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Abstract: The present study gives a remedy for the malign tissues, cells, or clogged arteries of the
heart by means of permeating a slim tube (i.e., catheter) in the body. The tiny size gold particles drift
in free space of catheters having flexible walls with couple stress fluid. To improve the efficiency of
curing and speed up the process, activation energy has been added to the process. The modified
Arrhenius function and Buongiorno model, respectively, moderate the inclusion of activation energy
and nanoparticles of gold. The effects of chemical reaction and activation energy on peristaltic
transport of nanofluids are also taken into account. It is found that the golden particles encapsulate
large molecules to transport essential drugs efficiently to the effected part of the organ.

Keywords: chemical reaction; activation energy; peristalsis; couple stress fluid; nanoparticle;
Keller-box method

1. Introduction

In any living organism peristaltic motion is mainly caused by the contraction and expansion of
some flexible organs. This applies a pressure force to drive fluids, for example, blood in veins,
urine to bladder, and transport of medicines to desired locations are a few common biological
examples. The rapid developments in nano-science have noticeably revolutionized almost every
field of life, particularly in medical sciences. The advent of nano-technology in medicines has brought
miraculous changes by reshaping the primitive methods of treatment. Nowadays, in developed
countries operations are preferably performed without involving any prunes and cuts, which was
once thought to be very complex and menacing for cancer treatment, brain tumors, lithotripsy, etc.
Regardless of many other uses of nanofluids in industrial and practical settings, the primary objective
of nanoparticles is the enhancement of heat transfer [1]. It is mainly due to their high conductivity.
In addition to the size and type of nanoparticles, other factors, such as temperature, volume fraction,
and thermal conductivity are also very important to maximize the thermal conductivity. In pursuit of
attaining such enhancement in the system, with the passage of time many useful models based on the
physical properties of the matter have been developed. On the said topic, scholars have made full use
of these models in their analyses, experiments, and conditions, which have been discussed here very
briefly. For instance, the investigation of Tripathi and Beg [2] explains the application of peristaltic
micropumps and novel drug delivery systems in pharmacological engineering. They formulated
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their study with the help of the Buongiornio nanofluid model and treated blood as Newtonian fluid.
El-dabe et al. [3] have explained the significant contribution of nanofluids in peristalsis. They produced
their results for flexible wall properties, lubrication, MHD, and porosity. As generally it is believed
that the motion of blood is likely to be non-Newtonian, therefore, Swarnalathamma and Krishana [4]
have studied the physiological flow of the blood in the micro circulatory system by taking account
of the particle size effect. They considered couple stress fluid for the given peristaltic analysis,
which is further affected by magnetic fields. The effects of channel inclination are studied by Shit
and Roy [5]. The couple stress fluid influenced by constant application of magnetic fields is used
as the base fluid. Jamalabad et al. [6] reported the effects of biomagnetic blood flow through a
stenosis artery by means of non-Newtonian flow of a Carreau-Yasuda fluid model. They carried
out a numerical simulation of an unsteady blood flow problem. Hosseini et al. [7] have presented
the thermal conductivity of a nanofluid model. To perform this investigation, the nanofluid model
is considered as the function of thermal conductivity of nanoparticles, base fluid, and interfacial
shell properties by considering temperature as the most effective of parameters involved in the
study. The most noteworthy contributions on the matter can be seen in the list of references [8–19].
Furthermore, activation energy has a key role in industries, in particular, effectively aggravating
slow chemical reactions in chemistry laboratories to improve the efficiency of various mechanisms by
adding activation energy to respective physical and mechanical processes. Mustafa et al. [20] have
proposed a chemical and activation energy MHD-effected mix convection flow of nanofluids. In this
study the flow over the vertical sheet expands due to high temperature and causes the fluid motion is
analyzed numerically. A few of the latest works related to this present work have been listed in [21–28].

In view of the existing literature, one can feel the application of nanotechnology in medical science
opens a new dimension for researchers to turn their attention towards the effective role of chemical
reaction and activation energy [29–31], since nanoparticles help in treating different diseases by means
of the peristaltic movement of blood. Such biological transport of blood helps to deliver drugs or
medicine effectively to the damaged tissue or organ. As a matter of fact, this effort is devoted to
inspecting the simultaneous effects of chemical reaction and activation energy for the peristaltic flow
of couple stress nanofluids in a single model, which is yet not available in literature, and could have
dual applications in expediting the treatment process.

2. Formulism

The inner tube is of a rigid configuration, while the outer tube is flexible in nature as shown in
Figure 1. The sinusoidal waves travel with a constant speed through its walls, due to the stress caused
by an unsteady movement of heated nanofluid through the space between both tubes. The general
form of equations governing the two-dimensional flows are given as:
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Conservation of momentum

ρ f

(→
V.
→
∇
)→

V = −
→
∇P∗ + µ∇2

→
V +

[
ϕρp + (1− ϕ)

{
ρ f (1− βT(υ− υw))

}]
g− γ1∇4

→
V. (2)

Thermal energy

(ρc) f

(→
V.
→
∇
)

υ = k∇2υ + (ρc)p

[
Db
→
∇ϕ.

→
∇υ +

DT
υw

→
∇υ.

→
∇υ

]
. (3)

Concentration of nanoparticles

ρp

(→
V.
→
∇
)

ϕ = Db∇2 ϕ +
DT
υw
∇2υ− k2

r

(
υ

υw

)n
(ϕ− φw) exp

(
−Ea

kυ

)
. (4)

One can easily identify that the last term in the momentum equation describes the velocity of
couple stress fluid involving a constant associated with the couple stress fluid γ1. The last term in
Equation (4) on the right side is known as “Arrhenius term”, which shows the effects of chemical
reaction and activation energy incorporated to a nanofluid. The radial and axial velocity components
of nanofluids are respectively defined by u(ξ, η) and w(ξ, η) in two concentric tubes, such that there
is no rotation about their axes. A peristaltic flow of a heated couple stress fluid carrying the gold
nanoparticles (GNPs) through these coaxial tubes due to the contraction and expansion of flexible walls
of the outer tube is assumed. If the two-dimensional peristaltic motion of the concerned nanofluid
is denoted by [u(ξ, η) 0 w(ξ, η)], then the Equations (1)–(4) in the component’s form will take the
following form:
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(9)

The corresponding boundary at the extreme wall.
At the rigid wall:

(i). w(ξ) = 0,
(ii). υ(ξ) = νm,
(iii). ϕ(ξ) = ϕm.

; When ξ = ξ1. (10)
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At the flexible wall:
(i). w(ξ) = 0,
(ii). υ(ξ) = νw,
(iii). ϕ(ξ) = ϕw.

; When ξ = ξ2. (11)

As the unsteady peristaltic flow of nanofluids in the laboratory frame (ξ, η) is considered, thus a
wave frame (ξ∗, η∗), which moves corresponding to the wave that travels on the flexible and parallel
walls of the outer tube, is taken into account. Let “c” be the constant velocity of the wave frame,
such that:

ξ∗ = ξ; η∗ = η − ct; u∗ = u; w∗ = w− c;
υ∗(ξ∗, η∗) = υ(ξ, η, t); ϕ∗(ξ∗, η∗) = ϕ(ξ, η, t).

(12)

In view of the transformation given in Equation (10), the governing Equations (6)–(9) in wave
frame can be written as:
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(16)

3. Results

Dealing with an unsteady peristaltic transport of couple stress fluid suspended with heated
golden nano-sized particles ends up with a system of ordinary differential equations. These differential
equations were mutually intermingled with each other, involving a nonlinear composition.
Therefore, for such complex geometry, an exact solution was not possible. This means one has to turn
to a numerical scheme suitable for tackling the said issue. In order to achieve the desired goal, first we
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have to make the entire system a non-dimensional form, by using the following transformations along
with Oberbeck-Boussinesq approximation and long wave length assumption:

ξ∗

ξ2
= ξ; η∗

λ = η; u∗
c δ = u; w∗

c = w; ξ2
λ = δ; ξ2

2 P∗

c λ µ = P;
(ρc)p
(ρc) f

= τ;

k
(ρc) f

= α;
√

µ
γ1

ξ2 = γ; 1 + ε cos(2πη) = R2; E∗ = Ea
k υw

;
ξ2

2 (υm−υw) (1−ϕw)g ρ f βT
c µ = Gr; Db(ϕm − ϕw) = Nb; A∗ = k2

r
Db

;
υ∗−υw
υm−υw

= υ; ϕ∗−ϕw
ϕm−ϕw

= ϕ; DT (υm−υw)
υw

= Nt; d
ξ2

= ε;
ξ2

2 (ϕm−ϕw) (ρp−ρ f )g
c µ = Br; ξ1

ξ2
= R1; β∗ = (υm−υw)

υw
.

(17)

Equations (13)–(16) in dimensionless form can be obtained as:

dP
dη

=
d2w

dξ
2 +

1
ξ

dw
dξ
− 1

γ2

[
d4w

dξ
4 +

2
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ξ
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ξ
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α

(
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1
ξ
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(
∂ϕ

∂ξ

)(
∂υ

∂ξ

)
+ Nt

(
∂υ

∂ξ

)2
}

= 0, (19)

Nb

(
∂2 ϕ

∂ξ
2 +

1
ξ

∂ϕ

∂ξ

)
+ Nt

(
∂2υ

∂ξ
2 +

1
ξ

∂υ

∂ξ

)
−
{

A∗(β∗υ + 1)n Nb
}

ϕ exp
(
−E∗

β∗υ + 1

)
= 0. (20)

Also, the corresponding boundary conditions in dimensionless form are as follows.
At the rigid wall:

(i). w
(
ξ
)
= −1,

(ii). υ
(
ξ
)
= 1,

(iii).ϕ
(
ξ
)
= 1.

; When ξ = R1. (21)

At the flexible wall:
(i).w

(
ξ
)
= −1,

(ii). υ
(
ξ
)
= 0,

(iii). ϕ
(
ξ
)
= 0.

; When ξ = R2. (22)

Finally, to obtain reliable solutions of Equations (18)–(20) subject to corresponding boundary
conditions given in Equations (21) and (22), the most efficient numerical approach, Keller-box
scheme, [32] is utilized. This method is much faster and more flexible to use as compared to
other methods. It has been extensively used and tested on boundary layer flows. By means of
said method, the solution can be attained by using four steps: (i) First reduce the system of equations
to a first order system; (ii) then write the difference equations by means of central differences;
(iii) now linearize the resulting nonlinear equation by Newton’s method, if needed; and (iv) finally the
block-tridiagonal-elimination technique is used to solve the linear system.

4. Discussion

This graphical section is relevant to the effectively contributing parameters, which influence axial
velocity of couple stress fluid, temperature of nanofluid, and concentration of nano sized Hafnium
particles, respectively. The involved parameters have a greater impression on the flow, namely,
couple stress parameter γ, Brownian motion Nb and thermophoresis parameters Nt, thermophoresis
diffusion Gr, and Brownian parameter Br emerging due to the presence of heat and metallic particles.
Moreover, a modified Arrhenius mathematical term yields some additional parameters, such as reaction
rate A∗, activation energy E∗, temperature difference parameter β∗, and the fitted rate constant n,
assuming the contribution of peristaltic pressure to be constant. To make this more systematic, the main
portion is further divided into four subsections.
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4.1. Axial Velocity

Axial velocity is spotted in Figures 2–4 for couple stress parameter, Brownian diffusion constant,
and Grashof number. Axial velocity, as shown in Figure 2, accelerates in response to an increases
in couple stress parameter. This is mainly due to the decrease in friction, which arises from the
particle (i.e., base-fluid particles) additives, which constitute a size-dependent effect in couple stress
fluids. In addition to the preceding remark, the rotational field of fluid particles is minimal as well.
The peristaltic motion of outer walls of the tube also contributes by rapidly pushing the fluid in the
axial direction, as Br gets numerically variated in Figure 3. Figure 4 displays a different picture of
the velocity of the fluid for the case of thermophoresis diffusion constant. The diagram basically
describes the influence of buoyancy in terms of Grashof number Gr. As one can see from Equation (17),
the buoyancy effects are mainly due to gravity and temperature difference. Therefore, increase in Gr

attenuates the fluid’s momentum by aggravating buoyant force. This brings a vivid decline in the
velocity of the fluid. Furthermore, the relation defining Gr suggests that if Gr > 0, then this physically
describes the heating of the nanofluid, while a reverse case can be expected for Gr < 0.
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4.2. Thermal Distribution

The temperature distribution of the nanofluid in the presence of additional chemical reaction and
activation energy are portrayed in Figures 5 and 6. The variation of the Brownian motion parameter
has noticeable effects on the nanofluid temperature, as the Brownian motion is generated due the
collision of nanoparticles, driving the particles to a random motion. The collision of the particles,
whether mutual or with the fluid molecules, is enhanced by the inward contraction of the flexible
walls. Due to this factor Brownian motion parameter, Nb accumulates some additional thermal energy
in the fluid, as shown in Figure 5. The nanoparticles were further thermally charged by the increase in
Nt. It is important to keep in mind that the thermophoresis forces become stronger in the response of
larger values of Nt, which finally result in higher temperature, as seen in Figure 6. Sometimes, such
variations are credited to the thermal boundary layer thickness as well. Obviously, this increase in
fluid temperature is due to increase in the random motion of nanoparticles when the above-mentioned
parameters are increased.
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4.3. Nanoparticle Concentration Profile

The concentration of golden particles is observed in Figures 7 and 8, when the Brownian
motion parameter and thermophoresis parameter, respectively, are given higher numeric values.
The random motion of the nanoparticles is seen to be faster in response to increase in the values
of said parameters, which makes diffusion of nanoparticles rapid and fast. Therefore, rising curves
show an increase in the concentration of nanoparticles. Moreover, this contribution of Brownian
motion identifies the quick movement of hotter gold particle, from the region of higher temperature
to lower temperature. The thermophoresis forces also bring positive effects on the golden particles
by making the concentration strong against the higher numerical variation in Nt, as is noticeable in
Figure 8. With the same trend of influence, an onward surge of activation energy again gives a rise to
the golden solution. One can see in Figure 9 that the boundary layer thickness of the particles gets
depreciated when Ea is further motivated to transport the required drug or medicine to the desired
target. The Arrhenius equation, which gives the mathematical description of the introduction of
activation energy into any system, clearly reveals that the reduction in heat and acceleration of Ea

returns a low reaction rate constant. In the process, this slows down the chemical reaction and results
in higher concentration of the particles, which confirms the accumulation of gold nanoparticles at the
location of the malign tissue or organ to cured. Finally, the surge in concentration of gold particles is
evidenced by the decline in Figures 10–12. The temperature difference ratio brings a remarkable decline
in concentration of the heated nanoparticles. As the difference between the ambient fluid temperature
and wall temperature widens, the concentration boundary layer thickness expands. This thickness
resists the increase in particle concentration displayed in Figure 10. Similarly, retardation can be
witnessed for reaction rate and fitted rate constant. It can be conceived that the rise in these parameters
and constants sharpens the chemical reaction, which motivates the concentration gradient at the wall
of the inner tube. Hence, a vivid reduction in the concentration of the particles occurs, as is seen in
Figures 11 and 12).
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4.4. Trapping Phenomenon/ Streamline Configuration

Finally, the most significant phenomena relevant to any peristaltic motion in a living organism is
known as “Trapping”. Essentially, this is the appearance of a round closed bolus, which is identified
as the hallow cavity, transporting the required medication to the desired tissues or organs, as shown
in Figures 13–19. In Figures 13 and 14, one can easily notice that the fluids face less resistance when
traveling through the coaxial space, as the contours reduce in size and configuration. In contrast,
the couple stress fluid results in shrinking the streamlines and generates the circulating boluses,
as depicted in Figure 15. Isotherms of the Brownian motion parameter keep binding closer together,
which allows the bolus to expand, as established in Figures 16 and 17, whereas the thermophoresis
parameter provides extra potential for isotherms to compress the bolus inwards. Hence, the bolus
keeps getting smaller. In the last two graphs, contours are sketched in order to see how concentration
is influenced by the reaction rate constant and thermophoresis parameter. One can see in Figure 18 that
the bolus bulges out as the reaction rate constant gets stronger, whereas a reverse trend is observed for
the thermophoresis parameter in Figure 19.
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5. Conclusions

A numerical investigation is carried out for the peristaltic flow of nanofluids between the gap
of two coaxial tubes with different configurations and structures. The nanofluid is composed of gold
particles, while the couple stress fluid serves as the solvent. To enhance the mutual interaction of gold
particles, or the interaction of molecules with the base fluid, additional effects of chemical reaction
and activation energy have also been taken into consideration. The performed study reveals very
informative results. Such results include that axial velocity is fully supported by the couple stress
parameter and Brownian diffusion constant, in contrast to the Grashof number. The temperature of
the nanofluid remains high for both involved parameters, which are thermophoresis and Brownian
motion parameter. Looking at the graphs of concentrations of the metallic particles, it is inferred
that activation energy, thermophoresis, and Brownian motion parameters cause an increase in the
concentration of particles, whereas temperature ratio, reaction rate, and fitted rate constants do not
support the increase. In the final portion of the graphical study, the number and size of the circulating
boluses are depicted. One can easily notice that boluses get enlarged in response to the Brownian
motion parameter, couples stress parameter, and reaction rate constant. However, a reverse trend
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is observed for the Grashof number, thermophoresis parameter, and Brownian diffusion constant.
The key finding can be summarized as:

• Strong buoyant force results in retarded axial velocity for the thermophoresis parameter.
• Peristaltic movement of the outer tube enhances the Brownian motion and raises the temperature

of the nanofluid.
• Activation energy entering the process maximizes the concentration boundary layer thickness.
• The reaction rate constant increases concentration at the catheter, which decreases the

concentration of nanoparticles.
• The thermophoresis parameter shrinks the size of the bolus by strengthening isotherms and closed

paths of concentration lines.
• The couple stress parameter and reaction rate constant give freedom to the bolus to swell by

binding the stream lines closer to each another.
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Nomenclature

V Nanofluid velocity
G Gravitational acceleration
u Radial velocity Component (fixed frame)
w Axial velocity component (Fixed frame)
u∗ Radial velocity component (wave frame)
w∗ Axial velocity component (Wave frame)
u Dimensionless radial velocity component
w Dimensionless lateral velocity component
d Amplitude of peristaltic wave
t Time
kr Rate of reaction
c Propagating velocity of wave
Nt Thermophoresis parameter
k Thermal conductivity
Nb Brownian motion parameter
Gr Grashof number
Dt Thermophoretic diffusion coefficient
Db Brownian motion coefficient
d Amplitude of peristaltic wave
t Time
R2 Dimensionless radius of outer tube
R1 Dimensionless radius of inner tube
P∗ Dimensional pressure
Br Brownian diffusion constant
A∗ Reaction rate constant
E∗ Activation energy (Dimensionless)
Ea Activation energy (Dimensional)
n Fitted rate constant
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Greek Symbols
ξ Radial direction of the flow (Fixed frame)
η Axial direction of the flow (Fixed frame)
ξ∗ Radial direction of the flow (Wave frame)
η∗ Axial direction of the flow (Wave frame)
ξ Radial direction of the flow (Dimensionless)
η Axial direction of the flow (Dimensionless)
ξ1 Radius of inner tube (Dimensional)
ξ2 Radius of outer tube (Dimensional)
→
ϕ Nanoparticle concentration (Fixed frame)
→
ν Nanofluid temperature (Fixed frame)
ϕ∗ Nanoparticle concentration (Wave frame)
ν∗ Nanofluid temperature (Wave frame)
ϕ Nanoparticle concentration (Dimensionless)
ν Nanofluid temperature (Dimensionless)
γ1 Couple stress fluid’s constant
γ Couple stress parameter

τ A ratio defined as
(ρ̃c) f

(ρ̃c)p

β∗ Temperature ratio
ρp Density of nanoparticle at reference temperature
ρ f Density of nanofluid at reference temperature
(ρc) f Heat capacity of base fluid
(ρc)p Heat capacity of particle
µ Dynamic Viscosity
ν Kinematic viscosity
λ Wavelength

α Ratio defined as k
(ρc) f

ε A constant ratio
βT Volumetric coefficient of expansion
ϕw Reference concentration
νw Reference temperature
ϕm Mass concentration
νm Fluid temperature
Subscripts
f Base fluid
p Particle
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