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1. Introduction

Widely renowned for the “Fredholm Integral Equation” Erik Ivar Fredholm [1], a mathematician
and researcher par excellence, has provided research contributions on various aspects of integral
equation theory.

Inspired by his great work, many fixed point researchers have focused their work on solving the
Fredholm integral equation [2–5].

There was an amazing publication called F-contraction, which was one of the most influential
publication in metric fixed point theory. It was introduced by a fellow named Wardkowski in 2012,
and he brought this development to mathematical world with his idealistic touch [6]. It contained
topological notions such as Cauchy, completeness, converges, and fixed point.

Definition 1. Let (X, d) be a metric space. A mappingH : X → X is said to be an F-contraction if there exists
τ > 0 such that for all x, y ∈ X,

d(Hx,Hy) > 0⇒ τ + F(d(Hx,Hy)) ≤ F(d(x, y)). (1)

F-expanding mappings were introduced in 2017 by Gornicki [6] as below:
Let (X, d) be a metric space. A mappingH : X → X is said to be F-expanding if there exists τ > 0 such
that for all x, y ∈ X,

d(x, y) > 0⇒ F(d(Hx,Hy)) ≥ +F(d(x, y)) + τ (2)
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where F : R+ → R is a mapping satisfying:

(F1) F is strictly increasing, i.e., for all α, β ∈ R+ such that if α < β then F(α) < F(β);

(F2) For each sequence of positive numbers {αn}n∈N,

lim
n→∞

αn = 0 iff lim
n→∞

F(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

We represent by F the set of all functions satisfying the conditions (F1)–(F3). There is an effort,
however, to convert fixed point theorems that are in the theory of topological fixed point theory into
non-linear integral equations and differential equations. This effort is spearheaded major developments
in related research areas ( see for more info References [6–13]).

Recently, a new kind of generalized metric space was introduced by Kamran et al. [14], as shown
below, and named an extended b-metric space (simply, Be-metric space).

Definition 2. Let X be a non-empty set and s : X× X → [1, ∞). A function Be : X× X → [0, ∞) is called a
Be-metric if, for all x, y, z ∈ X, it satisfies:

(i) Be(x, y) = 0 iff x = y;
(ii) Be(x, y) = Be(y, x);

(iii) Be(x, y) ≤ s(x, y)[Be(x, z) + Be(z, y)].

The pair (X, Be) is called a Be-metric space.

Example 1. Let X = {−1, 0, 1}. Define the function s : X × X → R+ and Be : X × X → R+ as
s(x, y) = 2 + x + y.

Be(−1,−1) = Be(0, 0) = Be(1, 1) = 0; Be(−1, 0) = Be(0,−1) = 3; Be(−1, 1) = Be(1,−1) = 7;
Be(0, 1) = Be(1, 0) = 1.

First, we prove that Be is a Be-metric space. It is clear that (i) and (ii) trivially hold. For (iii),
we have

Be(−1, 0) = 3; s(−1, 0)[Be(−1, 1) + Be(1, 0)] = 8.

Thus,
Be(−1, 0) ≤ s(−1, 0)[Be(−1, 1) + Be(1, 0)].

Be(0, 1) = 1; s(0, 1)[Be(0,−1) + Be(−1, 1)] = 30.

Be(−1, 1) = 7; s(−1, 1)[Be(−1, 0) + Be(0, 1)] = 8.

Hence, for all x, y, z ∈ X, Be(x, z) ≤ s(x, z)[Be(x, y) + Be(y, z)].
Hence, (X, Be) is a Be-metric space.

Definition 3. Let (X, Be) be a Be-metric space and a sequence {xn} in X is said to

(a) Converge to x ∈ X iff if for every ε > 0 there exists N = N(ε) ∈ N such that Be(xn, x) < ε, for all
n ≥ N. For this particular case, we write limn→∞ xn = x.

(b) Cauchy iff for every ε > 0 there exists N = N(ε) ∈ N such that Be(xm, xn) < ε, for all m, n ≥ N.

Definition 4. A Be-metric space (X, Be) is complete if every Cauchy sequence in X is convergent.
Observe that usually a b-metric is not a continuous functional. Analogously, the functional Be-metric

is also not necessarily a continuous function [15–19].
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Within the past century, mathematical research has been increasingly drawn towards
understanding the link between the Banach contraction principle and non-linear integral equations.
The brief and chronological history of these two topics are explored through a developing conceptual
model. Since then, many researchers have formulated and developed fixed point approaches of
non-linear integral equations in many directions.

Motivated by the above facts, we establish fixed point theorems by using F-contractions in
the context of an extended b-metric space since it was very hard to obtain fixed points via the
Warkowski [15] approach, which gives a solutions for non-linear integral equations by using the
fixed point technique.

2. An Extended FBe -Contraction

Now, we introduce the following definition:

Definition 5. Let (X, Be) be a Be-metric space. A mappingH : X → X is said be an extended FBe -contraction
if there exists τ > 0 such that for all x, y ∈ X,

Be(Hx,Hy) > 0⇒ τ + FBe(Be(Hx,Hy)) ≤ FBe(Be(x, y)), (3)

such that for each x0 ∈ X, limn,m→∞ s(xn, xm) <
1
k , where k ∈ (0, 1), here xn = Hnx0; n = 1, 2, 3, . . . and

FBe : R+ → R is a mapping satisfying:

(F1) FBe is strictly increasing, i.e., for all α, β ∈ R+ such that α < β implies FBe(α) < FBe(β);
(F2) For each sequence {αn}n∈N of positive numbers lim

n→∞
αn = 0 iff lim

n→∞
FBe(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkFBe(α) = 0.

We denote by FBe the set of all functions satisfying the conditions (F1)–(F3).

Theorem 1. Let (X, Be) be a complete Be-metric space such that Be is a continuous functional and let H :
X → X be an extended FBe -contraction, thenH has a fixed point.

Proof. In order to show that H has a fixed point, let x0 ∈ X be arbitrary and fixed. We define a
sequence {xn}n∈N∈X , by

x0,Hx0 = x1, x2 = Hx1 = H(Hx0) = H2(x0) . . . xn = Hnx0 . . .

Denote γn = Be(xn+1, xn), n = 0, 1, 2, . . . .
If there exists n0 ∈ N for which xn0+1 = xn0 thenHxn0 = xn0 and the proof is finished. Suppose

now that xn+1 6= xn for every n ∈ N which yields Be(xn+1, xn) > 0, i.e., Be(Hxn,Hxn−1) > 0. Thus,
by using (3), the following holds for every n ∈ N:

FBe(γn) ≤ FBe(γn−1)− τ

≤ FBe(γn−2)− 2τ

...

≤ FBe(γ0)− nτ,

(4)

which yields, limn→∞ FBe(γn) = −∞.
By F2,

lim
n→∞

γn = 0. (5)
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From F3, there exists k ∈ (0, 1) such that

lim
n→∞

γk
nFBe(γn) = 0. (6)

By Equation (4), the following holds for all n ∈ N. Thus,

γk
nFBe(γn)− γk

nFBe(γ0) ≤ γk
n(FBe(γ0)− nτ)− γk

nFBe(γ0)

= −γk
nnτ

≤ 0.

(7)

Letting n→ ∞ in (7) and using (4) and (5), we obtain

lim
n→∞

nγk
n = 0. (8)

Now, let us observe that from (8) there exists n1 ∈ N such that nγk
n ≤ 1 for all n ≥ n1.

Consequently, we have

γn ≤
1

n
1
k

for all n ≥ n1. (9)

In order to prove that {xn}n∈N is a Cauchy sequence, consider m, n ∈ N such that m > n ≥ n1.
By triangle inequality,

Be(xn, xm) ≤ s(xn, xm)[Be(xn, xn+1) + Be(xn+1, xm)]

≤ s(xn, xm)Be(xn, xn+1) + s(xn, xm)s(xn+1, xm)[Be(xn+1, xn+2) + Be(xn+2, xm)]

≤ s(xn, xm)Be(xn, xn+1) + s(xn, xm)s(xn+1, xm)Be(xn+1, xn+2) + . . .

+ s(xn, xm)s(xn+1, xm)s(xn+2, xm) . . . s(xm−2, xm)s(xm−1, xm)Be(xm−1, xm)

≤ s(x1, xm)s(x2, xm) . . . s(xn, xm)Be(xn, xn+1)

+ s(x1, xm)s(x2, xm) . . . s(xn+1, xm)Be(xn+1, xn+2) + . . .

+ s(x1, xm)s(x2, xm) . . . s(xm−1, xm)Be(xm−1, xm).

(10)

Note that this series
∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm) converges.

Since

∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm) ≤
∞

∑
n=1

1

n
1
k

n

∏
i=1

s(xi, xm)

<
∞

∑
n=1

1

n
1
k

.
1
k

=
1
k

∞

∑
n=1

1

n
1
k

; which is convergent.

(11)

Let

S =
∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm);

Sn =
n

∑
j=1

Be(xj, xj+1)
j

∏
i=1

s(xi, xm).
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Thus, for m > n, the above inequality implies

Be(xn, xm) ≤ Sm−1 − Sn−1.

Letting n→ ∞, we conclude that {xn} is a Cauchy sequence. Since X is complete, let xn → ρ ∈ X.

Case 1. H is continuous, we have

Be(Hρ, ρ) = lim
n→∞

Be(Hxn, xn)

= lim
n→∞

Be(xn+1, xn)

= 0.

Thus,Hρ = ρ. Thus ρ is a fixed point ofH.
Case 2. FBe is continuous, in this case, we consider two following subcases:

Case 2.1. For each n ∈ N, there exists in ∈ N such that xin = Hρ and in > in−1 where i = 0.
Then, we have ρ = lim

n→∞
xin = lim

n→∞
Hρ = Hρ, which yields that ρ is a fixed point

ofH.
Case 2.2. There exists n0 ∈ N such that xn+1 6= Hρ for al n ≥ n0. That is Be(Hxn,Hρ) > 0

for all n ≥ n0.

It follows from (3) that

τ + FBe(Be(xn+1,Hρ)) = τ + FBe(Be(Hxn,Hρ))

≤ FBe(Be(xn, ρ)).

Since FBe is continuous, taking the limit as n→ ∞, then we obtain

τ + FBe(Be(ρ,Hρ)) ≤ FBe(Be(ρ, ρ))

⇒ FBe(Be(ρ, ρ)) ≤ FBe(Be(ρ, ρ))− τ,

which is a contradiction due to F1. Therefore, Be(ρ,Hρ) = 0. Hence, ρ is a fixed point ofH.
Thus, from above two cases, we can conclude thatH has a fixed point ρ. Hence,Hρ = ρ.
In order to prove uniqueness, first, let us observe that H has at most one fixed point. Indeed,

if x1, x2 ∈ X,Hx1 = x1 6= x2 = Hx2, then Be(x1, x2) > 0, i.e., Be(Hx1,Hx2) > 0. From (3), we get

τ ≤ FBe(Be(Hx1,Hx2)) ≤ FBe(Be(x1, x2)),

⇒ τ ≤ FBe(Be(x1, x2))− FBe(Be(x1, x2)) = 0,

which is a contradiction. Hence,H has a unique fixed point.

Example 2. Let X = { 1
5n−1 ; n ∈ N} ∪ {0}. Define Be : X × X → R+ by Be(x, y) = (x − y)2 and

s : X× X → [1, ∞) as s(x, y) = 1 + x + y. Then, (X, Be) is a complete Be-metric space.

DefineH : X → X by

H(x) =

{
{ 1

52n }, if x ∈ { 1
52n−1 ; n ∈ N}

0, if x = 0.

Define the function FBe : R+ → R by FBe(α) = ln α for all α ∈ R+ and τ > 0.

Case 1. Let x = 1
52n−1 , y = 1

52m−1 , for m > n ≥ 1.
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Consider

FBe(Be(Hx,Hy)) = F
(

Be

(
H 1

52n−1 ,H 1
52m−1

))
= FBe

(
Be

(
1

52n ,
1

52m

))
= FBe

((
1

52n −
1

52m

)2)
= FBe

((
52m − 52n

52n+2m

)2)
= ln

(
52m − 52n

52n+2m

)2

= 2 ln
(

52m − 52n

52n+2m

)
.

FBe(Be(x, y)) = F
(

Be

(
1

52n−1 ,
1

52m−1

))
= FBe

((
1

52n−1 −
1

52m−1

)2)
= FBe

((
52m−1 − 52n−1

52n+2m−2

)2)
= ln

(
52m−1 − 52n−1

52n+2m−2

)2

= 2 ln
(

52m−1 − 52n−1

52n+2m−2

)
.

Consider

FBe(Be(Hx,Hy))− FBe(Be(x, y)) = 2
(

ln
52m − 52n

52n+2m − ln
52m−1 − 52n−1

52n+2m−2

)
= 2

(
ln
(

52m − 52n

52n+2m × 52n+2m−2

52m−1 − 52n−1

))
= 2

(
ln
(

52m − 52n

52n+2m × 52n+2m.5−2

5−1(52m − 52n)

))
= 2(ln(

1
5
))

< −3.

Thus,H is an extended FBe contraction for τ = 3.
Case 2. Let x = 1

52n−1 ; y = 0.

Hx = 1
52n ; Hy = 0.
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Consider

FBe(Be(Hx,Hy)) = FBe

(
Be

(
1

52n , 0
))

= FBe

(
1

54n

)
= ln

(
1

54n

)
.

Now consider

FBe(Be(x, y)) = FBe

(
Be

(
1

52n−1 , 0
))

= FBe

(
1

54n−2

)
= ln

(
1

54n−2

)
.

Now take

FBe(Be(Hx,Hy))− FBe(Be(x, y)) = ln
(

1
54n

)
− ln

(
1

54n−2

)
= ln

(
54n−2

54n

)
= ln

(
1
52

)
= ln

(
1

25

)
< −3.

For τ = 3, H satisfied all the conditions of the above theorem and 0 is the unique fixed point.

Similarly, for x = 0 and 1
52n−1 , the same proof follows as above. Hence, all the conditions of the

above theorem are satisfied for all the cases and 0 is the unique fixed point.

Example 3. Let X = {−1, 0, 1}. Define the function s : X × X → [1, ∞) by s(x, y) = 2 + x + y and
Be : X× X → R+ as:

Be(−1,−1) = Be(0, 0) = Be(1, 1) = 0;

Be(−1, 0) = Be(0,−1) = 3;

Be(−1, 1) = Be(1,−1) = 7;

Be(0, 1) = Be(1, 0) = 1.

It is clear that (X, Be) is a complete Be-metric space.

Let H : X → X given by H0 = 0 = H1,H(−1) = 1. Define FBe : R+ → R by FBe(α) = − 1
α + α

and τ ∈ (0, 2].

Case 1. Let x = 0. Now, Be(H0,H1) = Be(H0,H0) = Be(0, 0) = 0. Therefore, we only need to
consider y = −1.

Now, Be(H0,H(−1)) = Be(0, 1) = 1 and Be(0,−1) = 3.
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Consider

τ + FBe(Be(H0,H(−1))) = τ − 1
Be(H0,H(−1)) + (Be(H0,H(−1))

= τ − 1 + 1
= τ

FBe(Be(0,−1)) = − 1
Be(0,−1) + Be(0,−1)

= − 1
3 + 3

= 3− 1
3

= 8
3 .

Clearly for τ ∈ (0, 1
2 ),

τ + FBe(Be(H0,H(−1))) ≤ FBe(Be(0,−1)).

Case 2. Let x = 1. Now, Be(H1,H1) = Be(H1,H0) = 0. Therefore, we only need to consider y = −1.

Now, Be(H1,H(−1)) = Be(0, 1) = 1 and Be(1,−1) = 7.
Consider

τ + FBe(Be(H1,H(−1))) = τ − 1
Be(H1,H(−1))

+ (Be(H1,H(−1))

= τ − 1 + 1

= τ.

FBe(Be(1,−1)) = − 1
Be(1,−1)

+ Be(1,−1)

= −1
7
+ 7

= 7− 1
7

=
48
7

.

Clearly for τ ∈ (0, 1
2 ),

τ + FBe(Be(H1,H(−1))) ≤ FBe(Be(1,−1)).

For x = −1, the proof is similar as above cases. Hence, all the conditions of the Theorem 1 are
satisfied and 0 is the unique fixed point. Thus, the above examples illustrate the above theorem.

3. An Extended FBe -Expanding Contraction

We start this section by introducing following definition.

Definition 6. Let (X, Be) be a Be-metric space. A mappingH : X → X is said to be an extended expanding if

∀ x, y ∈ X Be(Hx,Hy) ≥ κBe(x, y); where κ > 1.

Theorem 2. Let (X, Be) be a complete Be-metric space such that Be is a continuous functional. LetH : X → X
be surjective and extended expanding. Then,H is bijective and has a unique fixed point.

Proof. First, we will prove thatH is bijective. For this, we need to proveH is injective.
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Let x, y ∈ X with x 6= y. From the definition of extended expanding,

Be(Hx,Hy) ≥ κBe(x, y) > 0.

which yieldsHx 6= Hy. Hence,H is bijective.
SinceH is bijective,H has an inverse on its range. Note thatH−1 is a Banach contraction in the

setting of an Be-metric space. In addition, since 1
κ < 1, we can conclude thatH−1 has a unique fixed

point by using Theorem 3 of Kamran et al. [13]. This completes the proof of the theorem.

Theorem 3. Let (X, Be) be a complete Be-metric space such that Be is a continuous functional. IfH : X → X
is surjective then there exists a mappingH∗ : X → X such thatH ◦H∗ is the identity map on X.

The proof is omitted as it is easy to prove.
Now, we define a new definition.

Definition 7. Let (X, Be) be a complete Be-metric space. A mappingH is said to be extended F-expanding if
there exists F ∈ F ∗ and τ > 0 such that for all x, y ∈ X,

Be(x, y) > 0⇒ FBe(Be(Hx,Hy)) ≥ FBe(Be(x, y)) + τ (12)

where FBe : (0,+∞)→ R is a mapping satisfying:

(F1) FBe is strictly increasing, i.e., for all α, β ∈ R+ such that if α < β then FBe(α) < FBe(β);

(F2) For each sequence {αn} ⊂ (0,+∞), then

lim
n→∞

αn = 0⇔ lim
n→∞

FBe(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkFBe(α) = 0.

We represent by F ∗ the set of all functions satisfying the conditions (F1)–(F3).

Theorem 4. Let (X, Be) be a complete Be-metric space such that Be is a continuous functional. LetH : X → X
be surjective and extended F-expanding. Then,H has a unique fixed point.

Proof. From Theorem 3, there exists a mappingH∗ : X → X such thatH ◦H∗ is the identity mapping
on X.

Let x, y ∈ X be arbitrary points such that x 6= y, and let η = H∗x and ξ = H∗y (obviously η 6= ξ)
which yields Be(η, ξ) > 0.

From the definition of extended F-expanding, we get

FBe(Be(Hη,Hξ)) ≥ FBe(Be(η, ξ)) + τ.

SinceHη = H(H∗x) = x andHξ = H(H∗y) = y, then

FBe(Be(x, y)) ≥ FBe(Be(H∗x,H∗y)) + τ.

Therefore, H∗ : X → X is an extended F-contraction. By Theorem 1, H∗ has a unique fixed
point δ ∈ X.

Now consider

Hδ = H(H∗δ)
= δ

(13)
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Hence, δ is also a fixed point ofH.
In order to get uniqueness, let us suppose thatH has at most two fixed points. If δ1, δ2 ∈ X and

Hδ1 = δ1 6= δ2 = Hδ2, then Be(δ1, δ2) > 0 which yields

FBe(Be(Hδ1,Hδ2)) ≥ FBe(Be(δ1δ2)) + τ

0 = FBe(Be(Hδ1,Hδ2))− FBe(Be(δ1δ2)) ≥ τ > 0,

which is a contradiction. Thus, δ1 = δ2. Therefore, the fixed point ofH is unique.

Remark 1. IfH is not surjective, the above theorem is false.
For example, let X = [0, 1]. Define Be(x, y) : X × X → R+ and s : X × X → [1, ∞) as Be(x, y) =

(x− y)2, s(x, y) = x + y + 1.
Then, Be is a complete Be-metric space on X. DefineH : X → X byHx = 2x + 1 for all x ∈ X. Then,

Be(Hx,Hy) = Be(2x + 1, 2y + 1)

= (2x− 2y)2

= 4(x− y)2

> Be(x, y).

(14)

Thus,H satisfies all the conditions of the theorem butH has no fixed point.
If s(x, y) = 1, then the above theorem will reduce to Theorem 2.1 of Jaroslaw Gornicki [7]. Thus, we can

conclude that our theorem is a standard generalization of Theorem 2.1 of Jaroslaw Gornicki [7].

4. An Extended Generalized FBe -Contraction

Definition 8. Let (X, Be) be a Be-metric space. A map H : X → X is said to be an extended generalized
FBe -contraction on (X, Be) if there exists F ∈ F ∗ and τ > 0 such that for all x, y ∈ X satisfying Be(Hx,Hy) >
0, the following holds:

τ + FBe(Be(Hx,Hy)) ≤ FBe

(
max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

})
,

and for each x0 ∈ X, limn,m→∞ s(xn, xm) <
1
k , where k ∈ (0, 1). Here xn = Hnx0; n = 1, 2, 3, . . . .

Remark 2.

1. Every F -contraction is an extended generalized FBe -contraction.
2. Let H be an extended generalized FBe -contraction and from the definition of extended generalized

FBe -contractions we have for all x, y ∈ X,Hx 6= Hy, which gives Be(Hx,Hy) > 0. Thus,

FBe(Be(Hx,Hy)) < τ + FBe(Be(Hx,Hy))

≤ FBe

(
max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

})
.

(15)

Then, by (F1), we get

Be(Hx,Hy) ≤ max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

}
;

∀x,y∈X, Hx 6= Hy.
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Counter example for Remark: The following example shows that the inverse implication of the remark
does not hold. Let X = [0, ∞) define Be : X × X → R by Be(x, y) = (x− y)2 and s : X × X → [1, ∞)

by s(x, y) = x + y + 1. Then, Be is an Be-metric. DefineH : X → X as

Hx =

{
0, if 0 ≤ x < 1
1
4 , if x ≥ 1.

ClearlyH is not continuous.
Thus,H is not an F -contraction. For x ∈ [0, 1) and y = 1 we have Be(Hx,H1) = Be(0, 1

4 ) =
1

16 >

0 and

max

{
Be(x, 1),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(1,H1)

1 + Be(1,H1)
,

Be(x,Hx) + Be(1,H1)
2

}
≥ Be(1,H1)

= Be(1,
1
4
)

=
9

16

>
1

16
= Be(Hx,H1).

(16)

Define the function FBe : R+ → R by FBe(α) = ln α, ∀α ∈ R+& τ > 0. Then consider

FBe(Be(Hx,H1))− FBe(Be(1,H1)) = FBe(
1

16
)− FBe(

9
16

)

= ln(
1

16
)− ln(

9
16

)

= ln
(
(

1
16

)× (
16
9
)

)
= ln

1
9

< −2.

(17)

Thus,H is an extended generalized FBe -contraction for τ = 2.

Theorem 5. Let (X, Be) be a Be-metric space such that Be is a continuous functional and H : X → X be an
extended generalized FBe -contraction. Then,H has a unique fixed point.

Proof. Let x ∈ X be arbitrary and fixed. We define xn+1 = Hxn; ∀n ∈ N∪ {0}, where x0 = x. If there
exists n0 ∈ N ∪ {0} such that xn0+1 = xn0 , then Hxn0 = xn0 . This concludes that xn0 is a fixed point
ofH.

Let us suppose that xn+1 6= xn for all n ∈ N∪ {0}. Which gives Be(xn+1, xn) > 0. It follows from
extended generalized FBe -contraction that for each n ∈ N.
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FBe(Be(xn+1, xn)) = FBe(Be(Hxn,Hxn−1))

≤ FBe

(
max

{
Be(xn, xn−1),

Be(xn, xn+1)

1 + Be(xn, xn+1)
,

Be(xn−1, xn)

1 + Be(xn−1, xn)
,

Be(xn, xn+1) + Be(xn−1, xn)

2

})
− τ

≤ FBe

(
max

{
Be(xn, xn−1), Be(xn, xn+1), Be(xn−1, xn),

Be(xn, xn+1) + Be(xn−1, xn)

2

})
− τ

≤ FBe

(
max

{
Be(xn, xn−1), Be(xn, xn+1)

})
− τ.

(18)

If Be(xn+1, xn) = Be(xn, xn+1) then FBe(Be(xn+1, xn)) ≤ FBe(Be(xn, xn+1)) − τ, which is a
contradiction due to F1.

Thus,
FBe(Be(xn+1, xn)) ≤ FBe(Be(xn, xn−1))− τ; ∀n ∈ N∪ {0}. (19)

Similarly,
FBe(Be(xn, xn−1)) ≤ FBe(Be(xn−1, xn−2))− τ; ∀n ∈ N∪ {0}. (20)

By using (20)&(21), we have

FBe(Be(xn+1, xn)) ≤ FBe(Be(xn−1, xn−2))− 2τ. (21)

By repeating same scenario, we get

FBe(Be(xn+1, xn)) ≤ FBe(Be(x1, x0))− nτ; ∀ n ∈ N∪ {0}. (22)

Taking the limit as n→ ∞ in (23), we get

lim
n→∞

FBe(Be(xn+1, xn)) = −∞. (23)

By using (F2), we get
lim

n→∞
Be(xn+1, xn) = 0. (24)

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(
(Be(xn+1, xn))

kFBe(Be(xn+1, xn))

)
= 0. (25)

Now consider

(Be(xn+1, xn))
k(FBe(Be(xn+1, xn))− FBe(Be(x1, x0))) ≤ −(Be(xn+1, xn))

knτ

≤ 0 ; ∀ n ∈ N.
(26)

By using (25)&(26) and taking the limit as n→ ∞ in (27), we get

lim
n→∞

(
n(Be(xn+1, xn))

k
)
= 0. (27)
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Then, there exists n1 ∈ N such that n(Be(xn+1, xn))k ≤ 1 ; ∀ n ≥ n1, which yields

Be(xn+1, xn) ≤
1

n
1
k

; ∀ n ≥ n1. (28)

In order to prove that {xn} is a Cauchy sequence, consider m, n ∈ N such that m > n ≥ n1.
By using (29) and the triangle inequality, we get

Be(xn, xm) ≤ s(xn, xm)[Be(xn, xn+1) + Be(xn+1, xm)]

≤ s(xn, xm)Be(xn, xn+1) + s(xn, xm)s(xn+1, xm)[Be(xn+1, xn+2) + Be(xn+2, xm)]

≤ s(xn, xm)Be(xn, xn+1) + s(xn, xm)s(xn+1, xm)Be(xn+1, xn+2) + . . .

+ s(xn, xm)s(xn+1, xm)s(xn+2, xm) . . . s(xm−2, xm)s(xm−1, xm)Be(xm−1, xm)

≤ s(x1, xm)s(x2, xm) . . . s(xn, xm)Be(xn, xn+1)

+ s(x1, xm)s(x2, xm) . . . s(xn+1, xm)Be(xn+1, xn+2) + . . .

+ s(x1, xm)s(x2, xm) . . . s(xm−1, xm)Be(xm−1, xm).

(29)

Note that this series
∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm) converges.

Since

∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm) ≤
∞

∑
n=1

1

n
1
k

n

∏
i=1

s(xi, xm)

<
∞

∑
n=1

1

n
1
k

.
1
k

=
1
k

∞

∑
n=1

1

n
1
k

; which is convergent.

(30)

Let

S =
∞

∑
n=1

Be(xn, xn+1)
n

∏
i=1

s(xi, xm);

Sn =
n

∑
j=1

Be(xj, xj+1)
j

∏
i=1

s(xi, xm).

Thus, for m > n above inequality implies

Be(xn, xm) ≤ Sm−1 − Sn−1.

Letting n→ ∞, we conclude that {xn} is a Cauchy sequence. Hence, there exists κ ∈ X such that
{xn} → κ.

We shall prove that κ is a fixed point ofH by two following cases:

Case 1. H is continuous, we have

Be(κ,Hκ) = lim
n→∞

Be(xn,Hxn)

= lim
n→∞

Be(xn, xn+1)

= 0.

(31)

This proves that κ is a fixed point ofH.
Case 2. FBe is continuous. In this case, we consider two following sub-cases:
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Case 2.1. For each n ∈ N, there exists in ∈ N such that xin+1 = Hκ and in > in−1 where
i0 = 1. Then, we have

κ = lim
n→∞

xin+1 = lim
n→∞

Hκ = Hκ.

This proves that κ is a fixed point ofH.
Case 2.2. There exists n0 ∈ N such that xn+1 6= Hκ ; ∀ n ≥ n0.

i.e, Be(Hxn,Hκ) > 0 ; ∀ n ≥ n0.

It follows from extended generalized FBe -contraction and F1,

τ + FBe(Be(xn+1,Hκ)) = τ + FBe(Be(Hxn,Hκ))

≤ FBe

(
max

{
Be(xn, κ),

Be(xn,Hxn)

1 + Be(xn,Hxn)
,

Be(κ,Hκ)

1 + Be(κ,Hκ)
,

Be(xn,Hxn) + Be(κ,Hκ)

2

})

≤ FBe

(
max

{
Be(xn, κ), Be(xn, xn+1), Be(κ,Hκ),

Be(xn,Hxn) + Be(κ,Hκ)

2

})

≤ FBe

(
max

{
Be(xn, κ), Be(xn, xn+1), Be(κ,Hκ),

Be(xn, xn+1) + Be(κ,Hκ)

2

})
.

(32)

If Be(κ,Hκ) > 0 then lim
n→∞

Be(xn, κ) = lim
n→∞

Be(κ, xn+1) = 0.

Then, there exists n1 ∈ N such that for all n ≥ n1, we have

max

{
Be(xn, κ), Be(xn, xn+1), Be(κ,Hκ),

Be(xn, xn+1) + Be(κ,Hκ)

2

}
= Be(κ,Hκ).

From (33), we get

τ + FBe(Be(xn+1,Hκ)) ≤ FBe(Be(κ,Hκ)); ∀ n ≥ max{n0, n1}. (33)

Since FBe is continuous, taking the limit as n→ ∞ in (34) , we obtain

τ + FBe(Be(κ,Hκ)) ≤ FBe(Be(κ,Hκ)),

which is a contradiction. Hence, Be(κ,Hκ) = 0. Therefore, κ is a fixed point ofH.
By the above two cases,H has a fixed point κ.
To prove uniqueness, let κ, κ∗ be two fixed points ofH, such that κ 6= κ∗.
Thus, Be(κ, κ∗) > 0 which implies Be(Hκ,Hκ∗) > 0.
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From extended generalized F-contraction,

τ + FBe(Be(κ, κ∗)) = τ + FBe(Be(Hκ,Hκ∗))

≤ FBe

(
max

{
Be(κ, κ∗),

Be(κ,Hκ)

1 + Be(κ,Hκ)
,

Be(κ∗,Hκ∗)

1 + Be(κ∗,Hκ∗)
,

Be(κ,Hκ) + Be(κ∗,Hκ∗)

2

})

= FBe

(
max

{
Be(κ, κ∗),

Be(κ, κ)

1 + Be(κ, κ)
,

Be(κ∗, κ∗)

1 + Be(κ∗, κ∗)

})
= FBe(Be(κ, κ∗)).

(34)

which implies, τ ≤ FBe(Be(κ, κ∗))− FBe(Be(κ, κ∗)) = 0. This is a contradiction.
Thus, Be(κ, κ∗) = 0, which yields κ = κ∗. Hence, the fixed point ofH is unique.

Example 4. Let X =

{
1

2n−1 ; n ∈ N
}
∪ {0}. Define Be : X × X → R+ by Be(x, y) = (x − y)2 and

s : X× X → [1, ∞) as s(x, y) = x + y + 1. Then, Be is a complete Be-metric on X.

DefineH : X → X by

H(x) =


1

2n , if x ∈
{

1
2n−1 ; n ∈ N

}
;

0, if x ∈ X.

Define the function FBe : R+ → R by FBe(α) = ln α for all α ∈ R+ and τ > 0.

Case 1. For m > n ≥ 1. Let x = 1
2n−1 and y = 1

2m−1 .

Now take n = 1 and m = 2.

Consider
FBe(Be(Hx,Hy)) = FBe(Be(H1,H 1

2 ))

= FBe(Be(
1
2 , 1

4 ))

= FBe(
1

16 )

= ln 1
16

= −2.7725.

Additionally,

FBe

(
max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

})

= FBe

(
max

{
Be(1,

1
2
),

Be(1, 1
2 )

1 + Be(1, 1
2 )

,
Be(

1
2 , 1

2 )

1 + Be(
1
2 , 1

2 )
,

Be(1, 1
2 ) + Be(

1
2 , 1

4 )

2

})

= FBe

(
max

{
1
4

,
1
5

,
1

17
,

5
16

})
= FBe(

5
16

)

= ln
5

16
= −1.1631.
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Consider

FBe(Be(Hx,Hy))− F
(

max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

})
= −2.7725 + 1.1631

= −1.6094

< −1.

Thus,H is an extended generalized FBe -contraction for τ = 1.

Case 2. Let x = 1
2 and y = 0.

Consider FBe(Be(Hx,Hy)) = FBe(Be(
1
4 , 0)) = FBe(

1
16 ) = ln 1

16 = −2.77.

Now,

FBe

(
max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hy) + Be(y,Hx)
2

})

= FBe

(
max

{
Be(

1
2

, 0),
Be(

1
2 , 1

4 )

1 + Be(
1
2 , 1

4 )
,

Be(0, 0)
1 + Be(0, 0)

,
Be(

1
2 , 1

4 ) + Be(0, 0)
2

})

= FBe

(
max

{
1
4

,
1
17

, 0,
1
32

})
= FBe(

1
4
)

= ln
1
4

= −1.38.

Now consider

FBe(Be(Hx,Hy))− F
(

max

{
Be(x, y),

Be(x,Hx)
1 + Be(x,Hx)

,
Be(y,Hy)

1 + Be(y,Hy)
,

Be(x,Hx) + Be(y,Hy)
2

})
= −2.77 + 1.38

= −1.39

< −1.

Thus,H is an extended generalized FBe -contraction for τ = 1.

Hence, we can conclude that all the conditions of above theorem are satisfied in all cases and 0 is
the unique fixed point.

5. Applications to Existence of Solutions of Non-linear Integral Equation

As applications, we use Theorem 1 and Theorem 5 to study the existence problem of unique
solutions of non-linear integral equations.

Theorem 6. Let X be the set of all continuous real valued functions defined on [a, b]. i.e., X = C([a, b],R).

Define Be : X × X → R by Be(U, V) = sup |U(t)− V(t)|2, t ∈ [a, b] with s(U, V) = |U(t)|+
|V(t)|+ 1, where s : X× X → [1, ∞).

Note that (X, Be) is a complete Be-metric space.
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Consider the Fredholm integral equation as

U(t) =
∫ b

a
H(t, p, U(p))dp + FBe(t) ∀ t, p ∈ [a, b], (35)

where FBe : [a, b]→ R andH : [a, b]× [a, b]×R→ R are continuous functions.
DefineH : A∪ B → A∪B byH(U(t)) =

∫ b
a H(t, p, U(p))dp + FBe(t) ∀ t, p ∈ [a, b]; where FBe :

[a, b]→ R andH : [a, b]× [a, b]×R→ R are continuous functions.
Further assume that the following condition holds:

|H(t, p, U(p))−H(t, p, V(p))| ≤ e−
τ
2 |U(p)−V(p)|

for each t, p ∈ [a, b], U, V ∈ X and τ > 0. Then, the integral Equation (35) has a solution. We will
prove that the operatorH satisfies the conditions of Theorem 1.

For any U(t), V(t) ∈ X. Consider

|HU(t)−HV(t)|2 =

(∫ b

a
|H(t, p, U(p))−H(t, p, V(p))|

)2

dp

≤
(∫ b

a
e−

τ
2 |U(p)−V(p)|

)2

dp

≤ e−τ

(∫ b

a
|U(p)−V(p)|

)2

dp

≤ e−τ Be(U(t), V(t)),

which implies Be(HU(t),HV(t)) ≤ e−τ Be(U(t), V(t)).
Applying logarithms on both sides, we get

ln(Be(HU(t),HV(t))) ≤ ln(e−τ Be(U(t), V(t)));

⇒ ln(Be(HU(t),HV(t))) ≤ ln(e−τ) + ln(Be(U(t), V(t)));

⇒ ln(Be(HU(t),HV(t))) ≤ −τ + ln(Be(U(t), V(t))).

Thus,
τ + ln(Be(HU(t),HV(t))) ≤ ln(Be(U(t), V(t))). (36)

Let us define FBe : R+ → R by FBe(α) = ln(α), α > 0. Then, from (36), we get

τ + FBe(Be(HU(t),HV(t))) ≤ F(Be(U(t), V(t))).

Thus all the conditions of the Theorem 1 are satisfied. Thus, the operatorH has a unique fixed
point. Hence, the Fredholm integral equation has a solution.

Theorem 7. Let us consider the non-linear integral equation.

U(t) = FBe(t) +
∫ t

0
k(t, p)g(p, U(p))dp, (37)

where the unknown function U(t) takes real values.
Let X = C([0, β]) be the space of all real continuous functions defined on [0, β].

Define Be : X × X → R by Be(U, V) = maxt∈[0,β] |U(t) − V(t)|2 and s : X × X → [1, ∞) by
s(U, V) = |U(t)|+ |V(t)|+ 1.

Clearly, (X, Be) is a complete Be-metric space.
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Define a mappingH : X → X byHU(t) = FBe(t) +
∫ t

0 k(t, p)g(p, U(p))dp; ∀t ∈ [0, β].
Furthermore, we assume the following conditions:

1. g ∈ C([0, β]× (−∞,−∞)) and k ∈ C([0, β]× [0, β]) such that k(t, p) ≥ 0.
2. g(t, .) : (−∞,+∞)→ (−∞,+∞) is increasing for all t ∈ [0, β].
3. There exists τ ∈ [1,+∞) such that for all U, V ∈ X, t ∈ [0, β], |g(t, U) − g(t, V)|2 ≤

τe−τM(U, V),

where,M(U, V) = max

{
|U −V|2, |U−HU|2

1+|U−HU|2 , |V−HV|2
1+|V−HV|2 , |U−HU|2+|V−HV|2

2

}
.

4. maxt,p∈[0,β] |k(t, s)|2 ≤ 1; For U ∈ X, we define a norm ||U||τ = maxt∈[0,β] |U(t)|e−τt, where t ≥
1 is chosen arbitrarily.

It is easy to check that ||.||τ is equivalent to the maximum norm ||.|| in X, and X be endowed with
the Beτ defined by

Beτ (U, V) = ||U −V||τ
= max

t∈[0,β]
{|U(t)−V(t)|2e−τt}; U, V ∈ X and etτ ≥ 1. (38)

Then, (X, Beτ ) is a complete Be-metric space.
Now, we will prove that the non-linear integral Equation (37) has a unique solution. For any

U, V ∈ C([0, β]), t ∈ [0, β] we have

|HU(t)−HV(t)|2 = |
∫ t

0
k(t, p)[g(p, U(p))− g(p, V(p))]dp|2

≤
∫ t

0
|k(t, p)|2||g(p, U(p))− g(p, V(p))|2dp

≤
∫ t

0
||g(p, U(p))− g(p, V(p))|2dp

≤
∫ t

0
τe−τM(U(p), V(p))dp

= τe−τ
∫ t

0
epτ max

{
|U(p)−V(p)|2e−pτ ,

|U(p)−HU(p)|2e−2pτ

1 + |U(p)−HU(p)|2e−pτ ,

|V(p)−HV(p)|2e−2pτ

1 + |V(p)−HV(p)|2e−pτ ,

|U(p)−HU(p)|2 + |V(p)−HV(p)|2
2

e−pτ

}
dp

≤ τe−τ
∫ t

0
esτ max

{
Beτ (U, V),

Beτ (U,HU)

1 + Beτ (U,HU)
,

Beτ (V,HV)

1 + Beτ (V,HV)
,

Beτ (U,HU) + Beτ (V,HV)

2

}
dp

= τe−τM(U, V)
∫ t

0
esτdp

≤ τe−τM(U, V)
etτ

τ

≤ e−τM(U, V)etτ

≤ e−(1−t)τM(U, V)

(39)
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which implies
|HU(t)−HV(t)|2e−tτ ≤ e−τM(U, V),

which yields

Beτ (HU,HV) = max
t∈[0,β]

{|HU(t)−HV(t)|2e−tτ}

≤ e−τM(U, V).
(40)

Applying logarithms on both sides, we get

τ + ln Beτ (HU,HV) ≤ lnM(U, V); ∀ U, V ∈ X. (41)

Define FBe : R+ → R by FBe(α) = ln α, α > 0. Then, from (41) we get

τ + FBe(Beτ (HU,HV)) ≤ FBe(M(U, V));

whereM(U, V) = max

{
Beτ (U, V), Beτ (U,HU)

1+Beτ (U,HU)
, Beτ (V,HV)

1+Beτ (V,HV)
, Beτ (U,HU)+Beτ (V,HV)

2

}
.

Thus, H is an extended generalized F-contraction. By Theorem 5, H has a unique fixed point.
Hence, it is the unique solution of the non-linear integral equation.

6. Conclusions

The research topic of fixed point theory and applications, with an extended approach being the latest,
has continued for decades.

An extended b-metric space was introduced in 2017 by Kamran et al. [14]. Since then, very few
researchers established fixed point theorems using F-contractions in an extended b-metric space since it
was very hard to obtain fixed points via the Warkowski [15] approach. In this article, we first introduce
various topics called the extended FBe -contraction, the extended FBe -expanding contraction, and the
extended generalized FBe -contraction. Thereafter, we presented various fixed point theorems related
to F-contractions, which gives a solutions for a non-linear integral equation by using the fixed point
technique. Our results are important as they open new research avenues for non-linear analysis and its
applications.

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read
and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the editor and referees for careful reading the original
manuscript and giving comments which were useful for improving the manuscript.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Fredholm, E.I. Sur une classe d’equations fonctionnelles. Acta Math. 1903, 27, 365–390. [CrossRef]
2. Rus, M.D. A note on the existaence of positive solution of Fredholm integral equations. Fixed Point Theory

2004, 5, 369–377.
3. Berenguer, M.I.; Munoz, M.V.F.; Guillem, A.I.G.; Galan, M.R. Numerical Treatment of Fixed Point Applied to

the Nonlinear Fredholm Integral Equation. Fixed Point Theory Appl. 2009, 2009, 735638. [CrossRef]
4. Shahi, P.; Kaur, J.; Bhatia, S.S. Fixed point theorems for (α, φ) -contractive mappings of rational type in

complex valued metric spaces with applications. Results Fixed Point Theory Appl. 2018, 2018, 20187. [CrossRef]
5. Rasham, T.; Shoaib, A.; Hussain, N.; Arshad, M.; Khan, S.U. Common fixed point results for new Ciric-type

rational multivalued F-contraction with an application. J. Fixed Point Theory Appl. 2018, 20, 45. [CrossRef]

http://dx.doi.org/10.1007/BF02421317
http://dx.doi.org/10.1155/2009/735638
http://dx.doi.org/10.30697/rfpta-2018-7.
http://dx.doi.org/10.1007/s11784-018-0525-6


Symmetry 2019, 11, 206 20 of 20

6. Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces.
Fixed Point Theory Appl. 2012, 2012, 94. [CrossRef]

7. Gornicki, J. Fixed points theorems for F-expanding mappings. Fixed Point Theory Appl. 2017, 2017, 10.
[CrossRef]

8. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces.
Fixed Point Theory Appl. 2014, 2014, 210. [CrossRef]

9. Singh, D.; Chauhan, V.; Kumam, P.; Joshi, V. Some applications of fixed point results for generalized two
classes of Boyd–Wong’s F-contraction in partial b-metric spaces. Math. Sci. 2018, 12, 111–127. [CrossRef]

10. Kumari, P.S.; Zoto, K.; Panthi, D. d-Neighborhood system and generalized F-contraction in dislocated metric
space. SpringerPlus 2015, 4, 368. [CrossRef] [PubMed]

11. Kumari, P.S.; Panthi, D. Connecting various types of cyclic contractions and contractive self-mappings with
Hardy-Rogers self-mappings. Fixed Point Theory Appl. 2016, 2016, 15. [CrossRef]

12. Kumari, P.S.; Panthi, D. Cyclic compatible contraction and related fixed point theorems. Fixed Point
Theory Appl. 2016, 2016, 28. [CrossRef]

13. Sumati Kumari, P.; Alqahtani, O.; Karapınar, E. Some Fixed-Point Theorems in b-Dislocated Metric Space
and Applications. Symmetry 2018, 10, 691. [CrossRef]

14. Kamran, T.; Samreen, M.; Ain, Q.U. A generalization of b-metric space and some fixed point Theorems.
Mathematics 2017, 5, 19. [CrossRef]

15. Alqahtani, B.; Karapinar, E.; Ozturk, A. On (α, ψ)-K-contractions in the extended b-metric space. Filomat
2018, 32, 15.

16. Alqahtani, B.; Fulga, A.; Karapinar, E. Non-Unique Fixed Point Results in Extended B-Metric Space.
Mathematics 2018, 6, 68. [CrossRef]

17. Alqahtani, B.; Fulga, A.; Karapinar, E. Common fixed point results on extended b-metric space.
J. Inequal. Appl. 2018, 2018, 158. [CrossRef] [PubMed]

18. Karapınar, E.; Kumari, P.S.; Lateef, D. A New Approach to the Solution of the Fredholm Integral Equation
via a Fixed Point on Extended b-Metric Spaces. Symmetry 2018, 10, 512. [CrossRef]

19. Kumari, P.S.; Ampadu, C.B.; Nantadilok, J. On New Fixed Point Results in Eb-Metric Spaces. Thai J. Math.
2018, 16, 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1687-1812-2012-94
http://dx.doi.org/10.1186/s13663-017-0602-3
http://dx.doi.org/10.1186/1687-1812-2014-210
http://dx.doi.org/10.1007/s40096-018-0250-8
http://dx.doi.org/10.1186/s40064-015-1095-3
http://www.ncbi.nlm.nih.gov/pubmed/26207199
http://dx.doi.org/10.1186/s13663-016-0498-3
http://dx.doi.org/10.1186/s13663-016-0521-8
http://dx.doi.org/10.3390/sym10120691
http://dx.doi.org/10.3390/math5020019
http://dx.doi.org/10.3390/math6050068
http://dx.doi.org/10.1186/s13660-018-1745-4
http://www.ncbi.nlm.nih.gov/pubmed/30137886
http://dx.doi.org/10.3390/sym10100512
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Extended FBe-Contraction
	An Extended FBe-Expanding Contraction
	An Extended Generalized FBe-Contraction
	Applications to Existence of Solutions of Non-linear Integral Equation
	Conclusions
	References

