°f(z) (see [17]). From (8) the following identity can
easily be derived:

L1, 0]

quR‘;’f(z)=< W;) RyPIf (z) - fRif (z). (11)

Ifg — 1—, then
2 (R (2)) = (1+0) ROVIF (2) — 0RYF (2).

Now, by using the Ruscheweyh-type g-derivative operator, we define the following class of
g-starlike functions.

Definition 8. For f € A (U), we say that f belongs to the class RS () if the following inequality holds true:

quRgf (z) 1
f(z) 1—q

1
l—q

A

(zeU; 6> —-1)
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or, equivalently, we have (see [15])
quRgf (2) . 14z
f(2) 1-gz

(12)
by using the principle of subordination.

Letn 2 0 and j = 1. The jth Hankel determinant is defined as follows:

an A+l - - - Apgj1
Ap+1

Hi(n) =
Aptj-1 - co e By

The above Hankel determinant has been studied by several authors. In particular, sharp upper
bounds on #; (2) were obtained by several authors (see, for example, [18-21]) for various classes of
normalized analytic functions. It is well-known that the Fekete-Szego functional |a3 — tz%| =Hy (1).
This functional is further generalized as |a3 — ya%! for some real or complex p. In fact, Fekete and Szego
gave sharp estimates of |a3 — ],ta%‘ for real y and f € S, the class of normalized univalent functions
in U. It is also known that the functional |a2a4 — a%’ is equivalent to 1 (2). Babalola [22] studied the
Hankel determinant H3 (1) for some subclasses of analytic functions. In the present investigation, our
focus is on the Hankel determinant 3 (1) for the above-defined function class RSy (4) .

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 1. (see [23]) Let
p(z) =1+ciz+ 2>+

be in the class P of functions with positive real part in U. Then, for any complex number v,

—4v+2 (v=0)
}cz — vcﬂ << 2 0sv=1) (13)
4v—2 (v=1).

When v < 0 or v > 1, the equality holds true in (13) if and only if

_1+z
T 1-—2z

p(z)

or one of its rotations. If 0 < v < 1, then the equality holds true in (13) if and only if

. 1+ 22
T1—22

p(z)
or one of its rotations. If v = 0, the equality holds true in (13) if and only if
_(14+p\1+z 1-p\1-z <<
P(Z)—< > )1_z+< 5 )1+z 0<p<1)

or one of its rotations. If v = 1, then the equality in (13) holds true if p(z) is a reciprocal of one of the functions
such that the equality holds true in the case when v = 0.
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Lemma 2. (see [24,25]) Let
p(z) =1+ piz+poz’ + -

be in the class P of functions with positive real part in U. Then
2py = p%—i—x(él—p%)
for some x, |x| < 1 and
aps=pl+2(4—p) pr— (4= pd) p+2 (4= p3) (1- ) 2
forsomez (|z] £ 1).

Lemma 3. (see [26]) Let
p(z) =1+ p1z+poz?>+ -

be in the class ‘P of functions positive real part in U. Then
el =2 (k € N)
and the inequality is sharp.

3. Main Results

In this section, we will prove our main results. Throughout our discussion, we assume that
g€ (0,1) and 0> —1.
Our first main result is stated as follows.

Theorem 1. Let f € RS (6) be of the form (1). Then

1+q+P) ¥ —p(1+9 ¢ ( (q2+1)¢%>
22 B< 2
> P2y (1+9) ¢
<! L @+Dwi o ¥t
ooyt < %2 ((1+q>2¢z:”:¢z
(40" 2 — (14+q+4) 9] ps i
Ppryp? ¥ )’

where ,,_1 is given by (10).
It is also asserted that, for

@+l o (LHa+a) 4
1+9)°¢: — —  (1+9) ¢
0 (P9t 2

lag — paz| + | p (1+q)2¢2>| I_W2

and that , for
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|ag — paj| + (l/}l %}ﬂl&) |ap]* < et

Proof. If f € RSy (6), then it follows from (12) that

Zqu(iJ; © ), (14)
where 142
2o =12,
We define a function p(z) by
1+w(2)

p(z)_l—w(z) 14 p1z+ prz= + p3z° +

It is clear that p € P. From the above equation, we have

_pra)-1

w(z) = p(z)+1

From (14), we find that
quRgf (z) w(x
f (Z) - 4’( ( ) )’
together with
_ 2p(2)
A e e )

Now

2p (z)
(1-9)p(z)+1+q

1 1
1+ gpz+ {3+ D2 (0= P} 2

=14~

1 1
150 +aps—5(0=g)pip2+ (1 +9)(1 - q)zpﬁ} z°

1
2
1
2

+ (1+07)P4=i(1—q2>i’%—%<1—42) Pip3

+

@ W A~ NI

1
(1+9)@-1)?pip2+ (1 +9)(1 - q)3p;1}z4 T

Similarly, we get

quRgf (z) _

RifGe) LTzt e gans giie) { 1+ + ) sy

— (29 + ) Y19p2a2az + q¢1a2}z + { (9+49*+49°+q*) ¢sas

— 20+ 4>+ 7°) Yatpam2as — (94 7°) ¢33

+ (3q +q ) ¢1¢2a2a3 - qlﬁlllz}z + -
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Therefore, we have

(1+9)
= , 15
ap 209 p1 (15)
(?+1) ,
as = + 16
2T 29T agzpy M (16
and
g ——a*a o (+9G=-2)2+D
29(1+q+49%) 3 492 (1+q+4q%) ¥s a”
(1+q) (¢ +1) (42—q+1)p3
84° (1+q+4q%) ¥3 r
We thus obtain
2 1 V(1+97)21/’2*(1+‘72)4’% 2
_ _ _ . 18
]as Wz‘ 209, |2 ( 2097 Pi (18)

Finally, by applying Lemma 1 and Equation (13) in conjunction with (18), we obtain the result
asserted by Theorem 1. [

We now state and prove Theorem 2 below.

Theorem 2. Let f € RS (6) be of the form (1). Then

R
7>y

‘a2a4 — a%‘ <

NN

Proof. From (15)-(17), we obtain
1+4q)° (1+9)*(4-2)(29+1) (¢ +1)

Ay — a3 = ( — + 2

e <4q2(1+q+q2)¢1¢’3> Pirs < 84° (1+q+4%) Y193 g ) P

)t (- e g gen)

1643 164° (14 q 4 %) P13 v

(1
4q2 3

By using Lemma 2, we have

2 ((1+q)2(q2+1)(q2—q+1) (q2+1)2>4

164° (14 q+4%) Y193 169*y3

apay — a3 = P1

(1+9)° 3 2
i (166/2(1+q+q2)¢1¢3> p{p 2o (4-9) >

—p1 (4—P%> X242 (4—P%) (1 - |x|2> z} + ((q2+1)

8433

2 —
Sttt (s (- ) 9)

— (@) {p‘H <4fp%)2x2+2p% (4-p}) x}.
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Now, taking the moduli and replacing |x| by p and p; by p, we have

|20y —a3] < Atq) |w () p* +29 (1 +9)" 93p (4 - p?)

+Q(q) (4-p?) o+ (a0 + 1 93p2 +q (4 p?) 19
(1+a+02) iy —20(1+0) ¢3p) (4= 12) 7]
= F(p.p),
where
A(q) = 164> (1+q+4%) 19y,
w(g)=|(3+31—a+¢") (1 + 043 — (1+39+ 22 +24° +¢")
(140+0%) yays
and

Q) = |[(1+97 (22 =50 -2) 3 +2q (2 +2) (1+9+ ) p19s) .

Upon differentiating both sides (19) with respect to p, we have

apg;;,p) = (Atq)> Q@) (4= p2) PP+ 2 (0@ + 17 g3p* +q (4 17)

(1 q+a?) s 201+ 0) ydp) (4 17) 0]

It is clear that
9F(p,p)

9p
which show that F(p, p) is an increasing function of p on the closed interval [0, 1] . This implies that the
maximum value occurs at p = 1. This implies that

>0,

max{F(p,p)} = F(p,1) =: G(p).

We now observe that

60) = (57) [(« @ - 0@ =@+ 1243+ (5472 +°) vaws)
+(40(0) +49 1+ 1" 93— 8 (7 + 4>+ ) 193 20)
+16 (q+ % +0°) yrps

=G(p)-

By differentiating both sides of (20) with respect to p, we have

') = (57) (0@ -0 -+ 102+ (140 +¢) va) °

A(q)
+2(40(0) +49 (1+1° 93 —8 (9 +4*+°) 193 ) p| -
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Differentiating the above equation once again with respect to p, we get

" _ 1 o o 2 .2 2 3 2
6" = (575 ) [12 (0@ - 0@ =0+ 0243 + (77 +7°) ava)
+2(40(9) +49 (9+1)° 93~ 8 (7+ 42 +°) r9s )| -
For p = 0, this shows that the maximum value of (G(p)) occurs at p = 0. Hence, we obtain

b
7>y

‘a2a4 — a%‘ <

NN

The proof of Theorem 2 is thus completed. [

If, in Theorem 2, we let § — 1— and put § = 1, then we are led to the following known result.
Corollary 1. (see [18]) Let f € S*. Then
’a2a4 - a%‘ <1,
and the inequality is sharp.

Theorem 3. Let f € RS, (6). Then

(1+q)x(q)
<
a2 = as] = b1z (42 + 93 +q%)’

where

K(¢7>—’(1+q+q2)2¢3—(q4—3q+6q2+q+1)¢1¢z- (21)

Proof. Using the values given in (15) and (16) we have

e (OFD @+ O+ (P41 (P —qg+1))
2013 4 8q3lP1lP2 81/)3 (q2+q3+q4) 1
( (1+q9) (@-2) (2q+1)(1+q)> - )

492919, 493 (4> + ° + q*)

B (1+q)
(2(q+q2+q3)¢3>P3'

We now use Lemma 2 and assume that p; < 2. In addition, by Lemma 3, we let p; = p and
assume without restriction that p € [0,2]. Then, by taking the moduli and applying the trigonometric
inequality on (22) with p = |x|, we obtain

1
|a2a3 — a4 < (8 n q<4 jqqs)) lPllelPS) [K (@) p°+n(q) p(d—p>p
20212 (4— p) + P91z (p—2) (4= P
=:F(p),

where

@) =|(a+ 8 +0) s+ (20° — 2 —29) ¥y
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and « (g) is given by (21). Differentiating F(p) with respect to p, we have

/ (1+4)
F'(p) = (8(q3+q4+q5)¢1¢2¢3> [1/(2) p4— p2) + 202192 (p —2) (4 pP)p]

> 0.
This implies that F(p) is an increasing function of p on the closed interval [0, 1]. Hence, we have
Flp)= F(1)  (Vpe[01]),

that is,

=
=
A

= <8 @+ qgquz’)) 1/’11/121/}3) (<@ = 1@ = gvav) p°

+ (47 (9) + 45%0y2) p|
=: G(p).

Since p € [0,2], p = 2 is a point of maximum. We thus obtain

(I+q)x(q)
Gl = (4 + g4+ 9°) P13’

which corresponds to p = 1 and p = 2 and it is the desired upper bound. O

For § = 1and g4 —+ 1—, we obtain the following special case of Theorem 3.
Corollary 2. (see [22]) Let f € S*. Then
|apaz —ayg| < 2.
Finally, we prove Theorem 4 below.

Theorem 4. Let f € RS, (6). Then

(1+q+4) ()% (9) T (q)
IH 1 S 7
() 2 743 ’ ° (1+q+ %) P11y} TP PP A+ g+ ) pats
where
(@) = (14097 (¢ =3¢° + 62 +q+1), (23)
T(9) = (1+0q) (497 +20° +60° +7g* + 134 —g 1) (24)

and « (q) is given by (21).

Proof. Since
Ha(1) < las| |azas — a3 | + [as] a0 — ag] + |as| a3 — 3

4

by using Lemma 3, we have

1+4) (14+q+ 69> —3¢° +g*)

(
as| <
las] = P+q+9%) s
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and

\aS\g T(q) ,
T +q+?+43) (1+q+4%) s

where 7 (g) is given by (24). Now, by applying Theorems 1-3, we have the required result asserted by
Theorem 4. [

4. Conclusions

By making use of the basic or quantum (g-) calculus, we have introduced a Ruscheweyh-type
g-derivative operator. This Ruscheweyh-type g-derivative operator is then applied to define a certain
subclass of g-starlike functions in the open unit disk U. We have successfully derived the upper bound
of the third Hankel determinant for this family of g-starlike functions which are associated with the
Ruscheweyh-type g-derivative operator. Our main results are stated and proved as Theorems 1-4.
These general results are motivated essentially by their several special cases and consequences, some
of which are pointed out in this presentation.
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