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Abstract: In this paper, we study a system governed by impulsive semilinear nonautonomous differential
equations. We present the β–Ulam stability, β–Hyers–Ulam stability and β–Hyers–Ulam–Rassias stability
for the said system on a compact interval and then extended it to an unbounded interval. We use
Grönwall type inequality and evolution family as a basic tool for our results. We present an example to
demonstrate the application of the main result.
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1. Introduction

Differential equations are the key tools for modeling the physical problems in nature. To understand
the sudden changes in physical problems, differential equations are the best option for use.
Examples of these sudden changes are Plague deforestation, volcano eruption and rivers overflow [1].
Physical problems which have rapid changes are blood flows, biological systems such as heart beats,
theoretical physics, engineering, control theory, population dynamics, mechanical systems with impact,
pharmacokinetics, biotechnology processes, mathematical economy, chemistry, medicine and many more.
These problems can be modeled by systems of differential equations with impulses. One can obtain the
impulsive conditions by taking the short-term perturbation parameters and the initial value problem.
For the details of the impulsive differential equations see the results by Ahmad et al. [2], Bainov et al. [3],
Benchohra et al. [4], Berger et al. [5], Bianca et al. [6], Gala et al. [7], Hernandez et al. [8], Pierri et al. [9],
Samoilenko et al. [10,11], Tang et al. [12] and Wang et al. [13,14].

Ulam stability problem was put forward for the first time at Wisconsin University in 1940. The problem
was to discuss the relationship between approximate solution of homomorphism from a group H1 to a
metric group H2 [15]. Considering H1 and H2 as Banach spaces, Hyers solved the above problem with the
help of direct method [16]. The extension of the famous work of Hyers and Ulam can be seen in Aoki [17]
and Rassias [18] work. In this work they found the bound for the norm of difference, Cauchy difference,
f (t + s)− f (t)− f (s). Answers to this problem, its inductions and attractions for different categories of
equations, is a vast region of research and has well elaborated of what is now called Ulam’s type stability.

In 2012, Ulam type stability of impulsive differential equations were discussed by Wang et al. [19].
They used the concept of bounded interval with finite impulses and proved the Ulam type stability for
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first order nonlinear impulsive differential equations. In 2014, Wang et al. proved the Hyers–Ulam–Rassias
stability and generalized Hyers–Ulam–Rassias stability for impulsive evolution equations on a closed and
bounded interval [20]. In 2015, Zada et al. proved the Hyers–Ulam stability of differential system in terms
of dichotomy [21]. For more details about Hyers–Ulam stability, see [16,18,22–35].

Recently, Yu et al. [36] studied β–Hyers–Ulam stability of the system{
Θ′(t)−H(t)Θ(t) = f (t, Θ(t)), t ∈ I , t 6= tk

Θ(t+k )−Θ(t−k ) = Jk(tk, Θ(tk)), k = 1, 2, . . . , m.
(1)

Motivated from the above work, we investigate the β–Hyers–Ulam–Rassias stability of the system:
Θ′(t) = H(t)Θ(t) + B(t)ζ(t) + f (t, Θ(t), ζ(t)), t ∈ [0, τ], t 6= tk

Θ(0) = Θ0,

Θ(t+k ) = Θ(t−k ) + Ik(t, Θ(t−k ), ζ(t−k )), , k = 1, 2, . . . , m,

(2)

where 0 = t0 < t1 < t2 < . . . < tm < tm+1 = τ, Θ(t) ∈ Rn, H(t), B(t) are continuous
matrices of dimension n × n and n × m respectively, ζ ∈ C([0, τ];Rm) is the control function and f ,
Ik ∈ C([0, τ]×Rn ×Rm;Rn), k = 1, 2, 3, . . . , m are suitable functions.

In this article, we present four different types of β–Ulam type stability for the system of semilinear
nonautonomous impulsive differential equations. Our main objective of this work is to discuss the
uniqueness of solution for the given system and analyze the β–Hyers–Ulam–Rassias stability of semilinear
nonautonomous system (2) with the help of evolution family. Evolution family has its great importance in
every field of research. Different researchers are working to discuss stability analysis of different systems
using evolution family. For more details of evolution family we prefer [20,28,37–44].

2. Results

2.1. Basic

Here we present basic concepts and definitions. For any interval I = [0, τ] ⊆ R and S ⊆ Rk,
1 ≤ k ≤ n, we define the Banach space C(I ,S) the space of all continuous functions from I to S with
the norm ||Θ||C = {sup

t∈I
||Θ(t)||, for all Θ ∈ C(I ,S)}. Denote C ′(I ,S) = {Θ ∈ C(I ,S) : Θ′ ∈ C(I ,S)}.

We also introduce the Banach space PC(I ,S) :=
{

Θ : I → S , Θ ∈ C((tk, tk+1),S), k = 0, 1, . . . , m
}

and there exist Θ(t+k ), Θ(t−k ) such that Θ(t+k ) = Θ(t−k ), k = 1, 2, . . . , m, with the norm ||Θ||PC ={
sup ||Θ(t)||, for all t ∈ I

}
.

Definition 1. Consider V to be a vector space over some field K. A function ||.||β : V → [0, ∞) is called β-norm
if: (i) ||Θ||β = 0 if and only if Θ = 0, (ii) ||ηΘ||β = |η|β||Θ||β for each η ∈ K and Θ ∈ V , (iii) ||Θ + z||β ≤
||Θ||β + ||z||β. Then (V , ||.||β) is known as β–normed space.

Our space will be Pβ-Banach space with norm ||Θ||Pβ = sup{||Θ(t)||β}, where t ∈ I = [0, τ]

and 0 < β < 1. To define Pβ-Banach space we consider the space PC(I,S). Choose another interval
t ∈ I ′ = [0, τ], t 6= tk, k = 1, 2, . . . , m.
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Definition 2. PC(I ,S) :=
{

Θ : Θ ∈ C((tk, tk+1),S)
}

, there exist Θ(t−k ) and Θ(t+k ) such that Θ(t+k ) =

Θ(t−k ) for (any) k ∈ M0 = {0} ∪M, where M = {1, 2, . . . , m} with norm

||Θ||Pβ = sup{||Θ(t)||β},

where t ∈ I and 1 > β > 0. So (PC(I ,S), ||.||Pβ) is Pβ-Banach space.

Definition 3. The familyW := {Q(t, s) : t ≥ s ≥ 0} of bounded linear operators is called bounded evolution
family from the Banach space X to itself, if:

• Q(t, t) = I, for all t ≥ 0.
• Q(t, s)Q(s, r) = Q(t, r), for all t ≥ s ≥ r, t, s, r ≥ 0.
• Q(t + q, s + q) = Q(t, s), for all t ≥ s, t, s ≥ 0 for some q ∈ {2, 3, . . .}.
• ||Q(t, s)|| ≤ Meκ(t−s) ∃M ≥ 1, κ ∈ R not depends on s, t ≥ 0.

Definition 4 ([45]). The semilinear nonautonomous system of differential equations with impulses
Θ′(t) = H(t)Θ(t) + B(t)u(t) + f (t, Θ(t), u(t)), t ∈ [0, τ], t 6= tk

Θ(0) = $0,

Θ(t+k ) = Θ(t−k ) + Ik(t, Θ(t−k ), u(t−k )), , k = 1, 2, . . . , m,

gives the solution in the form

Θ(t) = Q(t, 0)ρ0 +

t∫
0

Q(t, s)B(s)u(s)ds

+

t∫
0

Q(t, s) f (s, Θ(s), u(s))ds + ∑
0<tk<t

Q(t, tk)Ik(tk, Θ(tk), u(tk)),

where Q(t, s) = Υ(t)Υ−1(s) and is known as evolution family and Υ(t) is the fundamental matrix of Θ′(t) =

H(t)Θ(t) + B(t)u(t).

Definition 5. If Υ(t) is the fundamental matrix of

Θ′(t) = H(t)Θ(t) + B(t)u(t), Θ ∈ S
w(0) = $0.

The above system is exponentially bounded if we can find some constantsM > 0 and κ < 0 such that

||Q(t, s)|| ≤ Meκ(t−s), 0 ≤ s ≤ t ≤ τ. (3)

Choose ε > 0, ψ ≥ 0 and ϕ from PC(I ,S). Take the inequality
||Θ′(t)−H(t)Θ(t)−B(t)u(t)− f (t, Θ(t), u(t))|| ≤ εϕ(t), t ∈ [0, τ], t 6= tk

||Θ(0)− $0|| ≤ εψ,

||Θ(t+k )−Θ(t−k )− Ik(tk, Θ(tk), u(tk))|| ≤ εψ, k = 1, 2, . . . , m.

(4)



Symmetry 2019, 11, 231 4 of 18

With the help of inequality (4) we will define β–Hyers–Ulam–Rassias stability for the system (2).

Definition 6. (2) is said to be β–Hyers–Ulam–Rassias stable with respect to (ψβ, ϕβ) if ∃ positiveK f ,M,ϕ,β such that
for any ε > 0 and for any solution Θ ∈ PC(I ′,S)⋂ C(I ′,S) of (4) ∃ a solution y of (2) in PC(I ′,S) satisfying

||y(t)−Θ(t)||β ≤ K f ,M,ϕ,βεβ
(

ϕβ(t) + ψβ
)

, t ∈ I .

Remark 1. It is direct consequence of inequality (4) that a function y ∈ PC(I ′,S)⋂ C(I ′,S) is the solution for
the inequality (4) if and only if we can find h ∈ C(I ′), ψ ≥ 0 and a sequence hk, k ∈ M satisfying

||h(t)|| ≤ εϕ(t) and ||hk|| ≤ εψ, t ∈ I ′ and k ∈ M,

y′(t) = H(t)y(t) + B(t)u(t) + f (t, y(t), u(t)) + h(t), t ∈ I ′,
y(0) = Θ0 + h(t),

y(t+k ) = y(t−k ) + Ik(tk, y(tk), u(tk)) + h(tk), k = 1, 2, 3, . . . m.

Assume that
M = sup

0≤s≤t≤τ

||Q(t, s)||. (5)

On the basis of Remak 1 we can say that the solution of the system
Θ′(t) = H(t)Θ(t) + B(t)u(t) + f (t, Θ(t), u(t)) + h(t), t ∈ [0, τ], t 6= tk

Θ(0) = $0 + h(t),

Θ(t+k ) = Θ(t−k ) + Ik(t, Θ(t−k ), u(t−k )) + h(tk), k = 1, 2, . . . , m,

is

Θ(t) = Q(t, 0)(Θ0 + h(t)) +
t∫

0

Q(t, s)B(s)u(s)ds

+

t∫
0

Q(t, s)( f (s, Θ(s), u(s)) + h(s))ds

+ ∑
0<k<m

Q(t, tk)(Ik(tk, Θ(tk), u(tk)) + h(tk)), t ∈ [0, τ].

For the inequality (4) we obtain
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||Θ(t)−Q(t, 0)Θ0 −
t∫

0

Q(t, s)B(s)u(s)ds

−
t∫

0

Q(t, s) f (s, Θ(s), u(s))ds− ∑
0<k<m

Q(t, tk)Ik(tk, Θ(tk), u(tk))||

= ||Q(t, 0)h(t) +
t∫

0

Q(t, s)h(s)ds + ∑
0<k<m

Q(t, tk)h(tk)||

≤ M||h(t)||+
t∫

0

M||h(s)||ds + ∑
0<k<m

M||h(tk)||

≤ εMψ +

t∫
0

εMϕ(s)ds + ∑
0<k<m

εMψ

≤ ∑
0≤k<m

εMψ +

t∫
0

εMϕ(s)ds

≤ εM
(

mψ +

t∫
0

ϕ(s)ds
)

, where t ∈ (tk, tk+1].

Now we state an important lemma known as Grönwall lemma, which is used in our main result.

Lemma 1 (Grönwall lemma [10]). For any t ≥ 0 with

u(t) ≤ q(t) +
t∫

0

p(s)u(s)ds + ∑
0<tk<t

γku(t−k ), (6)

where u, q, p ∈ PC(R+,R+), q is nondecreasing and γ > 0. Then for t ∈ R+ we have:

u(t) ≤ q(t)
(

1 + γk

)k
exp

( t∫
0

p(s)ds
)

, where k ∈ M. (7)

Remark 2. If we replace γk by γk(t) then

u(t) ≤ q(t) ∏
0<tk<t

(
1 + γk(t)

)
exp

( t∫
0

p(s)ds
)

, where k ∈ M. (8)

Definition 7. The function f from X to X is called contraction if for every Θ, z ∈ X , ∃ 0 ≤ k < 1 such that

d( f (Θ), f (z)) ≤ kd(Θ, z).

where (X , d) is a metric space.

Definition 8. The function f from X to X , has a unique fixed point if it is a contraction, where (X , d) is complete
metric space.
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To discuss β–Hyers–Ulam–Rassias stability of the given system, we need some assumptions which
can be used later on. The assumptions are:
[A1] : The linear system Θ′(t) = H(t)Θ(t) + B(t)u(t) is well posed.
[A2] : f : I × S → S which satisfies Caratheodory conditions and ∃ constant L f > 0 such that

|| f (t, Θ, u)− f (t, Θ′, u)|| ≤ L f ||Θ−Θ′||,

for every Θ, Θ′ ∈ S .
[A3] : Ik ∈ C(I ,S) : S → S , for k = 1, 2, ..., m and ∃ constants LIk > 0 such that

||Ik(t, Θk, uk)− Ik(t, Θ′k, uk)|| ≤ LIk ||Θk −Θ′k||,

for each Θk, Θ′k ∈ S .

[A4] : The inequalityM
{

m
∑

k=1
LIk + L f τ

}
< 1 holds.

Now we are able to prove that the nonautonomous differential system (2) has only one solution.

Theorem 1. If the assumptions [A1] − [A4] along with (5) holds then the system (2) has only one solution
Θ ∈ PC(I) with Θ(0) = $0.

Proof of Theorem 1. Define an operator F : PC(I ,S)→ PC(I ,S) by:

(FΘ)(t) = Q(t, 0)$0 +

t∫
0

Q(t, s)B(s)u(s)ds

+

t∫
0

Q(t, s) f (s, Θ(s), u(s))ds + ∑
0<tk<t

Q(t, tk)Ik(tk, Θ(tk), u(tk)).

Now for any Θ, Θ′ ∈ PC(I ,S) we have

||(FΘ)(t)− (FΘ′)(t)|| ≤ M
t∫

0

|| f (s, Θ(s), u(s))− f (s, Θ′(s), u(s))||ds

+ ∑
0<tk<t

M||Ik(tk, Θ(tk), u(tk))− Ik(tk, Θ′(tk), u(tk))||

≤ M
t∫

0

L f ||Θ(s)−Θ′(s)||ds

+ ∑
0<tk<t

MLIk ||Θ(tk)−Θ′(tk)||

≤ M
{

m
∑

k=1
LIk + L f τ

}
||Θ−Θ′||PC

< ||Θ−Θ′||PC .

Then, F is contractive with respect to ||.||PC . By using contraction mapping theorem, which shows
that the mapping F has a unique fixed point which is the solution of the system (2).
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2.2. β–Hyers–Ulam–Rassias Stability on a Compact Interval

To discuss β–Hyers–Ulam–Rassias stability of system (2) on a compact interval, we need to introduce
other conditions along with [A1], [A3] and [A4], which can be used to prove our required results.
The assumptions are given as follows:
[A∗2 ] : f : I × S → S which satisfies Caratheodory conditions and ∃ function L f ∈ C(I ,S) so that

|| f (t, Θ, u)− f (t, Θ′, u)|| ≤ L f (t)||Θ−Θ′||,

for every t ∈ I and Θ, Θ′ ∈ S .
[A5] : there exists a non decreasing function ϕ ∈ PC(I ,S) with ϕ(t) ≥ 0 and a constant ηϕ so that

t∫
0

ϕ(s)ds ≤ ηϕ ϕ(t), f or each t ∈ I .

By considering the inequality (4) and above assumptions, we present our first result as follows.

Theorem 2. If [A1], [A∗2 ] and [A3]− [A5] along with (5) hold. Then the system (2) is β–Hyers–Ulam–Rassias
stable with respect to (ψβ, ϕβ).

Proof of Theorem 2. Unique solution of the impulsive Cauchy problem
Θ′(t) = H(t)Θ(t) + B(t)u(t) + f (t, Θ(t), u(t)), t ∈ [0, τ], t 6= tk

Θ(0) = y(0),

Θ(t+k ) = Θ(t−k ) + Ik(tk, Θ(tk), u(tk)), k = 1, 2, . . . , m,

can be written as

Θ(t) =



Q(t, 0)Θ(0) +
t∫

0
Q(t, s)B(s)u(s)ds +

t∫
0

Q(t, s) f (s, Θ(s), u(s))ds, for t ∈ [0, t1],

Q(t, 0)Θ(0) + Q(t, t1)I1(t1, Θ(t1), u(t1)) +
t∫

0
Q(t, s)B(s)u(s)ds

+
t∫

0
Q(t, s) f (s, Θ(s), u(s))ds, for t ∈ (t1, t2],

...

Q(t, 0)Θ(0) +
m
∑

k=1
Q(t, tk)Ik(tk, Θ(tk), u(tk)) +

t∫
0

Q(t, s)B(s)u(s)ds

+
t∫

0
Q(t, s) f (s, Θ(s), u(s))ds, for t ∈ (tm, τ].

Let y be the solution of the inequality (4). Then for every t ∈ (tk, tk+1], we can obtain that,
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||y(t)−Q(t, 0)y(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, y(s), u(s))ds

− ∑
0<k<m

Q(t, tk)Ik(tk, y(tk), u(tk))||

≤ mεMψ +

t∫
0

εMϕ(s)ds

≤ εM
(

mψ +

t∫
0

ϕ(s)ds
)

≤ εM
(

m + ηϕ

)(
ϕ(t) + ψ

)
.

Therefore for every t ∈ (tk, tk+1], we get

||y(t)−Θ(t)||β = ||y(t)−Q(t, 0)Θ(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, Θ(s), u(s))ds

− ∑
0<k<m

Q(t, tk)Ik(tk, Θ(tk), u(tk))||β

= ||y(t)−Q(t, 0)y(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, Θ(s), u(s))ds

+

t∫
0

Q(t, s) f (s, y(s), u(s))ds−
t∫

0

Q(t, s) f (s, y(s), u(s))ds

− ∑
0<k<m

Q(t, tk)Ik(tk, Θ(tk), u(tk))

+ ∑
0<k<m

Q(t, tk)Ik(tk, y(tk), u(tk))− ∑
0<k<m

Q(t, tk)Ik(tk, y(tk), u(tk))||β

≤
(
||y(t)−Q(t, 0)y(0)−

t∫
0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, y(s), u(s))ds

− ∑
0<k<m

Q(t, tk)Ik(tk, y(tk), u(tk))||
)β

+
( t∫

0

||Q(t, s) f (s, y(s), u(s))−Q(t, s) f (s, Θ(s), u(s))||
)β

ds

+
(

∑
0<k<m

||Q(t, tk)Ik(tk, y(tk), u(tk))−Q(t, tk)Ik(tk, Θ(tk), u(tk))||
)β

≤
(

εM(m + ηϕ)(ϕ(t) + ψ)
)β

+
(
M

t∫
0

L f (s)||y(s)−Θ(s)||ds
)β

+
(
M

m

∑
k=1
LIk ||y(tk)−Θ(tk)||

)β
,
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where

t∫
0

||Q(t, s) f (s, y(s), u(s))−Q(t, s) f (s, Θ(s), u(s))||ds ≤M
t∫

0

L f (s)||y(s)−Θ(s)||ds

and

m

∑
k=1
||Q(t, tk)Ik(tk, y(tk), u(tk))−Q(t, tk)Ik(tk, Θ(tk), u(tk))|| ≤ M

m

∑
k=1
LIk ||y(tk)−Θ(tk)||.

Thus,

||y(t)−Θ(t)|| ≤ 3
1
β−1
[(

εM(m + ηϕ)(ϕ(t) + ψ)
)
+
(
M

t∫
0

L f (s)||y(s)−Θ(s)||ds
)

+M
m

∑
k=1
LIk ||y(tk)−Θ(tk)||

]
,

by using relation

(x + y + z)γ ≤ 3γ−1(xγ + yγ + zγ), where x, y, z ≥ 0, and γ > 1.

Consider LI = max {LI1 ,LI2 , . . . ,LIm}. Using Grönwall Lemma 1 we get that

||y(t)−Θ(t)|| ≤ 3
1
β−1
(

εM
(
(m + ηϕ)(ϕ(t) + ψ)

))(
1 + 3

1
β−1MLI

)k
exp

(
3

1
β−1M

t∫
0

L f (s)ds
)

.

Hence

||y(t)−Θ(t)||β ≤ 31−β
(

εM
(

m + ηϕ

)
(ϕ(t) + ψ)

)β

(
1 + 3

1
β−1MLI

)kβ
exp

(
3

1
β−1M

t∫
0

L f (s)ds
)β

≤ 31−β
(

εM
(

m + ηϕ

))β(
ϕ(t) + ψ

)β

(
1 + 3

1
β−1MLI

)kβ
exp

(
3

1
β−1

βM
t∫

0

L f (s)ds
)

≤ K f ,M,ϕ,ψεβ
(

ϕβ(t) + ψβ
)

,

using the fact that (x + y)r ≤ (xr + yr), x, y ≥ 0, for any r ∈ (0, 1].
Where,

K f ,M,ϕ,ψ = 31−β
(
M
(

m + ηϕ

))β(
1 + 3

1
β−1MLI

)mβ
exp

(
3

1
β−1

βM
τ∫

0

L f (s)ds
)

.

Hence the system (2) is β–Hyers–Ulam–Rassias stable on compact interval with respect to (ψβ, ϕβ).
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2.3. β–Hyers–Ulam–Rassias Stability on an Unbounded Interval

Here we study β–Hyers–Ulam–Rassias stability on an unbounded interval. For the desired proof we
need the following assumptions which can be used in our later work.
[A0]: The operators family {Q(t, s) : t ≥ s ≥ 0} is exponentially stable, that is we can findM ≥ 1 and
κ < 0 so that

||Q(t, s)|| ≤ Meκ(t−s), t > s ≥ 0.

[A6]: f ∈ C(R+ × S ,S) and ∃ a function L f ∈ C(R+,S) satisfying

|| f (t, Θ, u)− f (t, Θ′, u)|| ≤ L f (t)||Θ−Θ′||,

for every t ∈ R+ and Θ, Θ′ ∈ S . Also we assume that

t∫
0

L f (s)ds ≤ κ f t + ζ f ,

for each t ≥ 0, κ f , ζ f ≥ 0 and 3
1
β−1Mκ f + κ < 0 for some β ∈ (0, 1).

[A7]: Ik : S → S and there exists a constant LIk > 0 so that

||Ik(t, Θ, u)− Ik(t, Θ′, u)|| ≤ LIk ||Θ−Θ′||,

for every t ∈ R+ and Θ, Θ′ ∈ S . Furthermore, we assume that

LI := 3
1
β−1M sup

k∈M

k

∑
i=1
LIi < ∞.

[A8]: A function ϕ ∈ PC(R+,S) and a constant ηϕ > 0 so that

t∫
0

eκ(t−s)+3
1
β
−1
Mκ f t ϕ(s)ds ≤ ηϕ ϕ(t), for each t ∈ R+.

[A9]: Put

M1 := sup
k∈M

k

∑
i=1

eκ(tk−ti)+3
1
β
−1
Mκ f tk + eκtk+3

1
β
−1
Mκ f tk ,

moreover for the case M = N we assume thatM1 < ∞.

By considering the inequality (4) and above assumptions we state our second result as follows.

Theorem 3. Suppose that [A0], [A1] and [A6]− [A9] are fulfilled. Then the system (2) is β–Hyers–Ulam–Rassias
stable with respect to (ψβ, ϕβ) on unbounded interval.
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Proof of Theorem 3. Unique solution of the semilinear nonautonomous impulsive differential system:
Θ′(t) = H(t)Θ(t) + B(t)u(t) + f (t, Θ(t), u(t)), t ∈ I ′

Θ(0) = y(0),

Θ(t+k ) = Θ(t−k ) + Ik(tk, Θ(tk), u(tk)), k = M,

is given by 
Θ(t) = Q(t, 0)Q(0) +

k
∑

i=1
Q(t, ti)Ii(ti, Θ(ti), u(ti)) +

t∫
0

Q(t, s)B(s)u(s)ds

+
t∫

0
Q(t, s) f (s, Θ(s), u(s))ds, t ∈ I ′, k ∈ M.

(9)

Let y satisfy (4). Then for every t ∈ (tk, tk+1], k ∈ M0, we obtain that,

||y(t)−Q(t, 0)y(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, y(s), u(s))ds−
k

∑
i=1

Q(t, ti)Ii(ti, y(ti), u(ti))||

≤
k

∑
i=1
||Q(t, ti)||||hi||+

t∫
0

||Q(t, s)||||h(s)||ds,

≤M
( k

∑
i=1

eκ(t−ti)εψ +

t∫
0

eκ(t−s)εϕ(s)ds
)

.
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Thus for each and every t ∈ (tk, tk+1] we get that,

||y(t)−Θ(t)||β

= ||y(t)−Q(t, 0)Θ(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, Θ(s), u(s))ds

−
k

∑
i=0

Q(t, ti)Ii(ti, Θ(ti), u(ti))||β

= ||y(t)−Q(t, 0)Q(0)−
t∫

0

Q(t, s)B(s)u(s)ds−
t∫

0

Q(t, s) f (s, Θ(s), u(s))ds

+

t∫
0

Q(t, s) f (s, y(s), u(s))ds−
t∫

0

Q(t, s) f (s, y(s), u(s))ds−
k

∑
i=0

Q(t, ti)Ii(ti, Θ(ti), u(ti))

+
k

∑
i=0

Q(t, ti)Ii(ti, y(ti), u(ti))−
k

∑
i=0

Q(t, ti)Ii(ti, y(ti), u(ti))||β

≤
(
||y(t)−Q(t, 0)y(0)−

t∫
0

Q(t, s)B(s)u(s)ds

−
t∫

0

Q(t, s) f (s, y(s), u(s))ds−
k

∑
i=0

Q(t, ti)Ii(ti, y(ti), u(ti))||
)β

+
( t∫

0

||Q(t, s) f (s, y(s), u(s))−Q(t, s) f (s, Θ(s), u(s))||
)β

ds

+
( k

∑
i=0
||Q(t, ti)Ii(ti, y(ti), u(ti))−Q(t, ti)Ii(ti, Θ(ti), u(ti))||

)β

≤ M
( k

∑
i=1

eκ(t−ti)εψ +

t∫
0

eκ(t−s)εϕ(s)ds
)β

+M
( t∫

0

eκ(t−s)L f (s)||y(s)−Θ(s)||ds
)β

+
( k

∑
i=1
LIiMeκ(t−ti)||y(ti)−Θ(ti)||

)β
.

If we set ȳ(t) := e−κty(t), Θ̄(t) := e−κtΘ(t), we have

||ȳ(t)− Θ̄(t)||β ≤ Mε
( k

∑
i=1

e−κti ψ +

t∫
0

e−κs ϕ(s)ds
)β

+
( t∫

0

ML f (s)||ȳ(s)− Θ̄(s)||ds
)β

+
( k

∑
i=1
LIiM||ȳ(ti)− Θ̄(ti)||

)β
,

with the help of (
x + y + z

)γ
≤ 3γ−1

(
xγ + yγ + zγ

)
, where x, y, z ≥ 0, and γ > 1,
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we get that

||ȳ(t)− Θ̄(t)|| ≤ 3
1
β−1Mε

( k

∑
i=1

e−κti ψ +

t∫
0

e−κs ϕ(s)ds + 3
1
β−1

t∫
0

ML f (s)||ȳ(s)− Θ̄(s)||ds

+3
1
β−1

k

∑
i=1
LJiM||ȳ(ti)− Θ̄(ti)||.

Using Lemma 1, we obtain

||ȳ(t)− Θ̄(t)|| ≤ 3
1
β−1Mε

( k

∑
i=1

e−κti ψ +

t∫
0

e−κs ϕ(s)ds
)
LJ exp

(
3

1
β−1M

t∫
0

L f (s)ds
)

,

resubmitting some values we have

||y(t)−Θ(t)|| ≤ 3
1
β−1Mε

( k

∑
i=1

eκ(t−ti)ψ +

t∫
0

eκ(t−s)ϕ(s)ds
)
LJ exp

(
3

1
β−1M

t∫
0

L f (s)ds
)

≤ 3
1
β−1MLJε

( k

∑
i=1

eκ(t−ti)+3
1
β
−1
M(κ f t+ζ f )ψ

+eκt+3
1
β
−1
M(κ f t+ζ f ) +

t∫
0

eκ(t−s)+3
1
β
−1
M(κ f t+ζ f )ϕ(s)ds

)

≤ 3
1
β−1MLIεe3

1
β
−1
Mζ f

(
M1 + ηϕ

)(
ϕ(t) + ψ

)
,

which implies,

||y(t)−Θ(t)||β ≤ K f ,M,ϕ,βεβ
(

ϕβ(t) + ψβ
)

,

where

K f ,M,ϕ,β := 31−β
(
MLI

)β(
e3

1
β
−1
Mζ f (M1 + ηϕ)

)β
> 0.

Hence the system (2) is β–Hyers–Ulam–Rassias stable on unbounded interval with respect to
(ψβ, ϕβ).

2.4. β–Hyers–Ulam–Rassias Stability with Infinite Impulses

Now to discuss β–Hyers–Ulam–Rassias stability for the system (2) with infinite impulses, that is
when M = N. For this case inequality (4) will become

||Θ′(t)−H(t)Θ(t)−B(t)u(t)− f (t, Θ(t), u(t))|| ≤ εϕ(t), t ∈ I ′

||Θ(0)− $0|| ≤ εψk,

||Θ(t+k )−Q(t−k )− Ik(tk, Θ(tk), u(tk))|| ≤ εψk, k ∈ N,

(10)
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where ϕ(.) has the same definition and ψ := {ψk}k∈N is a nonconstant sequence of nonnegative entries
ψk ≥ 0, for each k ∈ N. Then definition (6) can be written as

||y(t)−Θ(t)||β ≤ K f ,M,ϕ,βεβ(ϕβ(t) + ψ
β
k+1), t ∈ I ′and k ∈ N.

We call it as extended β–Hyers–Ulam–Rassias stability. To prove β–Hyers–Ulam–Rassias stability
with infinite impulses, we consider:
[A10] : f ∈ C(R+ × S ,S) and ∃ a function L f ∈ C(R+,R+) so that

|| f (t, Θ, u)− f (t, Θ′, u)|| ≤ L f (t)||Θ−Θ′||,

for every t ∈ R+ and Θ, Θ′ ∈ S .
[A11] : Ik : S → S and there exists a constant LIk > 0 so that

||Ik(t, Θ, u)− Ik(t, Θ′, u)|| ≤ LIk ||Θ−Θ′||,

for every k ∈ N, t ∈ R+ and Θ, Θ′ ∈ S .

[A12] : ∏k
i=1

(
1 + 3

1
β−1MLIi

)
max

( k
∑

i=1
e

κ(tk−ti)+3
1
β
−1
M

tk∫
0
L f (s)ds)

ψi ≤ ηψψk+1, for each k ≥ 0,

and

[A13] : ∏k
i=1

(
1 + 3

1
β−1MLIi

)
e

3
1
β
−1
M

t∫
0
L f (s)ds t∫

0
eκ(t−s)ϕ(s)ds ≤ ηϕ ϕ(t), for each k ≥ 0.

Theorem 4. Suppose that the assumptions [A0], [A1] and [A10]− [A13] are fulfilled. Then the system (2) with
I = R+ and M = N is extended β–Hyers–Ulam–Rassias stable.

Proof of Theorem 4. Consider Θ is the mild solution of the semilinear nonautonomous impulsive
differential system: 

Θ′(t) = H(t)Θ(t) + B(t)u(t) + f (t, Θ(t), u(t)), t ∈ R′,

Θ(0) = y(0),

Θ(t+k ) = Θ(t−k ) + Ik(tk, Θ(tk), u(tk)), k = N.

Let y be the solution of the inequality (10). To prove the required result we follow the method of
Theorem 3, for any t ∈ (tk, tk+1], we obtain that

||y(t)−Θ(t)||β ≤
(
M
( k

∑
i=1

eκ(t−ti)εψi +

t∫
0

eκ(t−s)εϕ(s)ds
)β

+
( t∫

0

Meκ(t−s)L f (s)||y(s)−Θ(s)||ds
)β

+
( k

∑
i=1
LIiMeκ(t−ti)||y(ti)−Θ(ti)||

)β
,
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which gives that

||y(t)−Θ(t)|| ≤ 3
1
β−1Mε

( k

∑
i=1

eκ(t−ti)ψi +

t∫
0

eκ(t−s)ϕ(s)ds
)

+3
1
β−1

t∫
0

eκ(t−s)ML f (s)||y(s)−Θ(s)||ds

+3
1
β−1

k

∑
i=1

eκ(t−ti)LIiM||y(ti)−Θ(ti)||.

Thus,

||y(t)−Θ(t)|| ≤ 3
1
β−1Mε

k

∏
i=1

(
1 + 3

1
β−1MLIi

)( k

∑
i=1

eκ(t−ti)ψi

+

t∫
0

eκ(t−s)ϕ(s)ds
)

exp
(

3
1
β−1M

t∫
0

L f (s)ds
)

≤ 3
1
β−1Mε

(
ηψψk+1 + ηϕ ϕ(t)

)
.

At last, we obtain that

||y(t)−Θ(t)||β ≤ 31−βMβεβ
(

ηψψk+1 + ηϕ ϕ(t)
)β

≤ K f ,M,ϕ,βεβ
(

ϕβ(t) + ψ
β
k+1

)
,

where
K f ,M,ϕ,β := 31−βMβ

(
η

β
ψ + η

β
ϕ

)
> 0.

The proof is complete.

3. Example

Consider the following semilinear impulsive heat equation
Θt = 4Θ + 1ωu(t, y) + f (t, Θ, u(t, y)), for all t [0, τ]×Ω, t 6= tk,

Θ(0, y) = Θ0(y), y ∈ Ω,

∆Θ(k, y) = 1
3k2 Θ(k−, y), k ∈ M, y ∈ Ω,

(11)

where Ω is the bounded domain in RN (N ≥ 1), Θ0 ∈ L2(Ω), ω is an open nonempty subset of Ω,
1ω denotes the characteristic function of the set ω, the control function u belongs to C([0, τ]; L2(Ω)),
f ∈ C([0, τ]×R×R;R) and Ik ∈ C(R×R;R), k ∈ M, so that the assumptions [A0] and [A1] holds with
M = 1, κ = −2 < 0. Obviously [A6] and [A7] hold with κ f = 0 and
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LI = sup
k∈M

k

∏
i=1

(
1 + 3

1
β−1MLJi

)
= sup

k∈M

k

∏
i=1

(
1 +

1
k2

)

≤ e
sup
k∈M

k
∑

i=1

1
k2

≤ e
π2
6 .

Also ζ f = 0. Put ϕ(t) = et and ψ = 1, then assumption [A8] holds if ηϕ = 1
2 . Similarly, [A9] holds

withM1 = e2

e2−1 . Thus by using Theorem 3, we can say that the equation (5.2) is 1
2 –Hyers–Ulam–Rassias

stable with respect to
(√

et, 1
)

on R+ with K f ,M,ϕ,β =
√

3e
π2
12

(
1
2 + e2

e2−1

) 1
2
.

4. Conclusions

In the last few decades, many mathematicians showed their interests in the qualitative theory of
impulsive differential equations. In particular, to discuss β–Hyers–Ulam–Rassias stability of differential
equations, different types of conditions were used in the form of integral inequalities. For the case of
semilinear nonautonomous differential system a strong Lipschitz condition of functions were common
among them and mostly results were obtained via Grönwall integral inequality. In this article, we present
β–Hyers–Ulam–Rassias stability of the semilinear nonautonomous impulsive differential system with the
help of evolution family and Grönwall integral inequality.
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