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Abstract: The main purpose of this article is to find the upper bound of the third Hankel determinant
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are pointed out herein.
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1. Introduction

We denote by A (U) the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

where C is the complex plane. Let A be the class of analytic functions having the following
normalized form:

f (z) = z +
∞

∑
n=2

anzn (∀ z ∈ U) (1)

in the open unit disk U, centered at the origin and normalized by the conditions given by

f (0) = 0 and f ′ (0) = 1.

In addition, let S ⊂ A be the class of functions which are univalent in U. The class of starlike
functions in U will be denoted by S∗, which consists of normalized functions f ∈ A that satisfy the
following inequality:

<
(

z f ′ (z)
f (z)

)
> 0, (∀ z ∈ U) . (2)
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If two functions f and g are analytic in U, we say that the function f is subordinate to g and write
in the form:

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w which is analytic in U, with

w (0) = 0 and |w (z)| < 1,

such that
f (z) = g

(
w (z)

)
.

In particular, if the function g is univalent in U, then it follows that (cf., e.g., [1]; see also [2])

f (z) ≺ g(z) (z ∈ U)⇒ f (0) = g(0) and f (U) ⊂ g(U).

Moreover, for two analytic functions f and g given by

f (z) = z +
∞

∑
n=2

anzn (∀ z ∈ U)

and

g(z) = z +
∞

∑
n=2

bnzn (∀ z ∈ U) ,

the convolution (or the Hadamard product) of f and g is defined as follows:

f (z) ∗ g(z) = z +
∞

∑
n=2

anbnzn.

We next denote by P the class of analytic functions p which are normalized by

p (z) = 1 +
∞

∑
n=1

pnzn, (3)

such that
<
(

p (z)
)
> 0 (z ∈ U).

We now recall some essential definitions and concept details of the basic or quantum (q-) calculus,
which are used in this paper. We suppose throughout the paper that 0 < q < 1 and that

N = {1, 2, 3, · · · } = N0 \ {0} (N0 = {0, 1, 2, 3, · · · }).

Definition 1. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =


1− qλ

1− q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).
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Definition 2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n−1
∏

k=1
[k]q (n ∈ N).

Definition 3. Let q ∈ (0, 1) and define the generalized q-Pochhammer symbol [λ]q,n by

[λ]q,n =


1 (n = 0)

n
∏

k=0
[λ + k]q (n ∈ N).

Definition 4. For ω > 0, let the q-gamma function Γq(ω) be defined by

Γq (ω + 1) = [ω]q Γq (ω) and Γq (1) := 1.

Definition 5. (see [3,4]) The q-derivative (or the q-difference) operator Dq of a function f in a given subset of
C is defined by

(
Dq f

)
(z) =


f (z)− f (qz)
(1− q) z

(z 6= 0)

f ′ (0) (z = 0) ,

(4)

provided that f ′ (0) exists.

We note from Definition 5 that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−

f (qz)− f (z)
(1− q) z

= f ′ (z) ,

for a differentiable function f in a given subset of C. It is readily deduced from (1) and (4) that

(
Dq f

)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (5)

The operator Dq plays a vital role in the investigation and study of numerous subclasses of the
class of analytic functions of the form given in Definition 5. A q-extension of the class of starlike
functions was first introduced in [5] by using the q-derivative operator (see Definition 6 below).
A background of the usage of the q-calculus in the context of Geometric Funciton Theory was actually
provided and the basic (or q-) hypergeometric functions were first used in Geometric Function Theory
by Srivastava (see, for details, [6]). Some recent investigations associated with the q-derivative operator
Dq in analytic function theory can be found in [7–13] and the references cited therein.

Definition 6. (see [5]) A function f ∈ A (U) is said to belong to the class S∗q if

f (0) = f ′ (0)− 1 = 0 (6)

and ∣∣∣∣ z
f (z)

(
Dq f

)
(z)− 1

1− q

∣∣∣∣ 5 1
1− q

(∀ z ∈ U) . (7)

The notation S∗q was first used by Sahoo et al. (see [14]).
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It is readily observed that, as q→ 1−, the closed disk given∣∣∣∣w− 1
1− q

∣∣∣∣ 5 1
1− q

becomes the right-half plane and the class S∗q reduces to S∗. Equivalently, by using the principle of
subordination between analytic functions, we can rewrite the conditions in (6) and (7) as follows
(see [15]):

z
f (z)

(
Dq f

)
(z) ≺ p̂

(
p̂ =

1 + z
1− qz

)
.

Definition 7. (see [16]) For a function f ∈ A (U) , the Ruscheweyh-type q-derivative operator is
defined as follows:

Rδ
q f (z) = φ (q, δ + 1; z) ∗ f (z) = z +

∞

∑
n=2

ψn−1anzn (z ∈ U; δ > −1) , (8)

where

φ (q, δ + 1; z) = z +
∞

∑
n=2

ψn−1zn (9)

and

ψn−1 =
Γq (δ + n)

[n− 1]q!Γq (δ + 1)
=

[n + 1]n−1,q

[n− 1]q!
. (10)

From (8) it can be seen that

R0
q f (z) = f (z) and R1

q f (z) = zDq f (z) ,

Rm
q f (z) =

zDm
q f (z)

(
zm−1 f (z)

)
[m]q!

(m ∈ N),

lim
q→1−

φ (q, δ + 1; z) =
z

(1− z)δ+1

and
lim

q→1−
Rδ

q f (z) = f (z) ∗ z

(1− z)δ+1 .

This shows that, in case of q → 1−, the Ruscheweyh-type q-derivative operator reduces
to the Ruscheweyh derivative operator Dδ f (z) (see [17]). From (8) the following identity can
easily be derived:

zDqRδ
q f (z) =

(
1 +

[δ]q

qδ

)
Rδ+1

q f (z)−
[δ]q

qδ
Rδ

q f (z) . (11)

If q→ 1−, then

z
(
Rδ f (z)

)′
= (1 + δ)Rδ+1 f (z)− δRδ f (z) .

Now, by using the Ruscheweyh-type q-derivative operator, we define the following class of
q-starlike functions.

Definition 8. For f ∈ A (U) , we say that f belongs to the classRS∗q (δ) if the following inequality holds true:∣∣∣∣∣ zDqRδ
q f (z)

f (z)
− 1

1− q

∣∣∣∣∣ 5 1
1− q

(z ∈ U; δ > −1)
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or, equivalently, we have (see [15])
zDqRδ

q f (z)
f (z)

≺ 1 + z
1− qz

(12)

by using the principle of subordination.

Let n = 0 and j = 1. The jth Hankel determinant is defined as follows:

Hj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an+2(j−1)

∣∣∣∣∣∣∣∣∣∣∣∣
The above Hankel determinant has been studied by several authors. In particular, sharp upper

bounds onH2 (2) were obtained by several authors (see, for example, [18–21]) for various classes of
normalized analytic functions. It is well-known that the Fekete-Szegö functional

∣∣a3 − a2
2

∣∣ = H2 (1).
This functional is further generalized as

∣∣a3 − µa2
2

∣∣ for some real or complex µ. In fact, Fekete and Szegö
gave sharp estimates of

∣∣a3 − µa2
2

∣∣ for real µ and f ∈ S , the class of normalized univalent functions
in U. It is also known that the functional

∣∣a2a4 − a2
3

∣∣ is equivalent toH2 (2). Babalola [22] studied the
Hankel determinantH3 (1) for some subclasses of analytic functions. In the present investigation, our
focus is on the Hankel determinantH3 (1) for the above-defined function classRS∗q (δ) .

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 1. (see [23]) Let
p(z) = 1 + c1z + c2z2 + · · ·

be in the class P of functions with positive real part in U. Then, for any complex number υ,

∣∣∣c2 − υc2
1

∣∣∣ 5


−4υ + 2 (υ 5 0)

2 (0 5 υ 5 1)

4υ− 2 (υ = 1) .

(13)

When υ < 0 or υ > 1, the equality holds true in (13) if and only if

p(z) =
1 + z
1− z

or one of its rotations. If 0 < υ < 1, then the equality holds true in (13) if and only if

p(z) =
1 + z2

1− z2

or one of its rotations. If υ = 0, the equality holds true in (13) if and only if

p(z) =
(

1 + ρ

2

)
1 + z
1− z

+

(
1− ρ

2

)
1− z
1 + z

(0 5 ρ 5 1)

or one of its rotations. If υ = 1, then the equality in (13) holds true if p(z) is a reciprocal of one of the functions
such that the equality holds true in the case when υ = 0.
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Lemma 2. (see [24,25]) Let
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part in U. Then

2p2 = p2
1 + x

(
4− p2

1

)
for some x, |x| 5 1 and

4p3 = p3
1 + 2

(
4− p2

1

)
p1x−

(
4− p2

1

)
p1x2 + 2

(
4− p2

1

) (
1− |x|2

)
z

for some z (|z| 5 1).

Lemma 3. (see [26]) Let
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions positive real part in U. Then

|pk| 5 2 (k ∈ N)

and the inequality is sharp.

3. Main Results

In this section, we will prove our main results. Throughout our discussion, we assume that

q ∈ (0, 1) and δ > −1.

Our first main result is stated as follows.

Theorem 1. Let f ∈ RS∗q (δ) be of the form (1). Then

∣∣∣a3 − µa2
2

∣∣∣ 5



(
1 + q + q2)ψ2

1 − µ (1 + q)2 ψ2

q2ψ2ψ2
1

(
µ <

(
q2 + 1

)
ψ2

1

(1 + q)2 ψ2

)

1
qψ2

((
q2 + 1

)
ψ2

1

(1 + q)2 ψ2
5 µ 5

ψ2
1

ψ2

)

µ (1 + q)2 ψ2 −
(
1 + q + q2)ψ2

1

q2ψ2ψ2
1

(
µ >

ψ2
1

ψ2

)
,

where ψn−1 is given by (10).
It is also asserted that, for (

q2 + 1
)

ψ2
1

(1 + q)2 ψ2
5 µ 5

(
1 + q + q2)ψ2

1

(1 + q)2 ψ2
,

|a3 − µa2
2|+

(
µ−

(
q2 + 1

)
ψ2

1

(1 + q)2 ψ2

)
|a2|2 ≤

1
qψ2

and that , for (
1 + q + q2)ψ2

1

(1 + q)2 ψ2
5 µ 5

ψ2
1

ψ2
,
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|a3 − µa2
2|+

(
ψ2

1 − µψ2

ψ2

)
|a2|2 5

1
qψ2

.

Proof. If f ∈ RS∗q (δ), then it follows from (12) that

zDqRδ
q f (z)

f (z)
≺ φ (z) , (14)

where
φ (z) =

1 + z
1− qz

.

We define a function p(z) by

p (z) =
1 + w (z)
1− w (z)

= 1 + p1z + p2z2 + p3z3 + · · · .

It is clear that p ∈ P . From the above equation, we have

w (z) =
p (z)− 1
p (z) + 1

.

From (14), we find that
zDqRδ

q f (z)
f (z)

= φ
(
w (z)

)
,

together with

φ (w (z)) =
2p (z)

(1− q) p (z) + 1 + q
.

Now

2p (z)
(1− q) p (z) + 1 + q

= 1 +
1
2
(1 + q)p1z +

{
1
2
(q + 1)p2 −

1
4
(1− q2)p2

1

}
z2

+

{
1
2
(1 + q)p3 −

1
2
(1− q2)p1 p2 +

1
8
(1 + q)(1− q)2 p3

1

}
z3

+

{
1
2
(1 + q) p4 =

1
4

(
1− q2

)
p2

2 −
1
2

(
1− q2

)
p1 p3

+
3
8
(1 + q)(q− 1)2 p2

1 p2 +
1

16
(1 + q)(1− q)3 p4

1

}
z4 + · · · .

Similarly, we get

zDqRδ
q f (z)

Rδ
q f (z)

= 1 + qa2ψ1z +
{(

q + q2)ψ2a3 − qψ2
1a2

2
}

z2 +

{ (
q + q2 + q3)ψ3a4

−
(
2q + q2)ψ1ψ2a2a3 + qψ3

1a3
2

}
z3 +

{ (
q + q2 + q3 + q4)ψ5a5

−
(
2q + q2 + q3)ψ2ψ3a2a4 −

(
q + q2)ψ2

2a2
3

+
(
3q + q2)ψ2

1ψ2a2
2a3 − qψ4

1a4
2

}
z4 + · · · ,
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Therefore, we have

a2 =
(1 + q)
2qψ1

p1, (15)

a3 =
1

2qψ2
p2 +

(
q2 + 1

)
4q2ψ2

p2
1 (16)

and

a4 =
(1 + q)

2q (1 + q + q2)ψ3
p3 −

(1 + q) (q− 2) (2q + 1)
4q2 (1 + q + q2)ψ3

p1 p2

+
(1 + q)

(
q2 + 1

) (
q2 − q + 1

)
8q3 (1 + q + q2)ψ3

p3
1.

(17)

We thus obtain ∣∣∣a3 − µa2
2

∣∣∣ = 1
2qψ2

∣∣∣∣∣p2 −
(

µ (1 + q)2 ψ2 −
(
1 + q2)ψ2

1

2qψ2
1

)
p2

1

∣∣∣∣∣ . (18)

Finally, by applying Lemma 1 and Equation (13) in conjunction with (18), we obtain the result
asserted by Theorem 1.

We now state and prove Theorem 2 below.

Theorem 2. Let f ∈ RS∗q (δ) be of the form (1). Then

∣∣∣a2a4 − a2
3

∣∣∣ 5 1
q2ψ2

2
.

Proof. From (15)–(17), we obtain

a2a4 − a2
3 =

(
(1 + q)2

4q2 (1 + q + q2)ψ1ψ3

)
p1 p3 −

(
(1 + q)2 (q− 2) (2q + 1)

8q3 (1 + q + q2)ψ1ψ3
+

(
q2 + 1

)
4q3ψ2

2

)
p2

1 p

−
(

1
4q2ψ2

2

)
p2

2 +

(
−
(
q2 + 1

)2

16q4ψ2
2

+
(1 + q)2 (q2 + 1

) (
q2 − q + 1

)
16q3 (1 + q + q2)ψ1ψ3

)
p4

1.

By using Lemma 2, we have

a2a4 − a2
3 =

(
(1 + q)2 (q2 + 1

) (
q2 − q + 1

)
16q3 (1 + q + q2)ψ1ψ3

−
(
q2 + 1

)2

16q4ψ2
2

)
p4

1

+

(
(1 + q)2

16q2 (1 + q + q2)ψ1ψ3

)
p1

{
p3

1 + 2p1

(
4− p2

1

)
x

−p1

(
4− p2

1

)
x2 + 2

(
4− p2

1

) (
1− |x|2

)
z
}
+

((
q2 + 1

)
8q3ψ2

2

· (1 + q)2 (q− 2) (2q + 1)
16q3 (1 + q + q2)ψ1ψ3

)
p2

1

{(
p2

1 +
(

4− p2
1

)
x
)}

−
(

1
16q2ψ2

2

){
p4

1 +
(

4− p2
1

)2
x2 + 2p2

1

(
4− p2

1

)
x
}

.
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Now, taking the moduli and replacing |x| by ρ and p1 by p, we have∣∣∣a2a4 − a2
3

∣∣∣ 5 1
Λ (q)

[
ω (q) p4 + 2q (1 + q)2 ψ2

2 p
(

4− p2
)

+ Ω (q)
(

4− p2
)

p2ρ +
(

q (q + 1)2 ψ2
2 p2 + q

(
4− p2

)
·
(

1 + q + q2
)

ψ1ψ3 − 2q (1 + q)2 ψ2
2 p
) (

4− p2
)

ρ2
]

= F(p, ρ),

(19)

where
Λ (q) = 16q3

(
1 + q + q2

)
ψ1ψ3ψ2

2,

ω (q) =
∣∣∣(3 + 3q− q3 + q4

)
(1 + q)2 ψ2

2 −
(

1 + 3q + 2q2 + 2q3 + q4
)

·
(

1 + q + q2
)

ψ1ψ3

∣∣∣
and

Ω (q) =
∣∣∣(1 + q)2

(
2q2 − 5q− 2

)
ψ2

2 + 2q
(

q2 + 2
) (

1 + q + q2
)

ψ1ψ3

∣∣∣ .

Upon differentiating both sides (19) with respect to ρ, we have

∂F(p, ρ)

∂ρ
=

(
1

Λ (q)

) [
Ω (q)

(
4− p2

)
p2+ 2

(
q (q + 1)2 ψ2

2 p2 + q
(

4− p2
)

·
(

1 + q + q2
)

ψ1ψ3 − 2q (1 + q)2 ψ2
2 p
) (

4− p2
)

ρ
]

.

It is clear that
∂F(p, ρ)

∂ρ
> 0,

which show that F(p, ρ) is an increasing function of ρ on the closed interval [0, 1] . This implies that the
maximum value occurs at ρ = 1. This implies that

max{F(p, ρ)} = F(p, 1) =: G(p).

We now observe that

G(p) =
(

1
Λ (q)

) [(
ω (q)−Ω (q)− q (q + 1)2 ψ2

2 +
(

q + q2 + q3
)

ψ1ψ3

)
p4

+
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)
p2

+ 16
(

q + q2 + q3
)

ψ1ψ3

= G (p) .

(20)

By differentiating both sides of (20) with respect to p, we have

G′(p) =
(

1
Λ (q)

) [
4
(

ω (q)−Ω (q)− q (q + 1)2 ψ2
2 +

(
q + q2 + q3

)
ψ1ψ3

)
p3

+2
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)
p
]

.
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Differentiating the above equation once again with respect to p, we get

G′′(p) =
(

1
Λ (q)

) [
12
(

ω (q)−Ω (q)− q (q + 1)2 ψ2
2 +

(
q + q2 + q3

)
ψ1ψ3

)
p2

+2
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)]
.

For p = 0, this shows that the maximum value of (G(p)) occurs at p = 0. Hence, we obtain∣∣∣a2a4 − a2
3

∣∣∣ 5 1
q2ψ2

2
.

The proof of Theorem 2 is thus completed.

If, in Theorem 2, we let q −→ 1− and put δ = 1, then we are led to the following known result.

Corollary 1. (see [18]) Let f ∈ S∗. Then ∣∣∣a2a4 − a2
3

∣∣∣ 5 1,

and the inequality is sharp.

Theorem 3. Let f ∈ RS∗q (δ). Then

|a2a3 − a4| 5
(1 + q) κ (q)

ψ1ψ2ψ3 (q2 + q3 + q4)
,

where

κ (q) =
∣∣∣∣(1 + q + q2

)2
ψ3 −

(
q4 − 3q + 6q2 + q + 1

)
ψ1ψ2

∣∣∣∣ . (21)

Proof. Using the values given in (15) and (16) we have

a2a3 − a4 =

(
(1 + q)

(
q2 + 1

)
8q3ψ1ψ2

−
(1 + q)

(
q2 + 1

) (
q2 − q + 1

)
8ψ3 (q2 + q3 + q4)

)
p3

1

+

(
(1 + q)

4q2ψ1ψ2
− (q− 2) (2q + 1) (1 + q)

4ψ3 (q2 + q3 + q4)

)
p1 p2

−
(

(1 + q)
2 (q + q2 + q3)ψ3

)
p3.

(22)

We now use Lemma 2 and assume that p1 5 2. In addition, by Lemma 3, we let p1 = p and
assume without restriction that p ∈ [0, 2] . Then, by taking the moduli and applying the trigonometric
inequality on (22) with ρ = |x| , we obtain

|a2a3 − a4| 5
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [
κ (q) p3 + η (q) p(4− p2)ρ

+2q2ψ1ψ2(4− p2) + q2ψ1ψ2 (p− 2) (4− p2)ρ2
]

=: F(ρ),

where
η (q) =

∣∣∣(q + q2 + q3
)

ψ3 +
(

2q3 − q2 − 2q
)

ψ1ψ2

∣∣∣
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and κ (q) is given by (21). Differentiating F(ρ) with respect to ρ, we have

F′(ρ) =
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [
η (q) p(4− p2) + 2q2ψ1ψ2 (p− 2) (4− p2)ρ

]
> 0.

This implies that F(ρ) is an increasing function of ρ on the closed interval [0, 1]. Hence, we have

F(ρ) 5 F(1) (∀ ρ ∈ [0, 1]),

that is,

F(ρ) 5
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [(
κ (q)− η (q)− q2ψ1ψ2

)
p3

+
(

4η (q) + 4q2ψ1ψ2

)
p
]

=: G(p).

Since p ∈ [0, 2] , p = 2 is a point of maximum. We thus obtain

G (p) 5
(1 + q) κ (q)

(q3 + q4 + q5)ψ1ψ2ψ3
,

which corresponds to ρ = 1 and p = 2 and it is the desired upper bound.

For δ = 1 and q→ 1−, we obtain the following special case of Theorem 3.

Corollary 2. (see [22]) Let f ∈ S∗. Then

|a2a3 − a4| 5 2.

Finally, we prove Theorem 4 below.

Theorem 4. Let f ∈ RS∗q (δ). Then

H3(1) 5

[(
1 + q + q2)

q4ψ3
2

+
κ (q) κ (q)

q5 (1 + q + q2)
2

ψ1ψ2ψ2
3

+
τ (q)

q5 (1 + q + q2 + q3) (1 + q + q2)ψ2ψ4

]
,

where
κ (q) = (1 + q)2

(
q4 − 3q3 + 6q2 + q + 1

)
, (23)

τ (q) = (1 + q)
(

4q7 + 2q6 + 6q5 + 7q4 + 13q3 − q− 1
)

(24)

and κ (q) is given by (21).

Proof. Since
H3(1) 5 |a3|

∣∣∣a2a4 − a2
3

∣∣∣+ |a4| |a2a3 − a4|+ |a5|
∣∣∣a3 − a2

2

∣∣∣ ,

by using Lemma 3, we have

|a4| 5
(1 + q)

(
1 + q + 6q2 − 3q3 + q4)

q3 (1 + q + q2)ψ3
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and

|a5| 5
τ (q)

q4 (1 + q + q2 + q3) (1 + q + q2)ψ4
,

where τ (q) is given by (24). Now, by applying Theorems 1–3, we have the required result asserted by
Theorem 4.

4. Conclusions

By making use of the basic or quantum (q-) calculus, we have introduced a Ruscheweyh-type
q-derivative operator. This Ruscheweyh-type q-derivative operator is then applied to define a certain
subclass of q-starlike functions in the open unit disk U. We have successfully derived the upper bound
of the third Hankel determinant for this family of q-starlike functions which are associated with the
Ruscheweyh-type q-derivative operator. Our main results are stated and proved as Theorems 1–4.
These general results are motivated essentially by their several special cases and consequences, some
of which are pointed out in this presentation.
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