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Abstract: Inspired by Suzuki’s generalization for nonexpansive mappings, we define the (C)-property
on modular spaces, and provide conditions concerning the fixed points of newly introduced class
of mappings in this new framework. In addition, Kirk’s Lemma is extended to modular spaces.
The main outcomes extend the classical results on Banach spaces. The major contribution consists of
providing inspired arguments to compensate the absence of subadditivity in the case of modulars.
The results herein are supported by illustrative examples.
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1. Introduction

The first idea regarding the concept of modular space was initiated by Orlicz in [1] through a
remarkable example. Later, Nakano [2] settled a more formal framework by defining the modular as a
generalization for a norm-type function. His work was extended further by Musielak and Orlicz in [3].
A consistent approach on modular function spaces was realized by Kozlowski in [4] (see also [5]).
In time, the notion was reactivated in the expanded framework of vector spaces and one important
direction was settled by Khamsi [6] in connection with the fixed point theory. Nowadays, this approach
is fructified in several works: Okeke et al. [7], Khan [8], Abbas et al. [9], Abdou and Khamsi [10],
Alfuraidan et al. [11] and the papers referenced there.

By properly defining the modular convergency and the modular Cauchy sequences, the modular
vectorial structures become natural extensions of Banach spaces. Moreover, many of the fixed point
theory outcomes on Banach spaces can be extended, as the above-mentioned references prove,
to modular structures. This paper continues this approach by extending Suzuki’s concept of generalized
nonexpasive mapping to modular vector spaces and by analyzing the existence of fixed points.
The resulting main outcomes approach to the conclusions from Suzuki [12] and Thakur et al. [13] but
under weaker assumptions. The notable breakthrough lies in the fact that the arguments for the central
theorem are provided in the absence of the subadditivity (a modular function lacks subadditivity; it has
at most convexity) and other properties deriving from it, which were used multiple times in the proof
of Suzuki’s original outcome. In addition, some partial extensions of the original Kirk’s Lemma [14]
and the Goebel and Kirk Lemma [15] are provided, bypassing, again, the subadditivity.

2. Preliminaries on Modular Vector Spaces

Along this paper, the general framework will be provided by a real linear (vector) space X.

Symmetry 2019, 11, 319; doi:10.3390/sym11030319 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-0738-787X
http://dx.doi.org/10.3390/sym11030319
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/3/319?type=check_update&version=2


Symmetry 2019, 11, 319 2 of 11

Definition 1. Assume that ρ : X → [0, ∞] is a function satisfying the following properties [2]:

(1) ρ(x) = 0⇔ x = 0;
(2) ρ(−x) = ρ(x), ∀x ∈ X;
(3) ρ(αx + (1− αy)) ≤ ρ(x) + ρ(y), ∀α ∈ [0, 1].

Then, ρ is called modular on X.
If, instead of condition (3), the following stronger requirement is fulfilled:

ρ(αx + (1− αy)) ≤ αρ(x) + (1− α)ρ(y), ∀α ∈ [0, 1], ∀x, y ∈ X,

then the modular ρ is called convex.

Definition 2. Let X be endowed with a modular ρ. The set

Xρ =
{

x ∈ X : lim
α→0

ρ(αx) = 0
}

will be referred to as modular space.

Definition 3. Let X be endowed with a modular ρ and consider a sequence {x`} ⊂ Xρ.

(a) {x`} is said to be modular-convergent (or ρ-convergent) to x ∈ Xρ if lim
`→∞

ρ(x` − x) = 0. It is worth

mentioning the uniqueness of the ρ-limit, whenever it exists.
(b) {x`} ∈ Xρ is called modular or ρ-Cauchy if lim

l,k→∞
ρ(x` − xk) = 0.

(c) If all the modular-Cauchy sequences are also modular-convergent, then the modular space Xρ is
called ρ-complete.

(d) A subset S ⊂ Xρ which contains the ρ-limits of all its modular-convergent sequences {x`} ⊂ S is
called ρ-closed.

(e) A subset S ⊂ Xρ satisfying diamρ(S) = sup{ρ(x− y) : x, y ∈ S} < ∞ is referred to as ρ-bounded.
(f) ρ satisfies the Fatou property if, for any sequence {x`} in Xρ which is ρ-convergent to x ∈ Xρ,

the inequality ρ(x) ≤ lim inf
`→∞

ρ(x`) holds.

(g) ρ is said to satisfy condition ∆2 if ρ(2x) ≤ Kρ(x), ∀x ∈ Xρ, for a constant element K ≥ 0. The minimal
possible value of K is usually denoted by ω(2).

Remark 1. More extensively, if ρ is assumed to be convex and to satisfy condition ∆2, we can define the growth
function (see [11]):

ω : [0, ∞)→ [0, ∞), ω(t) = sup
{

ρ(tx)
ρ(x)

: 0 < ρ(x) < ∞
}

.

Then, 1 < ω(2). The arguments for this statement can be extracted from Lemma 2.6 in [11]. In addition,
let us notice that ρ(αx) ≤ ω(α)ρ(x), ∀α ≥ 0, ∀x ∈ Xρ and also that, for each positive integer l and arbitrary
elements x1, x2, . . . , xl ∈ Xρ,

ρ(x1 + x2 + · · ·+ xl) ≤
ω(l)

l
[ρ(x1) + ρ(x2) + · · ·+ ρ(xl)] .

Definition 4. Let r, ε > 0. Define (see [10], cf. [6])

D1(r, ε) = {(x, y) : x, y ∈ Xρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ(x− y) ≥ εr}
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and

δ1(r, ε) =

 inf
{

1− 1
r

ρ
( x + y

2

)
: x, y ∈ D1(r, ε)

}
, if D1(r, ε) 6= ∅;

1, if D1(r, ε) = ∅.

The modular ρ has the (UC1)-property if δ1(r, ε) > 0, for every r > 0 and ε > 0. Moreover, ρ has the
(UUC1)-property if, for each s ≥ 0 and each ε > 0, one may find η1(s, ε) > 0 such that δ1(r, ε) > η1(s, ε) > 0,
for r > s.

Lemma 1. Suppose that ρ satisfies property (UUC1) and let {α`} ⊂ [a, b], where 0 < a ≤ b < 1.
If there exists a positive real number r such that lim sup

`→∞
ρ(α`x` + (1 − α`)y`) = r, lim sup

`→∞
ρ(x`) ≤ r

and lim sup
`→∞

ρ(y`) ≤ r, then lim
`→∞

ρ(x` − y`) = 0 ([8], cf. [5]).

Definition 5. Given a sequence {x`} in Xρ and a nonempty subset S ⊂ Xρ, the following elements may be
defined in connection with them (see [10]):

(1) the ρ-type function defined as

τ : S→ [0, ∞], τ(x) = lim sup
`→∞

ρ(x− x`);

(2) the asymptotic radius of {x`} with respect to S, meaning the value r(S) = inf{τ(x) : x ∈ S};
(3) the asymptotic center of {x`} with respect to S defined as the set A(S) = {x ∈ S : τ(x) = r(S)};
(4) the minimizing sequences of the ρ-type function, namely sequences {c`} in S satisfying lim

n→∞
τ(c`) = r(S).

Lemma 2. Assume that Xρ is a ρ-complete modular space. Let ρ satisfy the Fatou property. Let S be
a nonempty ρ-closed convex subset of Xρ and {x`} be a sequence in Xρ with a finite asymptotic radius
relative to S (i.e., r(S) < ∞). If ρ satisfies the (UUC1)-condition, then all the minimizing sequences of τ are
modular-convergent, having the same ρ-limit [10].

3. Condition (C) of Suzuki in Modular Spaces

Let us start by recalling the concept of generalized nonexpansive mapping as it was phrased by
Suzuki in [12] via the so called condition (C).

Definition 6. Let S ⊂ X be a nonempty subset of a Banach space (X, ‖ · ‖). A mappingM : S→ S is said to

satisfy condition (C) (or to be a Suzuki nonexpansive mappings) if the inequality
1
2
‖x−Mx‖ ≤ ‖x− y‖ for

some x, y ∈ S leads to ‖Mx−My‖ ≤ ‖x− y‖ [12].

The following Lemma refers to an essential property of nonexpansive mappings under condition
(C); it provided the key element in [12,13] for proving the results regarding the existence of fixed points.

Lemma 3. If S ⊂ X is a nonempty subset of a Banach space (X, ‖ · ‖) andM : S→ S is a Suzuki nonexpansive
mapping, then ‖x−My‖ ≤ 3‖Mx− x‖+ ‖x− y‖, ∀x, y ∈ X [12].

Nevertheless, the Lemma above is directly related to the triangle inequality, which is no longer
among the properties of a modular space. Therefore, we are forced to find an alternative way of
proving the corresponding results on modular spaces.

Inspired by Suzuki’s definition, we adapt it to modular structures resulting in the modular-(C)

property, as it follows.
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Definition 7. Let ρ denote a modular satisfying condition ∆2 on a linear (vector) space X and let S ⊂ Xρ be a
nonempty subset. A mappingM : S→ S is said to satisfy condition (ρC) if ∀ x, y ∈ S,

1
ω(2)

ρ(x−Mx) ≤ ρ(x− y) leads to ρ(Mx−My) ≤ ρ(x− y).

Lemma 4. Let ρ denote a convex modular with property ∆2 and S ⊂ Xρ be a nonempty subset. Then,

(i) for each x ∈ Xρ, one has ρ(Mx−M2x) ≤ ρ(x−Mx);

(ii) for any x, y ∈ Xρ either
1

ω(2)
ρ(x−Mx) ≤ ρ(x− y) or

1
ω(2)

ρ(Mx−M2x) ≤ ρ(Mx− y).

Proof. According to Remark 1, one has
1

ω(2)
ρ(x−Mx) < ρ(x−Mx), which, using the definition of

the condition (ρC), leads to ρ(Mx−M2x) ≤ ρ(x−Mx).

We prove the second statement by assuming the contrary. Suppose that
1

ω(2)
ρ(x −Mx) >

ρ(x− y) and
1

ω(2)
ρ(Mx−M2x) > ρ(Mx− y). Then, using the ∆2-condition and the convexity of ρ,

one finds

ρ(x−Mx) = ρ

(
2
(

1
2
(x− y) +

1
2
(y−Mx)

))
≤ ω(2)ρ

(
1
2
(x− y) +

1
2
(y−Mx)

)
≤ ω(2)

2
(ρ(x− y) + ρ(y−Mx))

<
ω(2)

2

(
1

ω(2)
ρ(x−Mx) +

1
ω(2)

ρ(Mx−M2x)
)

≤ ρ(x−Mx).

We have found ρ(x−Mx) < ρ(x−Mx), which is not possible. Therefore, the initial assumption does
not hold, hence the proof.

Before stating and proving our main outcome, we recall some elementary properties of lim sup.

Lemma 5. Let {µ`} and {ν`} be two bounded real sequences. Then:

(i) lim sup
`→∞

max{µ`, ν`} = max{lim sup
`→∞

µ`, lim sup
`→∞

ν`};

(ii) let η` = α`µ` + (1− α`)ν`, with α` ∈ [0, 1] convergent to a real number α ∈ [0, 1]. Then, lim sup
`→∞

η` ≤

α lim sup
`→∞

µ` + (1− α) lim sup
`→∞

ν`.

Theorem 1. Assume that Xρ is a ρ-complete modular space. Assume also that ρ satisfies the ∆2 condition,
is convex, has the Fatou and the (UUC1) properties. Let S denote a nonempty, ρ-bounded, ρ-closed and
convex subset of Xρ and letM : S → S satisfy condition (ρC). If {α`}, with 0 < a ≤ α` ≤ b < 1 is a real
sequence convergent to α, consider the iterative process x`+1 = α`x` + (1− α`)Mx`, for given x0 ∈ S. Then,
Fix (M) 6= ∅ if and only if lim

`→∞
ρ(Mx` − x`) = 0.

Proof. We start with the direct implication. Let p ∈ Fix (M). Then,

1
ω(2)

ρ(p−Mp) = 0 ≤ ρ(p− x), ∀x ∈ S.
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Therefore, by applying the (ρC) condition, one obtains

ρ(Mx−Mp) ≤ ρ(x− p), ∀x ∈ S. (1)

Using the convexity of the modular and inequality (1), one finds

ρ(x`+1 − p) = ρ(α`(x` − p) + (1− α`)(Mx` −Mp))

≤ α`ρ(x` − p) + (1− α`)ρ(Mx` −Mp)

≤ α`ρ(x` − p) + (1− α`)ρ(x` − p)

= ρ(x` − p).

It follows that {ρ(x` − p)} is a decreasing nonnegative sequence. Moreover, since S is convex,
the sequence {x`} lies entirely in S and also, since S is ρ-bounded, ρ(x` − p) < ∞, ∀n ∈ N. These lead,
on one hand, to the conclusion that {ρ(x` − p)} is convergent. Let

r = lim
`→∞

ρ(x` − p). (2)

By denoting y` =Mx`, one finds ρ(y` − p) = ρ(Mx` −Mp) ≤ ρ(x` − p). Therefore,

lim sup
`→∞

ρ(y` − p) ≤ r. (3)

In addition,

lim
n→∞

ρ(α`(x` − p) + (1− α`)(y` −Mp)) = lim
`→∞

ρ(x`+1 − p) = r. (4)

Using inequalities (2), (3) and (4) and the fact that ρ is (UUC1), it follows, according to Lemma 1,
that lim

`→∞
ρ(x` − y`) = lim

`→∞
ρ(x` −Mx`) = 0, which ends the proof.

In the following, let us prove the converse statement. Let τ, τ̄ : S → [0, ∞] denote the ρ-type
functions corresponding to sequences {x`} and {y`}, respectively. We shall prove first that, for each

p ∈ S, τ̄(Mp) ≤ τ(p). Indeed, for each n ∈ N, according to Lemma 4, one has either
1

ω(2)
ρ(x` −

Mx`) ≤ ρ(x` − p) or
1

ω(2)
ρ(y` −My`) ≤ ρ(y` − p).

Case 1. Suppose that
1

ω(2)
ρ(x` −Mx`) ≤ ρ(x` − p). Then, using the (ρC) condition, it follows

ρ(Mx` −Mp) ≤ ρ(x` − p), i.e.,
ρ(y` −Mp) ≤ ρ(x` − p). (5)

Case 2. Suppose that
1

ω(2)
ρ(x` −Mx`) > ρ(x` − p). Then,

1
ω(2)

ρ(y` −My`) ≤ ρ(y` − p) and,

due to (ρC) condition, ρ(My` −Mp) ≤ ρ(y` − p). We use these together with the ∆2 condition and
the convexity of ρ to derive the following chain of inequalities:

ρ(y` −Mp) ≤ ω(2)
2

(ρ(y` −My`) + ρ(My` −Mp))

≤ ω(2)
2

(ρ(y` −My`) + ρ(y` − p))

≤ ω(2)
2

[
ρ(y` −My`) +

ω(2)
2

(ρ(y` − x`) + ρ(x` − p))
]

<
ω(2)

2

[
ρ(y` −My`) +

ω(2)
2

ρ(y` − x`) +
ω(2)

2
1

ω(2)
ρ(x` − y`)

]
.
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Let us evaluate the first term inside the square bracket. Knowing that y` = Mx` and using
Lemma 4 (i), we find ρ(y` −My`) = ρ(Mx` −M2x`) ≤ ρ(x` −Mx`) = ρ(x` − y`) and, by turning
back in the above inequality, we obtain

ρ(y` −Mp) <
(3 + ω(2))ω(2)

4
ρ(x` − y`). (6)

Overall, from inequalities (5) and (6), it follows that ρ(y` − Mp) ≤

max
{

ρ(x` − p),
(3 + ω(2))ω(2)

4
ρ(x` − y`)

}
. Applying lim sup

`→∞
and using Lemma 5 (i), one finds

τ̄(Mp) ≤ max{τ(p), 0} = τ(p). (7)

In addition, ρ(x`+1 − p) = ρ(α`(x` − p) + (1− α`)(p− y`)) ≤ α`ρ(x` − p) + (1− α`)ρ(p− y`).
Again, from Lemma 5, it follows that τ(p) ≤ ατ(p) + (1− α)τ̄(p), where α ∈ (0, 1) is the limit of the
sequence {α`}, thus

τ(p) ≤ τ̄(p). (8)

Combining relations (7) and (8), one finds

τ(Mp) ≤ τ̄(Mp) ≤ τ(p) ≤ τ̄(p), ∀p ∈ S. (9)

Finally, let {c`} be a minimizing sequence of τ. Then, lim
n→∞

τ(c`) = r(S). Since, according to

inequality (9) τ(Mc`) ≤ τ(c`), it follows that {Mc`} is also a minimizing sequence of τ. By similar
arguments, {M2c`} is a minimizing sequence too. According to Lemma 2, all of the minimizing
sequences are ρ-convergent to the same limit c, i.e.,

lim
`→∞

ρ(c` − c) = lim
`→∞

ρ(Mc` − c) = lim
`→∞

ρ(M2c` − c) = 0.

On the other hand, from Lemma 4, ρ(Mc` −Mc) ≤ ρ(c` − c) or ρ(M2c` −Mc) ≤ ρ(Mc` − c),
meaning that {Mc`} or {M2c`} is also ρ-convergent toMc. Since the ρ-limit is unique, it follows that
Mc = c.

The following outcome states that each Suzuki nonexpansive mapping on a nonempty, convex,
ρ-bounded and ρ-closed subset of R has fixed points. In order to prove that, we use the Lemma of
Goebel and Kirk.

Lemma 6. Consider two bounded sequences {x`} and {y`} in a Banach space (X, || · ||) and α ∈ (0, 1).
Assume that x`+1 = (1− α)x` + αy` and ||y`+1 − y`|| ≤ ||x`+1 − x`|| for all `. Then, lim

`→∞
||y` − x`|| = 0

(Goebel and Kirk [15]).

Corollary 1. Let Xρ be a ρ-complete modular space with Xρ ⊂ R. Assume that ρ, S andM : S→ S satisfy
all the conditions from Theorem 1. Then, Fix (M) 6= ∅.

Proof. When ρ denotes a modular on R, the following features can be immediately extracted from the
properties of the modular function:

1. ρ(x) = ρ(|x|), ∀x ∈ R;
2. ρ is a nondecreasing function on R+;
3. ρ is a continuous function.
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Suppose that α ∈
[

1
2

, 1
)

and consider the iterative process x`+1 = (1− α)x` + αMx`, for given

x0 ∈ S. Then,Mx` − x` =
1
α
(x`+1 − x`). Using properties 1 and 2 of ρ, we obtain

1
ω(2)

ρ(x` −Mx`) =
1

ω(2)
ρ

(
1
α
(x`+1 − x`)

)
≤ 1

ω(2)
ρ (2(x`+1 − x`)) ≤ ρ(x`+1 − x`)

and, since ρ satisfies condition (ρC), it follows that ρ(Mx`+1 −Mx`) ≤ ρ(x`+1 − x`). Let y` =Mx`.
Then, ρ(y`+1 − y`) ≤ ρ(x`+1 − x`), which, by considering again properties 1 and 2, leads to the
conclusion that |y`+1 − y`| ≤ |x`+1 − x`|. Applying Lemma 6, one finds that lim

`→∞
|y` − x`| = 0. Using

the continuity of ρ stated in property 3, it follows that lim
`→∞

ρ(y` − x`) = lim
`→∞

ρ(Mx` − x`) = 0, which,

according to Theorem 1, leads to the desired conclusion.

Remark 2. The above outcome may be extended to arbitrary Banach spaces, whenever the modular ρ is defined
in connection with the norm, via a continuous, nondecreasing function ϕ, i.e., ρ(x) = ϕ(||x||). A natural
question rises then: is it possible to extend the results above to modulars which are not necessarily connected to
preexisting norms? Obviously, this would be possible if Lemma 6 could be extended to arbitrary modular spaces.

4. Kirk’s Lemma in Modular Spaces

In order to prove the unrestricted existence of fixed points of the generalized nonexpansive
mappings, in [12], Suzuki used the famous Lemma of Goebel and Kirk, initiated by Kirk in [14]
in connection with spaces of hyperbolic type and extended afterwards by Goebel and Kirk in [15],
by Ishikawa in [16] or by Suzuki in [17]. Obviously, we aim to find a similar outcome on modular spaces.
The main challenge is to obtain generalization without using the triangle inequality. This inequality is
used several times in the proof of the original outcome on spaces of hyperbolic type, but it is missing
from the properties of a modular space.

Let us start with recalling the initial result of Kirk as it was phrased in [14]. Assume that X is
endowed with a metric d and contains a family of metric lines, and any two distinct points belong
to one and only member of that family. Denote by σ[x, y] the metric segment connecting x and y.

In addition, assume that, for all x, y, z ∈ X, one has d(m1, m2) ≤
1
2

d(x, y), where m1 and m2 are the

midpoints of the metric segments σ[z, x] and σ[z, y]. Then, (X, d) is called a hyperbolic type. A more
detailed approach on the geometric properties deriving from metric structures is provided in [18].

Lemma 7. Let {x`} and {y`} be two sequences in the hyperbolic type space (X, d) and α ∈ (0, 1) and suppose
that, for all ` ∈ N, the following conditions are satisfied [14]:

(i) x`+1 is the point of σ[x`, y`] for which d(x`, x`+1) = αd(x`, y`);
(ii) d(y`, y`+1) ≤ d(x`, x`+1).

Then, for all i, ` ∈ N,

d(yi+`, xi) ≥ (1− α)−` [d(yi+`, xi+`)− d(yi, xi)] + (1 + `α)d(yi, xi).

In the following, we extend the above result to modular spaces.

Lemma 8. Let ρ be a convex modular with ∆2 property. Let {x`} and {y`} be two sequences in Xρ such that,
for each ` ∈ N,

(i) x`+1 = (1− α)x` + ω(α)y`;
(ii) ρ(y`+1 − y`) ≤ ρ(x`+1 − x`).

Then, for all i, ` ∈ N, ` 6= 0,



Symmetry 2019, 11, 319 8 of 11

ρ(µyi+` − xi) ≥ (1− α)−`ρ(µyi+` − xi+`)

− αω(µ)ω(α)

(1− α)

`−1

∑
k=0

(
k

∑
p=0

ω(`− p)
`− p

(1− α)−p

)
ρ(µyi+k − xi+k), (10)

where µ =
ω(α)

α
.

Proof. For simplicity, let us denote Ak
` =

k

∑
p=0

ω(`− p)
`− p

(1 − α)−p for ` ≥ 1, k ≤ ` − 1. Then,

inequality (10) can be rewritten as

Pi(`) : ρ(µyi+` − xi) ≥ (1− α)−`ρ(µyi+` − xi+`)−
αω(µ)ω(α)

(1− α)

`−1

∑
k=0

Ak
`ρ(µyi+k − xi+k). (11)

Let us prove it by induction on `. If ` = 1, one has A0
1 = ω(1) = 1 and relation (11) becomes in

this particular case

Pi(1) : ρ(µyi+1 − xi) ≥
1

1− α
ρ(µyi+1 − xi+1)−

αω(µ)ω(α)

(1− α)
ρ(µyi − xi),

which can be easily checked to be true. Indeed, by evaluating the element µyi+1 − xi+1, we notice the
possibility of rewriting it in several equivalent forms, based on condition (i) and the definition of µ.
More precisely,

µyi+1 − xi+1 = µyi+1 − ((1− α)xi + ω(α)yi)

= (1− α)µyi+1 + αµyi+1 − (1− α)xi − αµyi

= (1− α)(µyi+1 − xi) + αµ(yi+1 − yi).

Moreover, by using the fact that ρ is convex and from condition (ii), and also by invoking the
property ρ(αx) ≤ ω(α)ρ(x), ∀α ≥ 0, ∀x ∈ Xρ of the growth function (see Remark 1), one finds

ρ(µyi+1 − xi+1) = ρ((1− α)(µyi+1 − xi) + αµ(yi+1 − yi))

≤ (1− α)ρ(µyi+1 − xi) + αω(µ)ρ(yi+1 − yi)

≤ (1− α)ρ(µyi+1 − xi) + αω(µ)ρ(xi+1 − xi)

= (1− α)ρ(µyi+1 − xi) + αω(µ)ρ(α(µyi − xi))

≤ (1− α)ρ(yi+1 − xi) + αω(µ)ω(α)ρ(µyi − xi),

leading to the announced relation.
Let assume next that Pi(`) is true for a given integer ` and for all i. Replacing i with i + 1 in

relation (11) leads to

Pi+1(`) : ρ(µyi+`+1 − xi+1) ≥ (1− α)−`ρ(µyi+`+1 − xi+`+1)−
αω(µ)ω(α)

(1− α)

`−1

∑
k=0

Ak
`ρ(µyi+k+1 − xi+k+1). (12)

On the other side, using again the properties of the modular being convex and having the ∆2

property, together with condition (ii) and Remark 1, one finds
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ρ(µyi+`+1 − xi+1) ≤ (1− α)ρ(µyi+`+1 − xi) + αω(µ)ρ(yi+`+1 − yi)

≤ (1− α)ρ(µyi+`+1 − xi) + αω(µ)
ω(`+ 1)
`+ 1

`

∑
k=0

ρ(µyi+k+1 − yi+k)

≤ (1− α)ρ(µyi+`+1 − xi) + αω(µ)
ω(`+ 1)
`+ 1

`

∑
k=0

ρ(xi+k+1 − xi+k)

≤ (1− α)ρ(µyi+`+1 − xi) + αω(µ)ω(α)
ω(`+ 1)
`+ 1

`

∑
k=0

ρ(µyi+k − xi+k). (13)

Combining the inequalities (12) and (13) leads to

ρ(µyi+`+1 − xi) ≥ (1− α)−(`+1)ρ(µyi+`+1 − xi+`+1)−
αω(µ)ω(α)

(1− α)2

`

∑
k=1

Ak−1
` ρ(µyi+k − xi+k)

− αω(µ)ω(α)

1− α

ω(`+ 1)
`+ 1

`

∑
k=0

ρ(ω(µ)yi+k − xi+k)

= (1− α)−(`+1)ρ(µyi+`+1 − xi+`+1)−
αω(µ)ω(α)

1− α

[
ω(`+ 1)
`+ 1

ρ(µyi − xi)

−
`

∑
k=1

(
Ak−1
`

1− α
+

ω(`+ 1)
`+ 1

)
ρ(µyi+k − xi+k)

]
. (14)

On the other side,
ω(`+ 1)
`+ 1

= A0
`+1 and

Ak−1
`

1− α
+

ω(`+ 1)
`+ 1

=
1

1− α

(
k−1

∑
p=0

ω(`− p)
`− p

(1− α)−p

)
+

ω(`+ 1)
`+ 1

=
k

∑
p=1

ω(`+ 1− p)
`+ 1− p

(1− α)−p +
ω(`+ 1)
`+ 1

=
k

∑
p=0

ω(`+ 1− p)
`+ 1− p

(1− α)−p

= Ak
`+1.

Substituting these in relation (14), one finds precisely Pi(`+ 1), which completes the proof.

The following statement refers to an important inequality specific to ρ-bounded subsets.

Corollary 2. Let Xρ be a modular space and let S ⊂ Xρ be a ρ-bounded subset with diamρ(S) = M. Suppose
that ρ satisfies condition ∆2 and is convex. Let {x`} and {y`} be two sequences in S satisfying the conditions
from Lemma 8 and denote r = lim sup

`→∞
ρ(µy` − x`). Then,

M ≥ r
(1− α)`

[
1− αω(µ)ω(α)

`−1

∑
k=0

ω(k + 1)(1− α)k

]
. (15)

Proof. The inequality is a direct consequence of taking lim sup
i→∞

in relation (10).

The following two examples are meant to illustrate the applicability of inequality (15). In particular,
when dealing with Banach spaces, Corollary 2 leads directly to Lemma 6 of Goebel and Kirk.

Example 1. If (X, || · ||) is a normed space, by taking the modular ρ to be exactly the norm, we obtain the
growth function ω(t) = t, ∀t ≥ 0. Consider {x`} and {y`} in X such that, for each ` ∈ N,
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(i) x`+1 = (1− α)x` + αy`;
(ii) ρ(y`+1 − y`) ≤ ρ(x`+1 − x`).

When substituting these in inequality (15), one finds

M ≥ r
(1− α)`

[
1− α2

`−1

∑
k=0

(k + 1)(1− α)k

]

=
r

(1− α)`

[
1− α2 `(1− α)`+1 − (`+ 1)(1− α)` + 1

α2

]
= r(`α− 1), ∀`,

and this is true if and only if r = lim sup
`→∞

ρ(y` − x`) = 0, leading to lim
`→∞

ρ(y` − x`) = 0, which is the

conclusion of Lemma 6.

Let us recall that Remark 2 emphasized the fact that, whenever we deal with modulars defined
in connection with a particular norm via a continuous, nondecreasing function, then the (original)
Lemma 6 of Goebel and Kirk, together with Theorem 1, provide enough arguments to state the
(unrestricted) existence of fixed points (in particular, when the modular is exactly the norm of a Banach
space, we find the Suzuki’s original outcome). In the following, we provide an example of a modular
function which can not be connected directly (as described above) with a specific norm. Moreover,
we analyze the effect of this modular from the perspective of Corollary 2.

Example 2. Consider the modular ρ : R2 → [0, ∞], ρ(x1, x2) = |x1|+ x2
2. The growth function corresponding

to this modular is ω(t) = t2, t ≥ 0. Consider also two sequences {x`} and {y`} in R2 such that, for a given
parameter α ∈ (0, 1) and for each ` ∈ N,

(i) x`+1 = (1− α)x` + α2y`;
(ii) ρ(y`+1 − y`) ≤ ρ(x`+1 − x`).

Substituting in relation (15) leads to

M ≥ r
(1− α)`

[
1− α5

`−1

∑
k=0

(k + 1)2(1− α)k

]

=
r

(1− α)`

[
1− α5 2− α− (1− α)`[(`α + 1)2 + 1− α]

α3

]
= [1− α2(2− α)]

r
(1− α)`

+ rα2[(`α + 1)2 + 1− α]

= (1− α)(1 + α− α2)
r

(1− α)`
+ rα2[(`α + 1)2 + 1− α], ∀`.

Since (1 − α)(1 + α − α2) ≥ 0, ∀α ∈ (0, 1) we find r = lim sup
`→∞

ρ(µy` − x`) = 0, which is

lim
`→∞

ρ(αy` − x`) = 0.

5. Conclusions

This paper provides two important outcomes: a necessary and sufficient condition for a Suzuki
nonexpansive mapping on a modular space to have fixed points and an extension of Goebel and Kirk’s
Lemma. In particular, when dealing with Banach spaces where the modular is precisely the norm
(and the growth function is precisely the identity), combining the two outcomes leads to the original
results of Suzuki. Nevertheless, on arbitrary modular spaces, the combination of those two does not
provide enough arguments to state the unrestricted existence of fixed points. In order to be able to
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do so, stronger versions for Lemma 8 and its corollary would be necessary. More precisely, it would
be most advantageous if the modular distances involved in inequality (10) would not include the
parameter µ. The proof of such an outcome would provide a valuable breakthrough.
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