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Abstract: In this paper we investigate an implementation of new model order reduction techniques to
linear time-invariant discrete-time commensurate fractional-order state space systems to obtain lower
dimensional fractional-order models. Since the models of physical systems correctly approximate the
physical phenomena of the modeled systems for restricted time and frequency ranges only, a special
attention is given to time- and frequency-limited balanced truncation and frequency-weighted methods.
Mathematical formulas for calculation of the time- and frequency-limited, as well as frequency-weighted
controllability and observability Gramians, are extended to fractional-order systems. An instructive
simulation experiment corroborates the potential of the introduced methodology.

Keywords: fractional-order system; model order reduction; controllability and observability Gramians

1. Introduction

In the field of modeling and simulation of fractional-order systems there are two different
approaches to application of model order reduction (MOR) techniques: (1) Approximation of
fractional-order systems by high integer-order models and their reduction to the low integer-order
ones, and (2) reduction of the fractional-order systems without changing the class of the model, i.e.,
the reduced model is also the fractional-order one.

The first approach can be implemented by either determination of the fractional-order
derivative/difference approximators involved in a fractional-order system [1,2] or by selection of
integer-order approximators to the whole fractional-order systems [3–8]. In both approaches, a very
high integer-order model is usually obtained, which is not effective from the computational point of
view due to large memory requirements and long simulation times. For these reasons, classical model
reduction techniques can be used to reduce integer-order model dimensions [8–10]. Therefore, the term
MOR for fractional-order systems is usually related to order reduction of integer-order approximators
to fractional-order systems.

This paper tackles the issue of MOR for commensurate fractional-order systems where a final
result of using the MOR technique is the fractional-order model of lower dimensions. This issue
has not been systematically studied and only a few approaches for reduction of continuous-time
fractional-order systems have been published [11–14].

The classical Balanced Truncation (BT) method introduced for classical integer-order systems has
been extended to discrete-time fractional-order systems [15]. The reduction paradigms used by the BT
method enforce an accurate approximation for the whole range of frequencies. However, models of
physical systems, e.g., models for mechanical, electrical and biological systems, characterize a certain
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adequacy scope, determined by the frequency range, for which the models correctly approximate the
physical phenomena of the modeled systems. Likewise, when the reduced model is used to carry out
a simulation in the determined time interval, an appropriate approximation accuracy of the output
signal y(t) is required only for t lower than a specified final time of simulation. For these reasons,
the reduction aims to determine such a reduced model which is particularly accurate in the given
frequency range [ωmin, ωmax] and/or time interval [tmin, tmax]. Such an approach allows for larger
errors outside these specified intervals, without negative impact on the usefulness of the obtained
reduced model. The time and frequency boundaries can be applied either by using frequency- and
time-limited controllability and observability Gramians [16–19] or by frequency-weighted functions
connected to the model which are the subject to the reduction process [20–26]. In this paper, we focus on
the generalization of such approaches to reduction and an accurate approximation in given frequency
and time intervals for the discrete-time commensurate fractional-order systems.

The remainder of this paper is structured as follows. A description of fractional-order state space
systems considered in the paper is introduced in Section 2. Section 3 includes fundamentals of the MOR
concept, in particular for the BT method. Section 4 contains the main result of the paper concerning
definitions of controllability and observability Gramians in the time- and frequency-domains for
fractional-order systems. Numerical examples of Section 5 illustrate the use of the introduced Gramians
in the model reduction process. The paper is completed with the conclusion section.

2. System Representation

Consider a linear discrete-time commensurate fractional-order (DTCFO) state space system
G = {A f , B, C, D} described by

∆αx(k + 1) = A f x(k) + Bu(k), x(0) = x0

y(k) = Cx(k) + Du(k)
(1)

where k = 0, 1, . . . , is the discrete time, x(k) ∈ <n is the state vector, u(k) and y(k) are the input
and output signals, respectively. Matrices A f ∈ <n×n, B ∈ <n×nu , C ∈ <ny×n, D ∈ <ny×nu

describe the system properties, with nu and ny being the numbers of inputs and outputs, respectively.
∆αx(k + 1) defines the fractional-order difference of order α ∈ (0, 2) which can be represented by the
Grünwald-Letnikov fractional difference ([27], ch. 3.5)

∆αx(k + 1) =
k+1

∑
j=0

(−1)j
(

α

j

)
x(k− j + 1) k = 0, 1, . . . (2)

with (
α

j

)
=

{
1 j = 0

α(α−1)...(α−j+1)
j! j > 0

Assuming the zero initial condition, that is ∆αx(0) = 0, the Z-transform of the system (1) is
given by

w(z)X(z) = A f X(z) + BU(z)

Y(z) = CX(z) + DU(z)
(3)

where w(z) is the Z-transform of the “forward-shifted” fractional-order difference

w(z) = z(1− z−1)α =
k+1

∑
j=0

(−1)j
(

α

j

)
z−j+1 (4)
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Remark 1. The above formulation can be extended to discretized models of continuous time systems. In the case
of use of the forward-shifted Euler discretization operator ([27], ch. 3.5) we have

sα ≈ 1
hα

w(z) (5)

where sα is the Laplace transform of the fractional-order derivative and h is the sampling period. Discretized
models of continuous-time fractional-order systems

∆αx(t + h) = hα Ā f x(t) + hα B̄u(t), x(0) = x0

y(t) = Cx(t) + Du(t)
(6)

where t = kh, can simply be transferred to the system (1) by using the following substitutions

A f → hα Ā f B→ hα B̄ (7)

Implementation of the Grünwald–Letnikov difference (2) results in increasing computational
burden at each time step, which finally becomes computationally infeasible. Therefore, in practical
implementations, finite-length expansions are used, for instance finite fractional difference [6,8] ([28], ch. 7)

∆αx(k + 1) ≈
L

∑
j=0

(−1)j
(

α

j

)
x(k− j + 1) k = 0, 1, . . . (8)

with x(l) = 0 ∀ l < 0 and L being the implementation length.
It is worth emphasizing that precise approximation of the Grünwald–Letnikov difference with

the finite fractional difference needs a very high length L [6].

3. Model Order Reduction

Let us shift now to the MOR problem for the DTCFO system (1). The fractional-order MOR issue
aims towards finding a DTCFO model G̃ with reduced dimension r < n

∆α x̃(k + 1) = Ã f x̃(k) + B̃u(k), x̃(0) = x̃0

ỹ(k) = C̃x̃(k) + D̃u(k)
(9)

where Ã f ∈ <r×r, B̃ ∈ <r×nu , C̃ ∈ <ny×r, D̃ ∈ <ny×nu , x̃(k) ∈ <r are such that the approximation
errors both in the time domain ‖y(k)− ỹ(k)‖ and in the frequency domain ‖G(z)− G̃(z)‖ are small
for the chosen norm ‖ · ‖.

In this paper, we concentrate on the BT technique, which is based on the concept of the balanced
model realization [29,30], ([31], ch. 7.1). In order to arrive at the balanced system, the linear state
transformation x → Tx is applied to diagonalize the controllability P and observability Q Gramians of
the system

TPTT = (TT)−1QT−1 = diag (σ1, . . . , σn) (10)

where σi, i = 1, ..., n, are the square roots of the eigenvalues for the product of P and Q, which are
called the Hankel singular values (HSV). The magnitude of HSV classifies a degree of reachability and
observability of states in the system. On this basis, reduction eliminates states corresponding to small
values σi, which means that they have a weak impact on the system properties. The balanced model is
obtained by applying transformation matrices in the following way:

TA f T−1 =

[
Ã f Ã12

Ã21 Ã22

]
, TB =

[
B̃
B̃2

]
, CT−1 =

[
C̃ C̃2

]
, D̃ = D (11)
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The order r can be selected on the basis of an approximation error of the reduced system. For the
BT method, theH∞ norm of the approximation error is upper bounded as follows [30], ([31], ch. 7.2):

∥∥G(z)− G̃(z)
∥∥
H∞
≤ 2

n

∑
j=r+1

σj (12)

Calculation of the transformation matrix T is not a unique operation. The exemplary algorithms
can be found in References [23,30] ([31], ch. 7.3), [32].

The BT reduction method enforces an accurate approximation for all times t ∈ (0, ∞) and
frequencies ω ∈ <. If it is necessary to determine a model (9) which is particularly accurate in a
given frequency range [ωmin, ωmax] and/or time interval [kmin, kmax], then frequency- or time-limited
controllability and observability Gramians can be used to calculate the transformation matrix T instead
of infinite ones. Higher model accuracy can be obtained now, especially when the optimal values of
the parameters of the weighting functions and frequency-/time-intervals are used [33].

4. Controllability and Observability Gramians for Discrete-Time Fractional-Order Systems

In this section, the definitions of controllability and observability Gramians both in the time-
and frequency-domains are recalled. Based on the definitions for integer-order systems, the Gramian
generalizations to fractional-order systems are derived here.

4.1. Gramians in the Time Domain

The definition of the controllability Gramian is connected to the minimal energy required for
the transfer of the system from the zero initial state x(0) = 0 to the final state x(k) = xp, whereas
the observability Gramian is defined with relation to the energy generated by the nonzero initial
state x(0) = x0 with the zero input signal u(k) = 0. For asymptotically stable systems, the infinite
controllability and observability Gramians are respectively defined as

P =
∞

∑
k=0

ξ(k)ξT(k), Q =
∞

∑
k=0

ηT(k)η(k) (13)

where ξ(k) is the state of the discrete-time system resulting from the input in the form of the Kronecker
delta, and η(k) is the output of the system produced by the nonzero initial conditions and the zero
input signal.

For asymptotically stable integer-order systems, we obtain the well-known formulas for the
controllability and observability Gramians, respectively:

P =
∞

∑
i=0

AiBBT
(

AT
)i

, Q =
∞

∑
i=0

(
AT
)i

CTCAi (14)

where A = A f + I. Finally, the Gramians P and Q are the solutions to the discrete-time Lyapunov
equations, respectively, are

APAT − P = −BBT , ATQA−Q = −CTC. (15)

Based on definitions (13), it is easy to formulate the generalized form of the controllability and
observability Gramians for the fractional-order systems.
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Lemma 1. Consider an asymptotically stable discrete-time commensurate fractional-order state space system (1),
with the Grünwald–Letnikov fractional-order difference (2). Then the controllability and observability Gramians
at finite time kL < ∞ are as follows

P(kL) =
kL

∑
k=1

φ(k− 1)BBTφT(k− 1), Q(kL) =
kL

∑
k=0

φT(k) CTC φ(k) (16)

where φ(k), k = 0, 1, ..., are calculated as

φ(k) =


I k = 0

(A f + αI)φ(k− 1)−
k
∑

j=2
(−1)j(α

j)φ(k− j) k > 0

Proof. The state space equations of the system as in Equation (1) can be rewritten as ([27], ch. 3.5)

x(k + 1) = (A f + αI)x(k)−
k+1

∑
i=2

(−1)i
(

α

i

)
x(k + 1− i) + Bu(k)

y(k) = Cx(k) + Du(k)

(17)

The state response for the DTCFO system (17), with the zero initial condition and the Kronecker
delta input signal, is as follows:

ξ(k) =


0 k = 0
B k = 1

(A f + αI)ξ(k− 1)−
k
∑

j=2
(−1)j(α

j)ξ(k− j) k > 1
(18)

The output response for the DTCFO system (17), with the nonzero initial condition x(0) = x0 and
the zero input signal, is now

y(k) = η(k)x(0) (19)

where

η(k) =


C k = 0

C

(
(A f + αI)x(k− 1)−

k
∑

j=2
(−1)j(α

j)x(k− j))

)
k > 0

(20)

The responses (18) and (20) immediately result in Equation (16), which completes the proof.

Remark 2. As mentioned before, both the minimal energy required for the transfer of the system from the
zero initial state to x(k) = xp and the energy generated by the nonzero initial state are obtained for kL → ∞.
Implementation of Equation (16) in order to calculate controllability and observability Gramians implies the
infinite number of elements φ(k). Furthermore each of φ(k) requires the determination of the Grünwald–Letnikov
difference calculated from 0 to k + 1, which is computationally infeasible. Therefore, in contrast to integer-order
systems for which the solution of Equation (13) can be determined by solving Lyapunov Equation (15),
the Gramians for the fractional-order systems can be calculated for the finite length only.

If the response of the reduced model (9) is expected to match the original fractional-order model (1)
in some interval [k1, k2], then the balancing of the model can be executed on the basis of the Gramians
calculated within this restricted time interval. As the controllability and observability Gramians for
the asymptotically stable systems are positive definite, then it can be shown that

P(k2) ≥ P(k1) Q(k2) ≥ Q(k1) for k2 ≥ k1 (21)
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Therefore, the time-limited Gramians are also positive definite, and within the restricted time
interval [k1, k2] they can be calculated as follows:

P(k1, k2) = P(k2)− P(k1), Q(k1, k2) = Q(k2)−Q(k1) (22)

where P(k) and Q(k) are given from Equation (16).

4.2. Gramians in the Frequency Domain

In addition to the definition (13) given in the time domain, the Gramians can also be expressed
in the frequency domain. The connection can be made on the basis of the Plancherel’s theorem,
which states that the integral of the inner product of two functions in the time domain is equal to
the integral of their frequency spectrum. In particular, for the asymptotically stable discrete-time
integer-order systems, applying the Plancherel’s theorem to Equation (14) yields ([31], ch. 4.3)

P =
1

2π

∫ 2π

0

(
ejθ I − A

)−1
BBT

(
(e−jθ I − AT

)−1
dθ

Q =
1

2π

∫ 2π

0

(
e−jθ I − AT

)−1
CTC

(
ejθ I − A

)−1
dθ

(23)

Based on definitions (23), it is easy to formulate the generalized form of the controllability and
observability Gramians for the fractional-order systems.

Lemma 2. Consider an asymptotically stable discrete-time commensurate fractional-order state space system (1),
with the Grünwald–Letnikov fractional-order difference (2). Then the infinite controllability and observability
Gramians of the fractional-order system are respectively given as

P =
1

2π

∫ +π

−π

(
w(z) I − A f

)−1
BBT

(
w∗(z) I − AT

f

)−1
dθ

Q =
1

2π

∫ +π

−π

(
w∗(z) I − AT

f

)−1
CTC

(
w(z) I − A f

)−1
dθ

(24)

where w(z) is as in Equation (4), with z = eiθ , θ ∈ [−π, π], and ∗ denotes the complex conjugate transpose.

Proof. For continuous-time fractional-order systems referred to in Remark 1, the input-to-state map
becomes (sα I − Ā f )

−1B̄, while the state-to-output map is C(sα I − Ā f )
−1. Then the controllability and

observability Gramians are as follows:

P =
1

2π

∫ ∞

−∞

(
sα I − Ā f

)−1
B̄B̄T

(
(sα)∗ I − ĀT

f

)−1
dω

Q =
1

2π

∫ ∞

−∞

(
(sα)∗ I − ĀT

f

)−1
CTC

(
sα I − Ā f

)−1
dω

(25)

where s = iω, ω ∈ (−∞, ∞). Using the forward-shifted Euler discretization operator as referred to in
Remark 1 results immediately in (24), which completes the proof.

If the response of the reduced model is expected to match the full fractional-order model
output within a restricted frequency range, then the balancing of the model can be executed on
the basis of the Gramians calculated for that specific interval. Similarly, as for time-limited Gramians,
the frequency-limited Gramians in restricted frequency interval [Θ1, Θ2] can be calculated as follows:

P(Θ1, Θ2) = P(Θ2)− P(Θ1), Q(Θ1, Θ2) = Q(Θ2)−Q(Θ1) (26)
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where P(Θ) and Q(Θ) are given as

P(Θ) =
1

2π

∫ +Θ

−Θ

(
w(z) I − A f

)−1
BBT

(
w∗(z)I − AT

f

)−1
dθ

Q(Θ) =
1

2π

∫ +Θ

−Θ

(
w∗(z) I − AT

f

)−1
CTC

(
w(z)I − A f

)−1
dθ

(27)

4.3. Frequency Weighted Gramians

The required approximation accuracy in the given frequency interval [Θ1, Θ2] can also be
achieved by implementation of the frequency weighting functions in a form of the external systems
connected to the inputs and/or outputs of the full fractional-order model ([31], ch. 7.6). Such an
approach, called Frequency Weighted (FW) method, is a generalization to the BT method designed for
asymptotically stable models with asymptotically stable input and output weighting functions with
minimal realizations.

Consider an asymptotically stable discrete-time integer- or fractional-order LTI MIMO state space
system as an input weighting function Hi = {Ai, Bi, Ci, Di}

∆αi xi(k + 1) = Aixi(k) + Biui(k),

yi(k) = Cixi(k) + Diui(k)
(28)

and as an output weighting function Ho = {Ao, Bo, Co, Do}

∆αo xo(k + 1) = Aoxo(k) + Bouo(k),

yo(k) = Coxo(k) + Douo(k)
(29)

of orders ni and no, respectively. Assuming that no pole-zero cancellations occur during the design of
the augmented systems GHi and HoG, we arrive at [22,25], ([31], ch. 7.6)

GHi =

[
Ãi B̃i

C̃i D̃i

]
=

 A f BCi
0 Ai

BDi
Bi

C DCi DDi


HoG =

[
Ão B̃o

C̃o D̃o

]
=

 A f 0
BoC Ao

B
BoD

DoC Co DoD


(30)

It is well known that the frequency weighted controllability and observability Gramians are
computed on the basis of the system connected to the input weight GHi and to the output weight
HoG, respectively.

Lemma 3. Consider asymptotically stable augmented systems GHi and HoG as in Equation (30) consisting
of asymptotically stable discrete-time commensurate fractional-order state space system (1), with the
Grünwald–Letnikov fractional-order difference (2) and the weighting functions as in Equations (28) and (29).
The controllability and observability Gramians of such systems at finite time kL < ∞ are as follows:

Pi(kL) =
kL

∑
k=1

φi(k− 1) B̃i B̃T
i φT

i (k− 1), Qo(kL) =
kL

∑
k=0

φT
o(k) C̃T

o C̃o φo(k) (31)
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where φi(k), φo(k), k = 0, 1, ..., are calculated in a recurrent way:

φi(k) =


I k = 0(

Ãi + α̃i
)

φi(k− 1)−
k
∑

j=2
ψi(j)φi(k− j) k > 0

φo(k) =


I k = 0(

Ão + α̃o
)

φo(k− 1)−
k
∑

j=2
ψo(j)φo(k− j) k > 0

with α̃i = diag(α, . . . , α︸ ︷︷ ︸
n

, αi, . . . , αi︸ ︷︷ ︸
ni

), α̃o = diag(α, . . . , α︸ ︷︷ ︸
n

, αo, . . . , αo︸ ︷︷ ︸
no

) and

ψi(j) = (−1)jdiag


(

α

j

)
, . . . ,

(
α

j

)
︸ ︷︷ ︸

n

,
(

αi
j

)
, . . . ,

(
αi
j

)
︸ ︷︷ ︸

ni



ψo(j) = (−1)jdiag


(

α

j

)
, . . . ,

(
α

j

)
︸ ︷︷ ︸

n

,
(

αo

j

)
, . . . ,

(
αo

j

)
︸ ︷︷ ︸

no


Proof. The proof directly stems from proof for Lemma 1 with substitution of the system matrices by
the matrices of the augmented systems GHi and HoG.

Note that the application of the weighting functions influences the order of the controllability
Pi and observability Qo Gramians for the augmented systems. Therefore, they are partitioned into
two-by-two blocks, so that the dimension of the P11 ∈ <n×n and Q11 ∈ <n×n are the same as the state
matrix A f

Pi =

[
P11 P12

PT
12 P22

]
, Qo =

[
Q11 Q12

QT
12 Q22

]
(32)

Finally, the frequency-weighted controllability P̃ and observability Q̃ Gramians of dimensions
n× n can be assumed as [20]

P̃ = P11, Q̃ = Q11 (33)

The proposed solution, despite its simplicity, may lead to the instability of the reduced model in
case of two-sided weighting. Therefore, several modifications to this approach have been proposed to
cope with this problem [21–25].

The frequency-weighted Gramians as in Equation (33) can also be defined in the frequency
domain. Given that the input-to-state map and the state-to-output map of the fractional-order system
are modified by the connected weighting functions, it is possible to generalize the definitions of the
infinite controllability and observability Gramians for the fractional-order system (Lemma 2) to the
frequency-weighted Gramians.

Lemma 4. Consider asymptotically stable augmented systems GHi and HoG as in Equation (30), consisting
of asymptotically stable discrete-time commensurate fractional-order state space system (1), with the
Grünwald–Letnikov fractional-order difference (2) and the weighting functions as in Equations (28) and (29).
Then the frequency-weighted controllability P̃ and observability Q̃ Gramians are defined as



Symmetry 2019, 11, 258 9 of 15

P̃ =
1

2π

∫ π

−π

(
w(z)I − A f

)−1
B Hi(wi(z)) HT

i (w∗i (z)) BT
(

w∗(z)I − AT
f

)−1
dθ

Q̃ =
1

2π

∫ π

−π

(
w∗(z)I − AT

f

)−1
CT HT

o (w
∗
o (z)) Ho(wo(z)) C

(
w(z)I − A f

)−1
dθ

(34)

where Hi(wi(z)) = Di + Ci(wi(z)I − Ai)
−1Bi, Ho(wo(z)) = Do + Co(wo(z)I − Ao)−1Bo and

w(z) = z(1− z−1)α, wi(z) = z(1− z−1)αi , wo(z) = z(1− z−1)αo , with z = eiθ , θ ∈ [−π, π].

Proof. Given that the input-to-state map for the augmented system GHi and the
state-to-output map for HoG become

(
w̃i(z)− Ãi

)−1 B̃i and C̃o
(
w̃o(z)− Ão

)−1, where

w̃i(z)=diag

w(z), . . . , w(z)︸ ︷︷ ︸
n

, wi(z), . . . , wi(z)︸ ︷︷ ︸
ni

 and w̃o(z)=diag

w(z), . . . , w(z)︸ ︷︷ ︸
n

, wo(z), . . . , wo(z)︸ ︷︷ ︸
no

,

respectively. The P̃ and Q̃ are the submatrices of the Gramians for the augmented systems (32)
partitioned into two-by-two blocks. Therefore, the proof for the frequency-weighted controllability
Gramian follows by noticing that

(
I 0

)([ w(z)I 0
0 wi(z)I

]
−
[

A f BCi
0 Ai

])−1 [
BDi
Bi

]
=

(
I 0

) [ w(z)I − A f −BCi
0 wi(z)I − Ai

]−1 [
BDi
Bi

]
=

(
I 0

) [ (w(z)I − A f )
−1 (w(z)I − A f )

−1BCi(wi(z)I − Ai)
−1

0 (wi(z)I − Ai)
−1

] [
BDi
Bi

]
=

(w(z)I − A f )
−1B(Di + Ci(wi(z)I − Ai)

−1Bi) = (w(z)I − A f )
−1BHi(wi(z))

while for the frequency-weighted observability Gramian,

[
DoC Co

] ([ w(z)I 0
0 wo(z)I

]
−
[

A f 0
BoC Ao

])−1(
I
0

)
=

[
DoC Co

] [ w(z)I − A f 0
−BoC wo(z)I − Ao

]−1(
I
0

)
=

[
DoC Co

] [ (w(z)I − A f )
−1 0

(wo(z)I − Ao)−1BoC(w(z)I − A f )
−1 (wo(z)I − Ao)−1

](
I
0

)
=

(Do + Co(wo(z)I − Ao)
−1Bo)(w(z)I − A f )

−1B = Ho(wo(z))(w(z)I − A f )
−1B

Therefore, the frequency-weighted Gramians are the blocks P11 and Q11 of the controllability Pi and
observability Qo Gramians for the augmented systems, respectively, which completes the proof.

Remark 3. It is important to note that Lemmas 1 to 4 introduce various definitions of controllability and
observability Gramians. However, the calculations of the Gramians directly from the above definitions for
large-scale DTCFO systems are computationally demanding. In particular, time-domain Gramian definitions
as in Lemma 1 and 3 are infeasible for large-scale systems due to the requirement of calculation of the
Grünwald–Letnikov difference from 0 to k+ 1. The common practice for integer order systems when nu, ny << n
is to compute low-rank approximations of the Gramians such that P ≈ SYST with S ∈ <n×l , Y ∈ <l×l ,
l << n. It is motivated by the typical rapid decay of HSV [34,35], which can also be assumed for fractional-order
systems. There exists various algorithms for calculating the low-rank Gramian factorizations for integer-order
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systems [17,19,35,36]. Therefore, future works will be carried out towards the extension of the low-rank approach
to increase the efficiency of Gramians calculations for DTCFO systems.

5. Simulation Examples

In this section, examples of model order reduction for a fractional-order system are presented.
All reduced models were obtained by using the BT method with the Gramians calculated within various
time- and frequency-intervals, as well as with different frequency-weighted functions. In particular,
to calculate transformation matrix T the following Gramians are selected: (1) indefinite Gramians
defined in the frequency domain as in Equation (24) - denoted as the BT, (2) frequency-limited
Gramians as in Equation (26), denoted as the FLBT, (3) time-limited Gramians as in Equation (16),
denoted as the TLBT, (4) frequency-weighted Gramians as in Equation (34), denoted as the FW.
The examined discrete-time fractional-order model is an extension of the continuous-time model for
a simple mechanical system presented in [16] and (moderate) large-scale dynamical system of order
1006 as in [36].

Example 1. Consider the DTCFO state space system (6) with the sampling period h = 0.01, fractional order
α = 0.85 and

[
Ā f B̄
C D

]
=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−5.4545 4.5455 0 −0.0545 0.0455 0 0.0909
10 −21 11 0.1 −0.21 0.11 0.4
0 5.5 −6.5 0 0.055 −0.065 −0.5
2 −2 3 0 0 0 0


Model order reduction is performed from the original six states variables to the reduced four ones. Frequency

responses for the full fractional-order system and the reduced models in addition to approximation errors are
depicted in Figure 1. Figure 2 shows step responses and their approximation errors for the same models. It is
clearly visible that the reduction based on infinite and time-limited Gramians for the time interval t ∈ [0, 10] (s)
cannot properly approximate the low-frequency properties of the system. For this reason, in order to improve
the approximation for low frequencies, the frequency-interval for frequency-limited Gramians is chosen as
Θ ∈ [0, 0.01] (rad/s). For the same purpose, the low-pass Butterworth filter of order n f = 5 and cut-off
frequency ω f = 0.01 (rad/s) is selected as a frequency weighted function. Table 1 presents approximation
errors for the considered models, where DCE is the steady state approximation error, MSEω is the mean square
approximation error for the frequency responses in the frequency range ω ∈ [10−3, 1] (rad/s),H∞ is the norm
approximation error and MSEt is the mean square error for system step response in the discrete-time range
t ∈ [0, 100] (s).

Figure 3 presents frequency responses and approximation errors for the reduced models obtained in order
to improve the quality of approximation for high frequencies. In particular, the third resonance frequency
ω = 6.5 (rad/s) is considered. Figure 4 shows the impulse responses and their approximation errors for the same
models. For this purpose, the time interval t ∈ [0, 0.1] (s) and frequency interval Θ ∈ [0.1, 100π] (rad/s) are
selected for time- and frequency-limited Gramians. Similarly, the frequency weighted function is chosen in a
form of a high-pass Butterworth filter of order n f = 5 and cut-off frequency ω f = 0.1 (rad/s). Table 2 presents
approximation errors for the analyzed models, in terms of MSEω for ω > 3 (rad/s),H∞-norm and MSEt for
system impulse responses within t ∈ [0, 1] (s).
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Figure 1. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.

Figure 2. (left) Step responses for full- and reduced-order models and (right) approximation errors.
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Figure 3. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.
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Table 1. Frequency and step approximation errors for the reduced models.

DCE MSEω H∞ MSEt

BT 22.2× 10−3 4.58× 10−4 53.0× 10−3 4.62× 10−4

FLBT 1.88× 10−5 2.68× 10−10 88.8× 10−3 6.37× 10−6

TLBT 28.1× 10−3 7.33× 10−4 54.9× 10−3 7.40× 10−4

FW 4.52× 10−5 1.42× 10−9 83.7× 10−3 5.60× 10−6
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time (s)
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0

1

Im
pu
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e 
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Figure 4. (left) Impulse responses for full- and reduced-order models and (right) approximation errors.

Table 2. Frequency and impulse approximation errors for the reduced models.

MSEω H∞ MSEt

BT 2.54× 10−4 0.053 9.21× 10−8

FLBT 3.46× 10−5 0.538 3.23× 10−8

TLBT 3.68× 10−5 0.385 5.05× 10−14

FW 4.31× 10−5 0.539 2.24× 10−8

Example 2. Consider the system as in reference [36] with fractional-order α = 0.95 which is discretized using
the sampling period h = 0.002. The calculation of controllability and observability Gramians in the time domain
is very computationally demanding for systems of order n = 1006 . Therefore, the reduced models obtained by
using only the BT, FLBT and FW methods are compared. All reduced models are of order r = 6. Frequency
responses for the full fractional-order system and the reduced models as well as approximation errors are presented
in Figure 5. Like in Example 1, it is clearly visible that the reduction based on the infinite Gramians cannot
properly approximate the low-frequency properties of the system. For this reason, the frequency-interval for
frequency-limited Gramians and frequency weighting functions are chosen the same as in Example 1. In Table 3,
approximation errors are listed for the analyzed models, in terms of DCE, MSEω andH∞-norm.

Table 3. Frequency and step approximation errors for the reduced models.

DCE MSEω H∞

BT 5.538 29.93 5.538
FLBT 4.94× 10−4 1.90× 10−7 11.12
FW 6.30× 10−4 3.14× 10−7 11.35
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Figure 5. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.

The Matlab scripts used to compute the presented results can be obtained from Supplementary
Materials.

6. Conclusions

This paper presents new results in BT model order reduction in limited time- and frequency-
intervals for DTCFO systems. The main contribution of the paper is an introduction of new
definitions for controllability and observability Gramians for the fractional-order systems both in
the time and frequency domains. These results enable new implementations of the Gramians in the
balanced truncation model order reduction method in limited time and frequency intervals as well
as in the frequency weighted reduction method. As a result of the reduction process, accurate
low-dimension fractional-order approximators in given frequency and/or time intervals can be
calculated. Simulation examples confirm the effectiveness of the introduced methodology for order
reduction of DTCFO systems.

Supplementary Materials: The Matlab scripts used to compute the presented results can be obtained from:
http://doi.org/10.5281/zenodo.2322833.
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