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1. Introduction

In literature, the Fibonacci and Lucas numbers have been studied extensively and some authors
tried to enhance and derive some directions to mathematical calculations using these special
numbers [1–3]. By favour of the Fibonacci and Lucas numbers, one of these directions verges on
the tribonacci and the tribonacci-Lucas numbers. In fact, M. Feinberg in 1963 has introduced the
tribonacci numbers and then derived some properties for these numbers in [4–7]. Elia in [4] has given
and investigated the tribonacci-Lucas numbers. The tribonacci numbers Tn for any integer n > 2 are
defined via the following recurrence relation

Tn = Tn−1 + Tn−2 + Tn−3 , (1)

with the initial values T0 = 0, T1 = 1, and T2 = 1. Similarly, by way of the initial values K0 = 3, K1 = 1,
and K2 = 3, the tribonacci-Lucas numbers Kn are given by the recurrence relation

Kn = Kn−1 + Kn−2 + Kn−3. (2)

By dint of the above extensions, the tribonacci and tribonacci-Lucas numbers are introduced with
the help of the following generating functions, respectively:

∞

∑
n=0

Tntn =
t

1− t− t2 − t3 , (3)

and
∞

∑
n=0

Kntn =
3− 2t− t2

1− t− t2 − t3 . (4)
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Moreover, some authors define a large class of polynomials by using the Fibonacci and the
tribonacci numbers [6–9]. Firstly, the well-known Fibonacci polynomials are defined via the
recurrence relation

Fn+1(x) = xFn(x) + Fn−1(x) ,

with F0(x) = 0, F1(x) = 1. The well-known Lucas polynomials are defined with the help of the
recurrence relation

Ln+1(x) = xLn(x) + Ln−1(x) ,

with L0(x) = 2, L1(x) = x.
Fibonacci or Fibonacci-like polynomials have been studied by many mathematicians for many

years. Recently, in [10], Kim et al. kept in mind the sums of finite products of Fibonacci polynomials
and of Chebyshev polynomials of the second kind and obtained Fourier series expansions of functions
related to them. In [11], Kim et al. studied the convolved Fibonacci numbers by using the generating
functions of them and gave some new identities for the convolved Fibonacci numbers. In [12],
Wang and Zhang studied some sums of powers Fibonacci polynomials and Lucas polynomials. In [13],
Wu and Zhang obtained the several new identities involving the Fibonacci polynomials and Lucas
polynomials.

Afterwards, by giving the Pell and Jacobsthal polynomials, in 1973, Hoggatt and Bicknell [6]
introduced the tribonacci polynomials. The tribonacci polynomials are defined by the recurrence
relation for n ≥ 0,

tn+3(x) = x2tn+2(x) + xtn+1(x) + tn(x) , (5)

where t0(x) = 0, t1(x) = 1, and t2(x) = x2. The tribonacci-Lucas polynomials are defined by the
recurrence relation for n ≥ 0,

kn+3(x) = x2kn+2(x) + xkn+1(x) + kn(x) , (6)

where k0(x) = 3, k1(x) = x2, and k2(x) = x4 +2x, respectively. Here we note that tn(1) = Tn which
is the tribonacci numbers and kn(1) = Kn which is the tribonacci-Lucas numbers. Also for these
polynomials, we have the generating function as follows:

∞

∑
n=0

tn(x)tn =
t

1− x2t− xt2 − t3 , (7)

and
∞

∑
n=0

kn(x)tn =
3− 2x2t− xt2

1− x2t− xt2 − t3 . (8)

On the other hand, some authors try to define the second and third variables of these polynomials
with the help of these numbers. For example [8], for integer n > 2, the recurrence relations of the
trivariate Fibonacci and Lucas polynomials are as follows:

Hn(x, y, z) = xHn−1(x, y, z) + yHn−2(x, y, z) + zHn−3(x, y, z) , (9)

with H0(x, y, z) = 0, H1(x, y, z) = 1, H2(x, y, z) = x and

Kn(x, y, z) = xKn−1(x, y, z) + yKn−2(x, y, z) + zKn−3(x, y, z) , (10)

with K0(x, y, z) = 3, K1(x, y, z) = x, K2(x, y, z) = x2 + 2y, respectively. Also for these, we have the
generating functions as follows:

∞

∑
n=0

Hn(x, y, z)tn =
t

1− xt− yt2 − zt3 , (11)
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and
∞

∑
n=0

Kn(x, y, z)tn =
3− 2xt− yt2

1− xt− yt2 − zt3 . (12)

After that, Ozdemir and Simsek [14] give the family of two-variable polynomials, reducing
some well-known polynomials and obtaining some properties of these polynomials. In light of
these polynomials, we introduce the families of three-variable polynomials with the new generalized
polynomials reduced to the generating functions of the famous polynomials and numbers in literature.
Then, we obtain the explicit representations and partial differential equations for new polynomials.
The special cases of our polynomials are given in tables. Also the last section, we give the interesting
applications of these polynomials.

2. The New Generalized Polynomials: Definitions and Properties

Now, we introduce the original and wide generating functions reduce the well-known
polynomials and the well-known numbers such as the trivariate Fibonacci and Lucas polynomials,
the tribonacci and the tribonacci-Lucas polynomials, the tribonacci and the tribonacci-Lucas numbers,
and so on.

Firstly, some properties of these functions are investigated. Then, in the case of the new generating
function, we give some properties the particular well-known polynomials as tables.

Via the following generating functions, a new original and wide family of three-variable
polynomials denoted by Sj := Sj(x, y, z; k, m, n, c) is defined as follows:

T := M(t; x, y, z; k, m, n, c) =
∞

∑
j=0

Sjtj =
1

1− xkt− ymtm+n − zctm+n+c , (13)

where k, m, n, c ∈ N − {0}, and
∣∣∣xkt + ymtm+n + zctm+n+c

∣∣∣ < 1. Now we derive the explicit
representation for polynomials Sj. By means of Taylor series of the generating function of the right
hand side of (13), we can write

T =
∞

∑
j=0

Sjtj =
∞

∑
j=0

(
xkt + ymtm+n + zctm+n+c

)j
.

After that, using the binomial expansion and taking j + s instead of j, we get

T =
∞

∑
j=0

∞

∑
s=0

(
j + s

s

)(
xkt
)j (

tm+n)s
(ym + zctc)s .

Lastly, using the expansion of (ym + zctc)s , taking u + s instead of s, taking j− (m + n + c)u instead
of j and taking j− (m + n)s instead of j, respectively, we have

T =
∞

∑
j=0

⌊
j

n+m

⌋
∑
s=0

⌊
j−(m+n)s

n+m+c

⌋
∑
u=0

(
j− (n + m− 1)s− (n + m + c− 1)u

s + u

)(
s + u

u

)(
xk
)j−(n+m)(s+u)−cu

zcuymstj.

Thus after the equalization of coefficients of tj, we obtain

Sj =

⌊
j

n+m

⌋
∑

s=0

⌊
j−(m+n)s

n+m+c

⌋
∑

u=0
(j−(n+m−1)s−(n+m+c−1)u

s+u )(s+u
u )
(

xk
)j−(n+m)(s+u)−cu

zcuyms. (14)

Note that for z = 0, our polynomials reduces to the polynomials Equation (4) [14] .
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Remark 1. As a similar to Theorem 2.3 in [14], we can write the following relation

Sj(2x,−1, 0; 1, 1, 1, c) =
j

∑
r=0

Pj−r(x)Pr(x),

where Pr(x) are the Legendre polynomials.

To obtain other wide family of well-known polynomials, we define the second new generating
function for the family of the polynomials Wj := Wj(x, y, z; k, m, n, c) as follows

R := R(t; x, y, z; k, m, n, c) = M(t; x, y, z; k, m, n, c)tn

=
tn

1− xkt− ymtm+n − zctm+n+c

=
∞

∑
j=0

Wjtj, (15)

where k, m, n, c ∈ N− {0}, and
∣∣∣xkt + ymtm+n + zctm+n+c

∣∣∣ < 1. Similarly for z = 0, our polynomials
reduces to the polynomials in (5) in [14]. Now we give some special case. Firstly taking k = m = n =

c = 1 in (15), we give the generating function

t
1− xt− yt2 − zt3 =

∞

∑
j=0

Wj(x, y, z; 1, 1, 1, 1)tj,

where Wj(x, y, z; 1, 1, 1, 1) = Hj(x, y, z), which are trivariate Fibonacci polynomials in (11). Secondly,
writing k = m = n = c = 1 and x → x2, y→ x, z→ 1, we have the generating function

t
1− x2t− xt2 − t3 =

∞

∑
j=0

Wj(x2, x, 1; 1, 1, 1, 1)tj,

where Wj(x2, x, 1; 1, 1, 1, 1) = tj(x) which are the tribonacci polynomials in (7). In the above generating
function, for x = 1, we find the generating function of the tribonacci numbers in (3). Now, we give
other special cases as the following table related to (15).

Now, we define a new family of the polynomials denoted by Kj := Kj(x, y, z; k, m, n, c) via the
generating function

∞

∑
j=0

Kjtj =
α(t; x, y)− β(t; x, y)tn

1− xkt− ymtm+n − zctm+n+c , (16)

where k, m, n, c ∈ N− {0}, α(t; x, y) and β(t; x, y) are arbitrary polynomials depending on t, x, y and∣∣∣xkt + ymtm+n + zctm+n+c
∣∣∣ < 1. Thirdly, via (16), we give

3M(t; x, y, z; 1, 1, 1, 1)− 2xR(t; x, y, z; 1, 1, 1, 1)− ytR(t; x, y, z; 1, 1, 1, 1) = 3−2xt−yt2

1−xt−yt2−zt3

=
∞

∑
j=0

Kj(x, y, z)tj,

where Kj(x, y, z) are the trivariate Lucas polynomials in (12). Due to the last equation, we have the
polynomial representation

3Sj(x, y, z; 1, 1, 1, 1)− 2xWj(x, y, z; 1, 1, 1, 1)− ytWj(x, y, z; 1, 1, 1, 1) = Kj(x, y, z). (17)
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In (17) substituting x → x2, y→ x, z→ 1, we get

3Sj(x2, x, 1; 1, 1, 1, 1)− 2xWj(x2, x, 1; 1, 1, 1, 1)− ytWj(x2, x, 1; 1, 1, 1, 1) = k j(x),

where k j(x) are the tribonacci-Lucas polynomials in (6). In the above representation, for x = 1, we find
the generating function of the tribonacci-Lucas numbers in (4).

Now, we give other special cases as Table 1 and Table 2 related to (15) and (16) respectively.

Table 1. Special cases of Wj.

x y z k m n c Special Case

x y z 1 1 1 1 Trivariate Fibonacci Polynomials [8]
x2 x 1 1 1 1 1 tribonacci Polynomials [8]
x y 0 1 1 1 c Bivariate Fibonacci Polynomials [9]
x 1 0 1 p 1 c Fibonacci p−Polynomials [9]
2x 1 0 1 p 1 c Pell p−Polynomials [9]
x 1 0 1 1 1 c Fibonacci Polynomials [9]
2x 1 0 1 1 1 c Pell Polynomials [9]
1 2y 0 k 1 1 c Jacobsthal Polynomials [9]
3x −2 0 1 1 1 c Fermat Polynomials [15]
x −2 0 1 1 1 c First kind of Fermat–Horadam Polynomials [16]
x −α 0 1 1 1 c Second kind of Dickson Polynomials [17]
x + 2 −1 0 1 1 1 c Morgan–Voyce Polynomials [18]
x + 1 −x 0 1 1 1 c Delannoy Polynomials [19]
h(x) 1 0 1 1 1 c h(x)−Fibonacci Polynomials [2]
p(x) q(x) 0 1 1 1 c (p, q)−Fibonacci Polynomials [15]
1 1 0 k 1 1 c Fibonacci Numbers [9]
2 1 0 1 1 1 c Pell Numbers [9]
1 2 0 k 1 1 c Jacobsthal Numbers [9]

Table 2. Special cases of Kj

α β x y z k m n c Special Case

3 2x + yt x y z 1 1 1 1 Trivariate Lucas Polynomials [8]
3 2x2 + xt x2 x 1 1 1 1 1 tribonacci-Lucas Polynomials [8]
2 xz x y 0 1 1 1 c Bivariate Lucas Polynomials [9]
p + 1 px x 1 0 1 p 1 c Lucas p−Polynomials [9]
0 −1 2x 1 0 1 p 1 c Pell Lucas p−Polynomials [9]
2 x x 1 0 1 1 1 c Lucas Polynomials [9]
2 2x 2x 1 0 1 1 1 c Pell Lucas Polynomials [9]
2 1 1 2y 0 k 1 1 c Jacobsthal Lucas Polynomials [9]
2 3x 3x −2 0 1 1 1 c Fermat Lucas Polynomials [15]
2 x x −2 0 1 1 1 c Second kind of Fermat–Horadam P. [16]
2 x x −α 0 1 1 1 c First kind of Dickson Polynomials [17]
2 x + 2 x + 2 −1 0 1 1 1 c Morgan–Voyce Polynomials [18]
2 x + 1 x + 1 −x 0 1 1 1 c Corona Polynomials [19]
2 h(x) h(x) 1 0 1 1 1 c h(x)−Lucas Polynomials [2]
2 p(x) p(x) q(x) 0 1 1 1 c (p, q)−Lucas Polynomials [15]
2 1 1 1 0 k 1 1 c Lucas Numbers [9]
2 2 2 1 0 1 1 1 c Pell–Lucas Numbers [9]
2 1 1 2 0 k 1 1 c Jacobsthal–Lucas Numbers [9]
t t 2 2 −1 1 1 1 1 Squares of Fibonacci Numbers [1]
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3. Partial Differential Equations for Polynomials in (13)

With the help of the derivatives of these generating functions with regard to some variable and
algebraic arrangements, we derive some partial differential equations for new polynomials. Taking the
derivative with regard to x, y, z, t of the generating function in (13), respectively, they hold

∂

∂x
M = kxk−1tM2, (18)

∂

∂y
M = mym−1tn+m M2, (19)

∂

∂z
M = czc−1tn+m+c M2, (20)

∂

∂t
M =

(
xk + ym(n + m)tn+m−1 + zc(n + m + c)tn+m+c−1

)
M2. (21)

From (13) and (18), we get the following theorem.

Theorem 1. For j ≥ 0, we have the first relation as follows:

∂

∂x
Sj = kxk−1

j−1

∑
l=0

Sj−l−1Sl .

Combining (13) and (19), we have the next theorem.

Theorem 2. For j ≥ m + n, we have the second relation as follows:

∂

∂y
Sj =

j−m−n

∑
l=0

mym−1Sj−m−n−lSl .

With the help of considering (13) and (20), we get the next result.

Theorem 3. For j ≥ m + n + c, we have the third relation as follows:

∂

∂z
Sj = czc−1

j−m−n−c

∑
l=0

Sj−m−n−c−lSl .

Lastly, by means of (13) and (21), we get the following result.

Theorem 4.

(i) For m + n− 1 ≤ j ≤ m + n + c− 1, then we obtain

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl + ym(n + m)
j−m−n+1

∑
l=0

SlSj−m−n−l+1.

(ii) For j ≤ m + n− 1, then we derive

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl .
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(iii) For j ≥ m + n + c− 1, then we get

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl + ym(n + m)
j−m−n+1

∑
l=0

SlSj−m−n−l+1

+ zc(n + m + c)
j−m−n−c+1

∑
l=0

SlSj−m−n−c−l+1.

After that, using the partial differential equations in (18)–(21), we get the new partial differential
equation for Sj.

Theorem 5. For j ≥ 0, we have

jSj =
x
k

∂

∂x
Sj +

(
n + m

m

)
y

∂

∂y
Sj +

(
n + m + c

c

)
z

∂

∂z
Sj.

Proof. Combining (18)–(21), we get

∂

∂t
M− x

kt
∂

∂x
M =

(
n + m

m

)
y
t

∂

∂y
M +

(
n + m + c

c

)
z
t

∂

∂z
M.

In the above, using (13), we get the desired result.

4. Some Applications of Generating Functions

In this section, by using these functions, some identities connected with these polynomials are
derived. Furthermore, in the special case, we show that these identities reduce to the well-known sum
identities connected with the well-known numbers in literature.

Case 1. Taking t = 1
a in (15) for |a| > 1, we get the following equation

∞

∑
j=0

Wj

aj =
am+c

am+n+c − xkam+n+c−1 − ymac − zc . (22)

(i) Substituting a = 2, x → x2, y → x, z → 1 and k = m = n = c = 1 in (22), we obtain the
relation for the tribonacci polynomials as

∞

∑
j=0

tj(x)
2j =

4
7− 4x2 − 2x

. (23)

Writing x = 1 in (23), we have
∞

∑
j=0

Tj

2j = 4 ,

where Tj are the tribonacci numbers.
(ii) Taking a = 10, x → x2, y→ x, z→ 1 and k = m = n = c = 1 in (22), we get

∞

∑
j=0

Tj(x)
10j+2 =

1
999− 100x2 − 10x

, (24)

and writing x = 1 (24), we get for the tribonacci numbers
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∞

∑
j=0

Tj

10j+2 =
1

889
.

(iii) Substituting x → x, y → 1, z → 0, a = 2, and k = m = n = c = 1 into (22), we get for the
Fibonacci polynomials

∞

∑
j=0

Fj(x)
2j =

2
3− 2x

, (25)

which was given in [14]. Then taking x = 1 in (25), we have for Fibonacci numbers

∞

∑
j=0

Fj

2j = 2 ,

which was given in [14].
(iv) Substituting x → x, y → 1, z → 0, a = 3, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
3j+1 =

1
8− 3x

. (26)

Taking x = 1 in (26), we get for the Fibonacci numbers

∞

∑
j=0

Fj

3j+1 =
1
5
=

1
F5

,

was given in page 424 in [1].
(v) Substituting x → x, y → 1, z → 0, a = 8, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
8j+1 =

1
63− 3x

. (27)

Taking x = 1 in (27), we get for the Fibonacci numbers

∞

∑
j=0

Fj

8j+1 =
1

55
=

1
F10

,

was given in page 424 in [1].
(vi) Substituting x → x, y → 1, z → 0, a = −10, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
(−10)j+1 =

1
99 + 10x

. (28)

Taking x = 1 in (28), we get for the Fibonacci numbers

∞

∑
j=0

Fj

(−10)j+1 =
1

109
,

was given in page 427 in [1].
(vii) Substituting x → 2x, y→ 1, z→ 0, a = 3, and k = m = n = c = 1 in (22), we get

∞

∑
j=0

Pj(x)
3j+1 =

1
8− 6x

, (29)
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where Pj(x) are the Pell polynomials. Then taking x = 1 in (29), we have

∞

∑
j=0

Pj

3j+1 =
1
2

,

where Pj are the Pell numbers.
(viii) Substituting x → 1, y→ 2y, z→ 0, a = 3, and k = m = n = c = 1 in (22), we get

∞

∑
s=0

Js(x)
3s+1 =

1
6− 2y

, (30)

where Js(x) are the Jacobsthal polynomials. Then taking y = 1 in (30), we have

∞

∑
s=0

Js

3s+1 =
1
4

,

where Js are the Jacobsthal numbers.

Case 2. Taking t = 1
a in (16) for |a| > 1, we get the following equation

∞

∑
j=0

Kj

aj =
am+n+cα(t; x, y)− am+cβ(t; x, y)

am+n+c − xkam+n+c−1 − ymac − zc . (31)

(i) Substituting x → x2, y → x, z → 1, a = 2, and k = m = n = c = 1, α(t; x, y) = 3,
β(t; x, y) = 2x2 + xt in (31), we get

∞

∑
j=0

k j(x)
2j =

24− 8x4 − 2x2

7− 4x2 − 2x
, (32)

where k j(x) are the tribonacci-Lucas polynomials. Then taking x = 1 in (32), we have

∞

∑
j=0

k j

2j+1 = 7,

where k j(x) are the tribonacci-Lucas numbers.
(ii) Substituting x → x, y→ 1, z→ 0, a = 2, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
2j+1 =

4− x
3− 2x

, (33)

where Lj(x) are the Lucas polynomials. Then taking x = 1 in (33), we have

∞

∑
j=0

Lj

2j+1 = 3,

where Lj are the Lucas numbers.
(iii) Substituting x → x, y→ 1, z→ 0, a = 10, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
10j =

200− 10x
99− 10x

, (34)

where Lj(x) are the Lucas polynomials. Then taking x = 1 in (34), for Lj are the Lucas numbers,
we have
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∞

∑
j=0

Lj

10j+1 =
19
89

=
L6 − L1

F11

was given in page 427 in [1].
(iv) Substituting x → x, y→ 1, z→ 0, a = 3, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
3j+1 =

6− x
8− 3x

, (35)

and taking x = 1 in (35), we have
∞

∑
j=0

Lj

3j+1 = 1.

(v) Substituting x → x, y→ 1, z→ 0, a = 8, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x
in (31), we get

∞

∑
j=0

Lj(x)
8j+1 =

16− x
63− 8x

, (36)

and taking x = 1 in (36), we have

∞

∑
j=0

Lj

8j+1 =
3

11
=

L2

L5
.

(vi) Substituting x → x, y → 1, z → 0, a = −10, and k = m = n = c = 1, α(t; x, y) = 2,
β(t; x, y) = x in (31), we get

∞

∑
j=0

Lj(x)
(−10)j+1 =

−20− x
99 + 10x

. (37)

Taking x = 1 in (37), we have
∞

∑
j=0

Lj

(−10)j+1 =
−21
109

,

was given in page 427 in [1].
(vii) Substituting x → 2x, y→ 1, z→ 0, a = 5, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = 2x

in (31), we get
∞

∑
j=0

Qj(x)
5j+1 =

5− x
12− 5x

, (38)

where Qj(x) are the Pell Lucas polynomials. Then taking x = 1 in (38), we have

∞

∑
j=0

Qj

5j+1 =
4
7

,

where Qj are the Pell Lucas numbers.
(viii) Substituting x → 1, y→ 2y, z→ 0, a = 3, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = 1

in (31), we get
∞

∑
s=0

js(y)
3s+1 =

5
6− 2y

, (39)

where js(y) are the Jocabsthal Lucas polynomials. Then taking y = 1 in (39), we have
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∞

∑
s=0

js
3s+1 =

5
4

,

where js is Jocabsthal Lucas number.
(ix) Substituting x → 2, y→ 2, z→ −1, a = 4, and k = m = n = c = 1, α(t; x, y) = t, β(t; x, y) = t

in (31), for the square of Fibonacci numbers Fj, we get

∞

∑
j=0

F2
j

4j =
12
25

,

was given in page 439 in [1].

Let us give Tables 3 and 4 containing the obtained formulas for simplify reading.

Table 3. Special cases of Equation (22) for k = m = n = c = 1.

a x y z Formulas

2 x2 x 1
∞
∑

j=0

tj(x)
2j = 4

7−4x2−2x

2 1 1 1
∞
∑

j=0

Tj

2j = 4

10 x2 x 1
∞
∑

j=0

Tj(x)
10j+2 = 1

999−100x2−10x

10 1 1 1
∞
∑

j=0

Tj

10j+2 = 1
889

2 x 1 0
∞
∑

j=0

Fj(x)
2j = 2

3−2x

2 1 1 0
∞
∑

j=0

Fj

2j = 2

3 x 1 0
∞
∑

j=0

Fj(x)
3j+1 = 1

8−3x

3 1 1 0
∞
∑

j=0

Fj

3j+1 = 1
5 = 1

F5

8 x 1 0
∞
∑

j=0

Fj(x)
8j+1 = 1

63−3x

8 1 1 0
∞
∑

j=0

Fj

8j+1 = 1
55 = 1

F10

−10 x 1 0
∞
∑

j=0

Fj(x)
(−10)j+1 = 1

99+10x

−10 1 1 0
∞
∑

j=0

Fj

(−10)j+1 = 1
109

3 2x 1 0
∞
∑

j=0

Pj(x)
3j+1 = 1

8−6x

3 2 1 0
∞
∑

j=0

Pj

3j+1 = 1
2

3 1 2y 0
∞
∑

s=0

Js(x)
3s+1 = 1

6−2y

3 1 2 0
∞
∑

s=0

Js
3s+1 = 1

4
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Table 4. Special cases of Equation (31) for k = m = n = c = 1.

a x y z α β Formulas

2 x2 x 1 3 2x2 + xt
∞
∑

j=0

k j(x)
2j = 24−8x4−2x2

7−4x2−2x

2 1 1 1 3 2 + t
∞
∑

j=0

k j

2j+1 = 7

2 x 1 0 2 x
∞
∑

j=0

Lj(x)
2j+1 = 4−x

3−2x

2 1 1 0 2 1
∞
∑

j=0

Lj

2j+1 = 3

10 x 1 0 2 x
∞
∑

j=0

Lj(x)
10j = 200−10x

99−10x

10 1 1 0 2 1
∞
∑

j=0

Lj

10j+1 = 19
89 = L6−L1

F11

3 x 1 0 2 x
∞
∑

j=0

Lj(x)
3j+1 = 6−x

8−3x

3 1 1 0 2 1
∞
∑

j=0

Lj

3j+1 = 1

8 x 1 0 2 x
∞
∑

j=0

Lj(x)
8j+1 = 16−x

63−8x

8 1 1 0 2 1
∞
∑

j=0

Lj

8j+1 = 3
11 = L2

L5

−10 x 1 0 2 x
∞
∑

j=0

Lj(x)
(−10)j+1 = −20−x

99+10x

−10 1 1 0 2 1
∞
∑

j=0

Lj

(−10)j+1 = −21
109

5 2x 1 0 2 2x
∞
∑

j=0

Qj(x)
5j+1 = 5−x

12−5x

5 2 1 0 2 2
∞
∑

j=0

Qj

5j+1 = 4
7

3 1 2y 0 2 1
∞
∑

s=0

js(y)
3s+1 = 5

6−2y

3 1 2 0 2 1
∞
∑

s=0

js
3s+1 = 5

4

4 2 2 −1 1/4 1/4
∞
∑

j=0

F2
j

4j = 12
25

5. Conclusions

In the present paper, we considered the families of three-variable polynomials with the generalized
polynomials reduce to generating function of the polynomials and numbers in the literature.
In Section 2, we gave special polynomials and numbers as the tables related to (15) and (16). Then we
obtained the explicit representations and partial differential equations for new polynomials. In the last
section, we gave the interesting sum identities related to the well-known numbers and polynomials in
the literature.

For all of the resuts, if the appropriate values given in the tables are taken, many infinite sums
including various polynomials are obtained.

In recent years, some authors use the well-known polynomials and numbers in the applications of
ordinary and fractional differential equations and difference equations (for example [20–23]). Therefore,
our new families of three variables polynomials could been used for future works of some application
areas such as mathematical modelling, physics, engineering, and applied sciences.
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