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Abstract: The Kernel ridge regression (KRR) model aims to find the hidden nonlinear structure in
raw data. It makes an assumption that the noise in data satisfies the Gaussian model. However, it was
pointed out that the noise in wind speed/power forecasting obeys the Beta distribution. The classic
regression techniques are not applicable to this case. Hence, we derive the empirical risk loss about
the Beta distribution and propose a technique of the kernel ridge regression model based on the
Beta-noise (BN-KRR). The numerical experiments are carried out on real-world data. The results
indicate that the proposed technique obtains good performance on short-term wind speed forecasting.
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1. Introduction

Linear regression (LR) is an approach to using the least squares method to model the relationship
between a scalar dependent variable and one or more explanatory variables. It also refers to the plane
points that are fitted with a straight line or the points in a high dimension space that are fitted with a
hyperplane. This method is very sensitive to predictors being in a configuration of near-collinearity.
Ridge regression (RR) is a variant of linear regression whose goal is to circumvent the problem of
predictors collinearity. The ridge regression model is a powerful technique of machine learning which
was introduced by Hoerl [1] and Hastie et al. [2], and it is a method from classical statistics that
implements a regularized form of least squares regression [3]. Ridge regression is an alternative
method for learning function based on a regularized extension of least squares techniques [4].

Given the data-set
DN = (x1, y1), (x2, y2), . . . , (xN , yN) (1)

where xi ∈ X = Rn, yi ∈ R, i = 1, . . . , N is the data-set. A multiple LR is f (x) = vT · x + b. R
represents real number set, Rn is n dimensional Euclidean space, N is the number of sample points,
superscript T denotes the matrix transpose. LR and RR determine the parameter vector v ∈ Rn by
minimizing the objective functions, respectively:

gLR =
N

∑
i=1

(yi −vT · x− b)2, (2)

gRR =
1
2
·vT ·v + C ·

N

∑
i=1

(yi −vT · x− b)2. (3)
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The objective function used in ridge regression implements a form of Tikhonov [5] regularization
of a sum-of-squares error metric, which is a regularization parameter controlling the bias-variance
trade-off [6]. This corresponds to penalized maximum likelihood estimation of v, assuming the targets
have been corrupted by independent identical probability distribution (i.i.d.) samples from a Gaussian
noise process with zeros mean and variance σ2, i.e., yi = f (xi) + ξi, , ξ ∈ N(0, σ2), i = 1, . . . , N.

The KRR model based on Gaussian-noise characteristic is derived by Saunders et al [7]. RR [1,3,5]
aims to find the hidden nonlinear structure in the raw data, while nonlinear mapping is approximated
by means of KRR based on kerneltechniques [7–11]. Therefore a linear RR model is constructed in a
feature-space H (Φ : Rn −→ H), induced by a nonlinear kernel function defining the inner product
K(xi, xj) = (Φ(xi) · Φ(xj)) (i, j = 1, . . . , N). The kernel function Φ : Rn → H may be any positive
definite Mercer kernel. Therefore, the objective function of KRR based on Gaussian-noise (GN-KRR)
minimization can be written as

gGN-KRR =
1
2
·vT ·v + C ·

N

∑
i=1

(yi −vT ·Φ(x)− b)2. (4)

Suppose the noise is Gaussian, the GN − KRR model may meet the requirements. However,
the noise in wind speed and wind power forecast does not obey the Gaussian distribution, but the
Beta distribution. The classic regression techniques are not applicable to above case. The uncertainty
of wind power predictions was investigated in [12]. The statistics of the wind power forecasting error
were not Gaussian. The work in [13] also found that the output of wind turbine systems is limited
between zero and the maximum power and the error statistics do not follow a normal distribution.
It also proved that using the Beta-function is justifiable for wind power prediction about chi-squared
tests. In [14], the standard deviation of the data set was a function of the normalized predicted power
p = ppred/pinst, where ppred is the predicted power and pinst is the wind power installed capacity.
Fabbri [14] pointed out standardized production power p be within the interval [0, 1] and Beta-function
are more suitable than standard normal distribution. Literature [15] exhibited the advantages of using
Beta-probability distribution function (pdf) instead of Gaussian pdf for approximating the forecasting
error. Based on the above literature [12–16], this work plans to study the error of Beta-distribution
between the predicted values xp and the measured values xm in the wind speed forecasting, and pdf
of εi is f (εi) = εi

u−1 · (1− εi)
v−1 · h, εi ∈ (0, 1), i = 1, 2, · · · , N, plotted below in Figure 1. Where u, v

are parameters, h is normalization-factor, and the parameters u, v may be determined by the given
values of mean and standard deviation [17].
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Figure 1. Beta pdf and Gauss pdf.
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It is not suitable to apply the KRR techniques based on Gaussian-noise model (GN-KRR) to fit
functions from data-set with Beta-noise. In order to solve the above problem, this work focuses on the
utilization of optimization theory and Beta-noise loss function and derives a method of KRR based
on Beta-noise characteristic (BN-KRR). It also introduces a forecasting technique that can deal with
high-dimensionality and nonlinearity simultaneously.

This paper is organized as follows. In Section 2, we will derive the Beta-noise empirical risk
loss by the Bayesian principle. Section 3 describes the proposed KRR model based on the Beta-noise.
Section 4 gives the solution and algorithm design of KRR of the Beta-noise characteristic based on
Genetic Algorithm. The numerical experiments are carried out on BN-KRR to short-term wind speed
and wind power prediction in Section 5, respectively. Finally, the conclusions and future work are
given in Section 6.

2. Bayesian Principle to Beta-Noise Empirical Risk Loss

Learning to fit data with noise is an important problem in many real-world data mining
applications. Given a training set DN of (1) with noise is additive

yi = f (xi) + ξi, i = 1, · · · , N (5)

where ξi is random i.i.d. P(ξi) with standard deviation σ and mean µ.
The objective is to find regressor f minimizing the expected risk [18,19] R[ f ] =∫

l(x, y, f (x))dP(x, y) based on the empirical data Dl , where l(x, y) is a empirical risk loss (determining
how we will penalize estimation errors). Since we do not know the distribution P(x, y), it can only use
data-set DN to estimate a regressor f and minimize R[ f ]. A possible approximation consists of replacing
the integration by the empirical estimate to get the empirical risk Remp[ f ] = 1

N · ∑
N
i=1 l(x, yi, f (xi)).

In general, we should add a capacity control term in RR and KRR, which leads to the regularized risk
functional [18,20]

Rreg[ f ] = Remp[ f ] +
λ

2
· ‖v‖2, (6)

where λ > 0 is a regularization constant, Remp[ f ] is the empirical risk. It is well known that l(ξi) =
1
2 · ξ2

i
is the empirical risk loss of Gaussian-noise characteristics for LR (2), RR (3), and KRR (4). However,
what is the empirical risk loss about Beta-noise of KRR model? The Beta-noise empirical risk loss by
the use of Bayesian principle is given as follows.

The regressor f (x) is unknown, the objection is to estimate the regressor f (x) from g ∈ DN .
According to the literature [20–22], the optimal empirical risk loss from maximum likelihood be

l(x, y, f (x)) = −logp(y− f (x)). (7)

The maximum likelihood estimation be

X f = {(x1, f (x1)), (x2, f (x2)), . . . , (xN , f (xN))}, (8)

p(X f |X) =
N

∏
i=1

p( f (xi)|(xi, yi)) =
N

∏
i=1

p(yi − f (xi)). (9)

Maximizing p(X f |X) is equivalent to minimizing −log(p(X f |X)). Using Equation (7), we have

l(x, y, f (x)) = −logp(X f |X). (10)
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Suppose noise in Equation (5) adheres to Beta distribution with mean µ ∈ (0, 1) and variance σ2,
thus we can get u = (1− µ) · µ2/σ2 − µ, v = (1− µ)/µ · u [13,14], where h = Γ(u + v)/Γ(u) · Γ(v) is
the normalization-factor. By Equation (10), the Beta-noise empirical risk loss is

l(ξ) = l(y− f (x)) = (1− u)log(ξ) + (1− v)log(1− ξ). (11)

Empirical risk loss of Gauss-noise and Beta-noise with different parameters is shown in Figure 2.
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Figure 2. Empirical risk loss of Gauss-noise and Beta-noise.

3. KRR Model Based on Beta-Noise

It is not appropriate to apply the KRR model based on Gaussian-noise characteristic (GN-KRR)
to deal with tasks with the Beta-noise distribution. Consequently, we use Beta-noise loss function
and maximum likelihood method to estimate the optimal loss function. Now, we derive the optimal
empirical risk loss about Beta-noise distribution, and propose a new technique of the KRR model
based on Beta-noise characteristic (BN-KRR).

First, considering constructing LR regressor f (x) = vT · xi + b, where xi = (1, xi1, . . . , xin)
T

(i = 1, 2, · · · , N), v = (v0, v1, · · · , vn)T . We use kernel techniques and construct the kernel
function K(•, •) where K(xi, xj) = (Φ(xi) · Φ(xj)), Φ : Rn → H, H is Hilbert space, and (xi · xj)

(i, j = 1, 2, · · · , N) is inner product of H. Then we extend kernel techniques to the ridge regression
model based on the Beta-noise characteristic.

Let the set of inputs be {(xi, yi), i = 1, · · · , N}, where i represents the indicator for the i-th sample
in Dl . For the general Beta-noise characteristic, it is Formula (11) that the Beta-noise loss function c(ξi)

in the sample point {(xi, yi)} of DN . Owing to the fact that ridge regression and KRR techniques with
Gaussian-noise characteristic (GN − KRR) are not suitable to Beta-noise distribution in time series
problems, the Formula (11) is selected as Beta empirical risk loss to overcome the shortage of GN-KRR.
The primal problem of KRR model with the Beta-noise (Denoted by BN-KRR) can be described as
follows (C > 0)

min{gPBN-KRR =
1
2

vT ·v + C ·
N

∑
i=1

c(ξi)}

PBN-KRR : s.t. yi −vT ·Φ(xi)− b = ξi.
(12)

where c(ξi) = (1− u)log(ξi) + (1− v)log(1− ξi), ξi = yi − f (xi)i = 1, · · · , N.

Theorem 1. Model BN-KRR’s Solution to original Problem (12) about v exists and is unique.
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Proof. The existence of solutions is trivial. The uniqueness of solutions is shown below. If we have
solutions v, ṽ, then Problem (12) exist solutions (v, b, ξ) and (ṽ, b̃, ξ̃). Define (v, b, ξ) as follows

v =
1
2
(v + ṽ), b =

1
2
(b + b̃), ξ =

1
2
(ξ + ξ̃). (13)

We have

yi −vT ·Φ(xi)− ξi = yi −
1
2
(v + ṽ)T ·Φ(xi)−

1
2
(b + b̃)− 1

2
(ξ + ξ̃)

=
1
2
(yi −vT ·Φ(xi)− b− ξ i) +

1
2
(yi − ṽT ·Φ(xi)− b̃− ξ̃i) = 0,

where 1
2 (ξ + ξ̃) ≥ 0(i = 1, · · · , l), (v, b, ξ) is a feasible solution of Problem (12). Further,

1
2
‖v‖2 + C

N

∑
i=1

c(ξi) ≥
1
2
‖v‖2 + C ∑ c(ξ̃i), (14)

1
2
‖v‖2 + C

N

∑
i=1

c(ξi) ≥
1
2
‖ṽ‖2 + C ∑ c(ξ̃i). (15)

By Inequalities (14) and (15), we get 2‖v‖2 ≥ ‖v‖2 + ‖ṽ‖2. v = v + ṽ is substituted into the
above inequality

‖v + ṽ‖2 ≥ 2(‖v‖2 + ‖ṽ‖2), (16)

as ‖v + ṽ‖ ≤ ‖v‖+ ‖ṽ‖, then

(‖v‖+ ‖ṽ‖)2 ≥ 2(‖v‖2 + ‖ṽ‖2). (17)

In addition, 2‖v‖ · ‖ṽ‖ ≤ ‖v‖2 + ‖ṽ‖2, by (17), get

2‖v‖ · ‖ṽ‖ = ‖v‖2 + ‖ṽ‖2, ‖v‖ = ‖ṽ‖, ‖v + ṽ‖ = ‖v‖+ ‖ṽ‖.

For ṽ = m ·v, thus m = 1 or m = −1. Since m = −1, then v + ṽ = 0. By ‖v + ṽ‖ = ‖v‖+ ‖ṽ‖,
get ‖v‖ = ‖ṽ‖ = 0. Namely, v = ṽ = 0. For m = 1, thus v = ṽ.

In conclusion, Solution to Problem (12) exists and is unique.

Theorem 2. Model BN-KRR’s dual Problem of primal Problem (12) is

Max{gDBN-KRR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · K(xi, xj)) +
N

∑
i=1

(αi · yi)

+C ∑N
i=1((1− u) log(ξi(αi)) + (1− v) log(1− ξi(αi)))}

DBN-KRR : s.t. ∑l
i=1(αi) = 0

(18)

where ξi(αi) =
2+αi/C−u−v−∆

1
2

2·αi/C , ∆ = (αi/C + u− v)2 + 4 · (1 + u · v− u− v) (i = 1, · · · , N) and C > 0
is constant.

Proof. The introduction of Lagrange functional L(v, b, α, ξ) is

L(v, b, α, ξ) =
1
2

vT ·v + C ·
N

∑
i=1

(c(ξi)) +
N

∑
i=1

αi(yi −vT ·Φ(xi)− b− ξi).



Symmetry 2019, 11, 282 6 of 11

For the sake of the minimum L(v, b, α, ξ), seek partial derivative to v, b, α, ξ respectively. From
Karush-Kuhn-Tucker (KKT) conditions, obtain

∇v(L) = 0,∇b(L) = 0,∇ξ(L) = 0.

So v = ∑N
i=1(αi ·Φ(xi)), ∑N

i=1(αi) = 0, C · ∂(c(ξi))
∂ξi

− αi = 0.
Substituting the extreme conditions into L(v, b, α, ξ) and finding the Maximum of α, thus derive

the dual Problem (18) of Problem (12).

On account of ∂(c(ξi))
∂(ξi)

= 1−α
ξi
− 1−β

1−ξi
, by C · ∂(c(ξi))

∂(ξi)
− αi = 0, we have αi/C · ξ2

i − (2 + αi/C− α−
β) · ξi + 1− α = 0.

Now get

ξi1(αi) =
2 + αi/C− α− β + ∆

1
2

2 · αi/C
, ξi2(αi) =

2 + αi/C− α− β− ∆
1
2

2 · αi/C
.

where ∆ = (αi/C + α− β)2 + 4 · (1 + α · β− α− β). Because of 0 < ξi(αi) < 1, we reject ξi1(αi) and
let ξi(αi) = ξi2(αi).

We have v = ∑N
i=1(αi · Φ(xi)), b = yi − ∑N

i=1(αj · K(xj, xi))− ξi(αi), gain the decision-making
function of BN-KRR is

f (x) = vT ·Φ(x) + b =
N

∑
i=1

(αi · K(xi, x)) + b.

Note: The KRR of the Gaussian-noise characteristic (GN − KRR) was discussed in [9–11].
The Gaussian empirical risk loss in the sample point (xi, yi) ∈ DN is c(ξi) = 1

2 ξ2
i , thus the dual

Problem of model KRR based on Gaussian-noise characteristic (GN − KRR) is

max{gDGN-KRR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · K(xi, xj)) +
N

∑
i=1

(αi · yi)−
1

2C
·

N

∑
i=1

(α2
i )}

DGN-KRR : s.t. ∑N
i=1 αi = 0.

(19)

The dual Problem of model RR based on the Gaussian-noise characteristic (GN-RR) is

max{gDGN-RR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · (xi, xj)) +
N

∑
i=1

(αi · yi)−
1

2C
·

N

∑
i=1

(α2
i )}

DGN-RR : s.t. ∑N
i=1 αi = 0.

(20)

4. Solution Based on Genetic Algorithm

We get the Solution and algorithm design of model KRR based on Beta-noise characteristic
(BN-KRR) as follows.

(1) Let training samples DN = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi ∈ X = Rn, yi ∈ R
(i = 1, . . . , N).

(2) Select the appropriate positive C, u, v and the suitable kernel K(•, •).
(3) Solve optimization Problem (18), gain optimal Solution α = (α1, · · · , αN).
(4) Construct the decision-making function

f (x) = vT ·Φ(x) + b =
N

∑
i=1

(αi · K(xi, x)) + b,

and b = yi −∑N
i=1(αj · K(xj, xi))− ξi(αi).
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The confirmation of unknown parameters of model BN − KRR is a complicated process and the
appropriate parameter combination of the models can enhance the regression accuracy of the kernel
ridge regression based on Beta-noise. Genetic Algorithm (GA) [23–25] is a search heuristic that mimics
the process of natural evolution, this heuristic is routinely used to generate useful solutions to optimize
and search problems. In GA, the evolution usually starts from a population of randomly generated
individuals and happens in generations. In each generation, the fitness of every individual in the
population is evaluated, multiple individuals are stochastically selected from the current population
and modified to form a new population. The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached for the population. If the algorithm has
terminated due to a maximum number of generations, a satisfactory solution may or may not have
been reached.

GA is considered as one of the modern optimization algorithms to solve the combinatorial
optimization problem and is used to determine the parameters of model BN-KRR. Based on the
survival and reproduction of the fitness, GA is continually applied to get new and better solutions
without any pre-assumptions, such as continuity and unimodality [26–28]. The proposed model
BN-KRR has been implemented in Matlab 7.8 programming language. The experiments are made
on the 8.0 GHz Core (TM) i7-4790 CPU personal computer with 3.60 GB memory under Microsoft
Windows XP Professional. The initial parameters of GA are Max− cgen = 100, C ∈ [1, 201], u, v ∈
(0, ∝). Many practical applications display that polynomial and Gaussian kernels perform well under
general smooth assumptions [29]. This work, polynomial, and Gaussian kernels can be used as the
kernel for models ν-SVR, GN-KRR, and BN-KRR:

K(xi, xj) = ((xi · xj) + 1)d, K(xi, xj) = exp(
−‖xi − xj‖2

σ2 ),

where d is positive integer, and let d = 1, 2, or 3. σ is positive, and take σ = 0.2.
As we all know, no prediction model forecasts perfectly. There are also certain criteria, such

as mean absolute error (MAE), the root mean square error (RMSE), mean absolute percentage error
(MAPE), and standard error of prediction (SEP) are used to evaluate the predictive performance of
models ν-SVR, GN-KRR, and BN-KRR. The four criteria are defined as follows:

MAE =
1
N
·

N

∑
i=1
|xp,i − xm,i|, (21)

MAPE =
1
N
·

N

∑
i=1

|xp,i − xm,i|
xm,i

, (22)

RMSE =
1
N
·

√√√√ N

∑
i=1

(xp,i − xm,i)2, (23)

SEP =

√
∑N

i=1(xp,i − xm,i)2

∑N
i=1 xm,i

, (24)

where l is the size of the selected samples, m, i is the measured result of data-point xi, and p, i is the
predictive result of data-point xi (i = 1, 2, · · · , N) [14–16].

5. Short-Term Wind Speed and Wind Power Forecasting with Real Data-Set

The model BN-KRR is applied to the multi-factors actual data-set for wind speed sequence
prediction from Jilin Province. The wind speed data contain more than a year of samples which are
collected in intervals of ten minutes, and the number of wind speed data is 62,466. Each column
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attribute is mean, variance, minimum, and maximum, respectively. The short-term wind speed forecast
is studied as follows.

Suppose the training sample number is 2160 (from 1 to 2160 for 15 days), and the number of
test samples is 720 (from 2161 to 2880 for 5 days). The input vector is −→xi = (xi, xi+1, xi+2, · · · , xi+11),
the output value is xi+11+step, and step = 1, 3. Namely, the pattern above is used to forecast the wind
speed each interval of 10 and 30 min at each Point xi+11, respectively [30,31].

1. Forecast wind speed at point xi+11 each interval of 10 min

The short-term wind speed sequence forecast results at point xi+11 each interval of 10 min given by
GN-KRR [7,8,32], ν-SVR [33,34], and BN-KRR are illuminated with Figure 3. In GN-KRR, parameter
C = 151. In ν-SVR, parameter C = 151, ν = 0.54. In BN-KRR, parameters C = 181, u = 3.6084,
v = 3.0889.
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Figure 3. The forecasting results of ν-SVR, GN-KRR, BN-KRR (step = 1).

MAE, MAPE, RMSE, and SEP indicators are used to evaluate the prediction results of the three
models at point xi+11 each interval of 10 min shown in Table 1.

Table 1. Error statistic of three models (step = 1).

Model MAE RMSE MAPE(%) SEP(%)

ν-SVR 0.4280 0.5833 7.02 7.02

GN-KRR 0.4219 0.5768 7.94 7.06

BN-KRR 0.3668 0.4233 6.84 5.23

2. Forecast wind speed at point xi+11 each interval of 30 min

The short-term wind power sequence forecast results at point xi+11 each interval of 30 min given
by GN-KRR, ν-SVR, and BN-KRR are illuminated with Figure 4. In GN − KRR, parameter C = 151.
In ν-SVR, parameter C = 151, ν = 0.54. In BN-KRR, parameters C = 181, u = 3.6084, v = 3.0889.
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Figure 4. The forecasting results of ν-SVR, GN-KRR, BN-KRR (step = 3).

MAE, MAPE, RMSE, and SEP indicators are used to evaluate the prediction results of the three
models at point xi+11 each interval of 30 min shown in Table 2.

Table 2. Error statistic of three models (step = 3).

Model MAE RMSE MAPE(%) SEP(%)

ν-SVR 0.7979 1.0116 23.36 12.53

GN-KRR 0.7109 0.9226 17.17 11.43

BN-KRR 0.6640 0.8417 18.82 10.43

The results of wind speed forecasting experiments indicate that BN-KRR has better performance
than GN-KRR and ν-SVR in 10-min and 30-min short-term wind speed forecasting.

We have predicted the short-term wind speed from the Jilin Province wind farm, so we can
calculate the wind power according to the Formula (25):

PM =


0, v < vcut−in, or v > vcut−out
v−vcut−in
vr−vcut−in

, vcut−in ≤ v < vr

Pr, vr ≤ v < vcut−in.
(25)

where vcut−in and vcut−out represent cut-in wind speed and cut-out wind speed of wind turbine,
respectively. vr and Pr represent rated wind speed and rated power of wind turbine, respectively.
The predictive wind speed is substituted into the Formula (25), we can obtain the predicted wind power.

6. Conclusions and Future Work

In this work, we propose a new version of kernel ridge regression model based on the Beta-noise
(BN-KRR) to predict the uncertainty system of Beta-noise. Novel results have been obtained by the
use of the model BN-KRR, which takes the Bayesian principle to Beta-noise empirical risk loss and
improves the prediction accuracy. The numerical experiments are carried out on real-world data
(the short-term wind speed). Comparing the model BN-KRR and models GN-KRR and ν-SVR by
criteria MAE, MAPE, RMSE, and SEP verifies the validity and feasibility of our proposed model
BN − KRR. Further, the forecasting results indicate that the proposed technique can obtain good
performance on short-term wind speed forecasting.

In practical regression problems, data uncertainty is inevitable. The observed data are usually
described in linguistic levels or ambiguous metrics, like the weather forecast, the forecast results of
dry and wet, or sunny and cloudy, and so on. We should consider developing fuzzy kernel ridge
regression algorithms with different noise models.

We verify the validity and feasibility of the model.
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