
symmetryS S

Article

Reliability Enhancement of Edge Computing
Paradigm Using Agreement

Shu-Ching Wang 1 , Wei-Shu Hsiung 1, Chia-Fen Hsieh 1 and Yao-Te Tsai 2,*
1 Department of Information Management, Chaoyang University of Technology, 168, Jifeng E. Rd., Wufeng,

Taichung 41349, Taiwan; scwang@cyut.edu.tw (S.-C.W.); amyscwang@gmail.com (W.-S.H.);
vedvq73@gmail.com (C.-F.H.)

2 Department of International Business, Feng Chia University, 100, Wenhwa Rd., Seatwen,
Taichung 40724, Taiwan

* Correspondence: yaottsai@fcu.edu.tw; Tel.: +886-4-23323000

Received: 8 January 2019; Accepted: 29 January 2019; Published: 1 February 2019
����������
�������

Abstract: Driven by the vision of the Internet of Things (IoT), there has been a dramatic shift in mobile
computing in recent years from centralized mobile cloud computing (MCC) to mobile edge computing
(MEC). The main features of MECs are to promote mobile computing, network control, and storage to
the edge of the network in order to achieve computationally intensive and latency-critical applications
on resource-constrained mobile devices. Therefore, MEC is proposed to enable computing directly
at the edge of the network, which can deliver new applications and services, especially for the IoT.
In order to provide a highly flexible and reliable platform for the IoT, a MEC-based IoT platform
(MIoT) is proposed in this study. Through the MIoT, the information asymmetrical symmetry between
the consumer and producer can be reduced to a certain extent. Because of the IoT platform, fault
tolerance is an important research topic. In order to deal with the impact of a faulty component, it
is important to reach an agreement in the event of a failure before performing certain special tasks.
For example, the initial time of all devices and the time stamp of all applications should be the same
in a smart city before further processing. However, previous protocols for distributed computing
were not sufficient for MIoT. Therefore, in this study, a new polynomial time and optimal algorithm
is proposed to revisit the agreement problem. The algorithm makes all fault-free nodes decide on the
same initial value with minimal rounds of message exchanges and tolerate the maximal number of
allowable faulty components in the MIoT.

Keywords: Internet of Things; mobile edge computing; cloud computing; consensus problem;
interactive consistency problem

1. Introduction

The Internet of Things (IoT) paradigm is based on intelligent self-configuring nodes (things)
that are interconnected in a dynamic and global network infrastructure. The IoT can provide many
applications, including electronic commerce, smart home, smart city, and intelligent transportation
system. The IoT has promoted interaction between people and smart cities, infrastructure, and services
that improve the quality of life. It enables ubiquitous pervasive computing scenarios. The IoT typically
features small, real-world things, limited storage and processing capabilities, and related issues
related to reliability, performance, security, and privacy [1]. Since cloud computing (CC) has virtually
unlimited capacity in terms of storage and processing power, most IoT issues are at least partially
solved. Therefore, the IT paradigm that combines the two technologies of cloud and IoT can provide
current and future Internet.

Symmetry 2019, 11, 167; doi:10.3390/sym11020167 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5981-221X
http://dx.doi.org/10.3390/sym11020167
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/11/2/167?type=check_update&version=2

Symmetry 2019, 11, 167 2 of 17

However, for various reasons, the CC paradigm cannot meet the low latency and jitter,
environment awareness, and mobility support requirements that are important for several applications,
such as vehicular networks and augmented reality [2]. In order to meet these requirements, various
examples have emerged in recent years, such as MEC and MCC [3]. The common feature of these edge
examples is the deployment of cloud-like capabilities at the edge of the network. The edge data center
is owned and deployed by the infrastructure provider and implements a multi-tenant virtualization
infrastructure. Any customer can use these data center services. In addition, although edge data
centers can operate autonomously and cooperate with each other, they are not disconnected from the
traditional cloud. It is thus possible to create a hierarchical multi-layered architecture interconnected
by a network infrastructure.

MEC is a distributed paradigm that provides cloud-like services to the edge of the network.
It uses cloud and edge resources and its own infrastructure. Essentially, the technology handles
IoT data locally by utilizing a client or edge device in the vicinity of the user for extensive storage,
communication, control, configuration, and management. This approach benefits from the proximity
of edge devices to the sensors while exploiting the scalability of the demand for cloud resources [2].

Since the IoT greatly can provide encourages distributed system design and practices to support
user-oriented service applications [4]. However, distributed systems have grown rapidly both in size
and in number. In a distributed computing system, the nodes that are allocated to different locations
or separate units are connected together so that they can be used together for greater advantages.
In many cases, reaching a common agreement in the presence of faulty components is the central issue
of fault-tolerant distributed computing, because many applications require such agreement [5,6]. For
instance, the initial time and the time stamps of many applications and smart devices in the smart
city system should be the same, including traffic light control components in the traffic automatic
control system, switches and brightness adjusters in the street light management system, computers for
intelligent self-driving vehicles, detection components of fire-disaster relief vehicles, etc. In addition,
many applications of IoT provide convenience. However, for users, the system must provide better
reliability [4]. Therefore, reliability is one of the most important aspects of the IoT. To ensure that an
IoT environment is reliable, a mechanism to allow a set of nodes to reach an agreed value is necessary.

In order to provide a highly flexible and reliable platform of IoT, a MEC-based IoT platform
(MIoT) is proposed in this study. In the MIoT, numerous nodes are interconnected. For achieving
agreement on the same value in the MIoT, even if certain components fail, protocols are required so that
systems can operate correctly. However, so far, no relevant research has tackled the agreement issue in
the IoT platform based on cloud computing and MEC. Therefore, this is the first time that an algorithm
has been proposed to make all fault-free nodes reach agreement underlying MIoT. In this study, the
agreement problem is revisited with the assumption of node failure due to malicious faults in MIoT.
The proposed algorithm, MEC-based Agreement Algorithm (MECAA) of MIoT, makes all fault-free
nodes communicate with each other and collect the exchanged messages to decide an agreement
value. Based on the agreement value, the algorithm makes all fault-free nodes reach agreement
without the influence of malicious faulty nodes. Finally, we proved theoretically that the proposed
algorithm can tolerate the maximum number of faulty components and using only the minimal rounds
of message exchanges.

The rest of this paper is organized as follows. Section 2 will serve to introduce the proposed MIoT
platform and the basic concepts of the agreement problem. Then, the proposed MECAA of MIoT will
be brought up and illustrated in detail in Section 3. For simulation, a pseudo-code is also provided
here. Section 4 gives an example of executing the proposed protocol. Section 5 is responsible proves
the complexity of our new algorithm. Finally, Section 6 gives the conclusions of this research.

Symmetry 2019, 11, 167 3 of 17

2. Related Works

Before the agreement problem of MIoT can be solved, the proposed topology of MIoT needs to be
defined firstly. Two basic concepts are introduced and discussed in advance: the agreement problems
and the failure types of faulty components.

2.1. The Network Structure

The term MEC was first used in 2013 to describe the implementation of services at the network
edge. At that time, IBM and Nokia Siemens Networks introduced a platform that could run applications
on mobile base stations [7]. In recent years, user demand for data rates and quality of service (QoS)
has grown exponentially. In addition, the development of mobile user devices such as smartphones or
laptops and new mobile applications is rapidly advancing.

Moreover, high battery consumption still poses a significant obstacle, restricting the use of highly
demanding applications [8]. This motivates development of the MCC concept, allowing CC for mobile
users [9]. In MCC, user equipment (UE) can utilize powerful remote centralized CC and storage
resources that are accessible through the mobile operator’s core network and the Internet. However, in
terms of network topology, the MCC, because it is far away from the user, imposes a huge extra load
on the radio and backhaul of the mobile network, and has a high latency due to the data being sent to
a powerful server farm.

In order to solve the problem of long latency, the cloud services should be moved to the vicinity
of the UEs, i.e., to the edge of the mobile network, such as edge computing [8]. Edge computing
can be understood as a special case of MCC. However, in the conventional MCC, the cloud service
is accessed through the Internet connection; in the case of edge computing, it is assumed that the
computing/storage resources are near the UEs. Therefore, compared with MCC, MEC can provide
significantly lower latencies and jitter. Moreover, while the MCC is a completely centralized approach,
the farm of computers is usually placed in one or several locations, and edge computing should be
deployed in a fully distributed manner. On the other hand, edge computing provides only limited
computing and storage resources relative to MCC.

The MEC brings many benefits to all stakeholders such as mobile operators, service providers,
and users. As described in [9], MEC can distinguish between three major categories of use cases,
including consumer-oriented services, operator and third party services, and network performance
and QoE (Quality of Experience) improvement services, depending on the subjects that can benefit
from them. An example of the use cases and scenarios for the MEC is shown in Figure 1 [9].

Symmetry 2019, 11, 167 3 of 15

Moreover, high battery consumption still poses a significant obstacle, restricting the use of highly
demanding applications [8]. This motivates development of the MCC concept, allowing CC for mobile users
[9]. In MCC, user equipment (UE) can utilize powerful remote centralized CC and storage resources that are
accessible through the mobile operator’s core network and the Internet. However, in terms of network
topology, the MCC, because it is far away from the user, imposes a huge extra load on the radio and
backhaul of the mobile network, and has a high latency due to the data being sent to a powerful server farm.

In order to solve the problem of long latency, the cloud services should be moved to the vicinity of the
UEs, i.e., to the edge of the mobile network, such as edge computing [8]. Edge computing can be understood
as a special case of MCC. However, in the conventional MCC, the cloud service is accessed through the
Internet connection; in the case of edge computing, it is assumed that the computing/storage resources are
near the UEs. Therefore, compared with MCC, MEC can provide significantly lower latencies and jitter.
Moreover, while the MCC is a completely centralized approach, the farm of computers is usually placed in
one or several locations, and edge computing should be deployed in a fully distributed manner. On the other
hand, edge computing provides only limited computing and storage resources relative to MCC.

The MEC brings many benefits to all stakeholders such as mobile operators, service providers, and
users. As described in [9], MEC can distinguish between three major categories of use cases, including
consumer-oriented services, operator and third party services, and network performance and QoE (Quality
of Experience) improvement services, depending on the subjects that can benefit from them. An example of
the use cases and scenarios for the MEC is shown in Figure 1 [9].

Figure 1. Example of use cases and scenarios for the MEC [9].

A novel architecture of MEC is proposed by Roman et al. [3], as shown in Figure 2. There are three basic
components to the architecture: 1) Edge devices include all types of mobile devices (UEs) connected to the
Internet; 2) Edge cloud is the less resourceful cloud deployed in each of the mobile base station. Edge cloud is
responsible for traditional network traffic control, including forwarding and filtering, as well as hosting a
variety of mobile edge applications such as edge health care, smart tracking, and more; 3) Public cloud is the
cloud infrastructure hosted in the Internet. The prime objectives of MEC are [3]:

1) Optimization of mobile resources by hosting compute intensive application at the edge network.
2) Optimization of the large data before sending to the cloud.
3) Enabling cloud services within the close proximity of mobile subscribers.
4) Providing context-aware services with the help of radio access network (RAN) information.

Figure 1. Example of use cases and scenarios for the MEC [9].

A novel architecture of MEC is proposed by Roman et al. [3], as shown in Figure 2. There are
three basic components to the architecture: (1) Edge devices include all types of mobile devices (UEs)

Symmetry 2019, 11, 167 4 of 17

connected to the Internet; (2) Edge cloud is the less resourceful cloud deployed in each of the mobile
base station. Edge cloud is responsible for traditional network traffic control, including forwarding
and filtering, as well as hosting a variety of mobile edge applications such as edge health care, smart
tracking, and more; (3) Public cloud is the cloud infrastructure hosted in the Internet. The prime
objectives of MEC are [3]:

(1) Optimization of mobile resources by hosting compute intensive application at the edge network.
(2) Optimization of the large data before sending to the cloud.
(3) Enabling cloud services within the close proximity of mobile subscribers.
(4) Providing context-aware services with the help of radio access network (RAN) information.Symmetry 2019, 11, 167 4 of 15

Figure 2. The architecture of MEC proposed by Roman et al. [3].

With the advancement and development of various information technologies, computing problems
have become larger and more complex [4]. The CC environment allows users to access Internet applications
more quickly. Most CC infrastructures include reliable services provided through data centers and are built
on servers with different levels of virtualization technologies [10]. As long as users can access the network
infrastructure, users can access these services. Commercial offerings must meet the quality of service
requirements of customers, and typically offer service-level agreements [4]. Therefore, a distributed system
must have high stability to handle instances where many users utilize a given environment. In this section,
the proposed IoT platform is discussed.

In order to provide a highly flexible and reliable platform of IoT, a MEC-based IoT platform (MIoT) is
proposed in this study. The topology of MIoT is shown in Figure 3. There are two layers in the MIoT:
MEC-layer and CC-layer. The MEC-layer is constructed by a set of MEC clusters; each MEC cluster is
composed of a large number of MEC servers (MEC nodes), responsible for the processing of specific
information and judgments. The CC-layer is made up of many cloud nodes, which provide cloud users’
services. In the MIoT environment, through the combination of a large number of mobile devices (UEs),
various types of data can be collected and a wide range of services can be provided.

Figure 3. The topology of MIoT.

In short, MIoT is proposed by the MEC, where data can be analyzed and processed by the MEC-layer
instead of being centralized in the CC. By coordinating and managing the computing and storage resources at
the edge of the network, more and more connected devices and the emerging needs of IoT can be processed
by the MEC. When the technological requirements and constraints of the IoT applications are properly
fulfilled, it is up to the platform designer to decide whether an endpoint should be served by the CC, the
MEC, or an adequate combination of the two at any given time during the service lifetime. Based on the above
characteristics, the MEC can serve as a suitable platform for providing key services and applications for the
IoT, including connecting vehicles, smart cities, and shopping centers.

Figure 2. The architecture of MEC proposed by Roman et al. [3].

With the advancement and development of various information technologies, computing
problems have become larger and more complex [4]. The CC environment allows users to access
Internet applications more quickly. Most CC infrastructures include reliable services provided through
data centers and are built on servers with different levels of virtualization technologies [10]. As long as
users can access the network infrastructure, users can access these services. Commercial offerings must
meet the quality of service requirements of customers, and typically offer service-level agreements [4].
Therefore, a distributed system must have high stability to handle instances where many users utilize
a given environment. In this section, the proposed IoT platform is discussed.

In order to provide a highly flexible and reliable platform of IoT, a MEC-based IoT platform
(MIoT) is proposed in this study. The topology of MIoT is shown in Figure 3. There are two layers in
the MIoT: MEC-layer and CC-layer. The MEC-layer is constructed by a set of MEC clusters; each MEC
cluster is composed of a large number of MEC servers (MEC nodes), responsible for the processing of
specific information and judgments. The CC-layer is made up of many cloud nodes, which provide
cloud users’ services. In the MIoT environment, through the combination of a large number of mobile
devices (UEs), various types of data can be collected and a wide range of services can be provided.

In short, MIoT is proposed by the MEC, where data can be analyzed and processed by the
MEC-layer instead of being centralized in the CC. By coordinating and managing the computing and
storage resources at the edge of the network, more and more connected devices and the emerging
needs of IoT can be processed by the MEC. When the technological requirements and constraints of the
IoT applications are properly fulfilled, it is up to the platform designer to decide whether an endpoint
should be served by the CC, the MEC, or an adequate combination of the two at any given time during
the service lifetime. Based on the above characteristics, the MEC can serve as a suitable platform for

Symmetry 2019, 11, 167 5 of 17

providing key services and applications for the IoT, including connecting vehicles, smart cities, and
shopping centers.

Symmetry 2019, 11, 167 4 of 15

Figure 2. The architecture of MEC proposed by Roman et al. [3].

With the advancement and development of various information technologies, computing problems
have become larger and more complex [4]. The CC environment allows users to access Internet applications
more quickly. Most CC infrastructures include reliable services provided through data centers and are built
on servers with different levels of virtualization technologies [10]. As long as users can access the network
infrastructure, users can access these services. Commercial offerings must meet the quality of service
requirements of customers, and typically offer service-level agreements [4]. Therefore, a distributed system
must have high stability to handle instances where many users utilize a given environment. In this section,
the proposed IoT platform is discussed.

In order to provide a highly flexible and reliable platform of IoT, a MEC-based IoT platform (MIoT) is
proposed in this study. The topology of MIoT is shown in Figure 3. There are two layers in the MIoT:
MEC-layer and CC-layer. The MEC-layer is constructed by a set of MEC clusters; each MEC cluster is
composed of a large number of MEC servers (MEC nodes), responsible for the processing of specific
information and judgments. The CC-layer is made up of many cloud nodes, which provide cloud users’
services. In the MIoT environment, through the combination of a large number of mobile devices (UEs),
various types of data can be collected and a wide range of services can be provided.

Figure 3. The topology of MIoT.

In short, MIoT is proposed by the MEC, where data can be analyzed and processed by the MEC-layer
instead of being centralized in the CC. By coordinating and managing the computing and storage resources at
the edge of the network, more and more connected devices and the emerging needs of IoT can be processed
by the MEC. When the technological requirements and constraints of the IoT applications are properly
fulfilled, it is up to the platform designer to decide whether an endpoint should be served by the CC, the
MEC, or an adequate combination of the two at any given time during the service lifetime. Based on the above
characteristics, the MEC can serve as a suitable platform for providing key services and applications for the
IoT, including connecting vehicles, smart cities, and shopping centers.

Figure 3. The topology of MIoT.

Recently, the Intelligent Transportation System (ITS) has become increasingly popular in many
countries. When the traffic control system of ITS is constructed by MIoT, connecting vehicles are used
to get the data required by the ITS [11]. The MEC-layer is used to capture the traffic status of each
intersection. The CC-layer is used as a traffic control center. An example of the traffic control system
constructed by MIoT is shown in Figure 4.

Symmetry 2019, 11, 167 5 of 15

Recently, the Intelligent Transportation System (ITS) has become increasingly popular in many countries.
When the traffic control system of ITS is constructed by MIoT, connecting vehicles are used to get the data
required by the ITS [11]. The MEC-layer is used to capture the traffic status of each intersection. The CC-layer
is used as a traffic control center. An example of the traffic control system constructed by MIoT is shown in
Figure 4.

Figure 4. An example of a traffic control system constructed by MIoT.

2.2. Agreement Problems.

In an IoT environment, a mechanism to allow a given set of nodes to agree on a common value, such as
the initial time and the time stamp, is necessary for a reliable smart city [12–13]. Such a unanimity problem is
called an agreement problem [14]. It requires a number of independent nodes to reach agreement in cases
where some of those nodes might be faulty. Namely, the goal of agreement is making the fault-free nodes
reach a common value. There are three kinds of agreement issues, Byzantine agreement [6,15], consensus [16],
and interaction consistency (IC) [17–18] (Wang et al., 2018). In our study, the consensus problem of the
MEC-layer and the IC problem of the CC-layer in MIoT will be explored separately.

The consensus problem is defined by Meyer and Pradhan [16]. The solutions to the consensus problem
are defined as protocols that achieve a consensus and use the minimum number of rounds of message
exchanges to achieve the maximum number of allowable faulty nodes. In this study, the solution to the
consensus problem involves the MEC-layer of MIoT. The idea is to make the fault-free MEC nodes in the
MEC-layer of MIoT reach a consensus. Each MEC node of the MEC-layer chooses an initial value to start with,
and they communicate with each other by exchanging messages. The MEC nodes are understood to have
reached a consensus if the following conditions are satisfied [16]:

Consensus: All fault-free MEC nodes agree on a common value.
Validity: If the initial value of each fault-free MEC node ni is vi then all fault-free MEC nodes shall

agree on the value vi.
A closely related sub-problem, the interactive consistency problem (IC problem) has been studied

extensively [17–18] (Wang et al., 2018). In this study, the solution to the IC problem involves the CC-layer of
MIoT. The idea of IC is to make the fault-free cloud nodes in the CC-layer reach interactive consistency. Each
cloud node chooses an initial value and communicates with the others by exchanging messages. There is
interactive consistency in that each cloud node i has its initial value vi and agrees on a set of common values.
Therefore, interactive consistency has been achieved if the following conditions are met [17–18]:

Consistency: Each fault-free cloud node agrees on a set of common values V=[v1, v2, …, vn].
Validity: If the initial value of fault-free cloud node i is vi, then the i-th value in the common vector V

should be vi.
The IoT environment is an Internet-based development. It is a style of computing in which dynamically

scalable and often virtualized resources are provided as a service over the Internet. Nevertheless, in an IoT
environment, the connected topology is not very significant. In this study, the consensus problem is to be
solved on the MEC-layer and the IC problem is to be solved on the CC-layer of the proposed MIoT platform.
In addition, the proposed algorithm MECAA can use a minimum number of message exchanges and can
tolerate a maximum number of allowable faulty components to make each fault-free node reach an agreement

Figure 4. An example of a traffic control system constructed by MIoT.

2.2. Agreement Problems

In an IoT environment, a mechanism to allow a given set of nodes to agree on a common value,
such as the initial time and the time stamp, is necessary for a reliable smart city [12,13]. Such a
unanimity problem is called an agreement problem [14]. It requires a number of independent nodes to
reach agreement in cases where some of those nodes might be faulty. Namely, the goal of agreement
is making the fault-free nodes reach a common value. There are three kinds of agreement issues,
Byzantine agreement [6,15], consensus [16], and interaction consistency (IC) [17,18] (Wang et al., 2018).
In our study, the consensus problem of the MEC-layer and the IC problem of the CC-layer in MIoT
will be explored separately.

The consensus problem is defined by Meyer and Pradhan [16]. The solutions to the consensus
problem are defined as protocols that achieve a consensus and use the minimum number of rounds
of message exchanges to achieve the maximum number of allowable faulty nodes. In this study, the
solution to the consensus problem involves the MEC-layer of MIoT. The idea is to make the fault-free
MEC nodes in the MEC-layer of MIoT reach a consensus. Each MEC node of the MEC-layer chooses
an initial value to start with, and they communicate with each other by exchanging messages. The
MEC nodes are understood to have reached a consensus if the following conditions are satisfied [16]:

Symmetry 2019, 11, 167 6 of 17

Consensus: All fault-free MEC nodes agree on a common value.
Validity: If the initial value of each fault-free MEC node ni is vi then all fault-free MEC nodes shall agree

on the value vi.

A closely related sub-problem, the interactive consistency problem (IC problem) has been studied
extensively [17,18] (Wang et al., 2018). In this study, the solution to the IC problem involves the
CC-layer of MIoT. The idea of IC is to make the fault-free cloud nodes in the CC-layer reach interactive
consistency. Each cloud node chooses an initial value and communicates with the others by exchanging
messages. There is interactive consistency in that each cloud node i has its initial value vi and agrees
on a set of common values. Therefore, interactive consistency has been achieved if the following
conditions are met [17,18]:

Consistency: Each fault-free cloud node agrees on a set of common values V = [v1, v2, . . . , vn].
Validity: If the initial value of fault-free cloud node i is vi, then the i-th value in the common vector V

should be vi.

The IoT environment is an Internet-based development. It is a style of computing in which
dynamically scalable and often virtualized resources are provided as a service over the Internet.
Nevertheless, in an IoT environment, the connected topology is not very significant. In this study,
the consensus problem is to be solved on the MEC-layer and the IC problem is to be solved on
the CC-layer of the proposed MIoT platform. In addition, the proposed algorithm MECAA can
use a minimum number of message exchanges and can tolerate a maximum number of allowable
faulty components to make each fault-free node reach an agreement in cases of node failure. Due to
agreement being a purely mathematical problem, the correctness of all previous research is proven
by mathematical methods [14–21]. The proposed polynomial time algorithm is a static and exact
algorithm; a mathematical proof is provided to illustrate the correctness and time complexity in
this study. Theoretical analysis of algorithms for Byzantine Agreement can provide insight into
their efficiency.

2.3. Failure Types

In a distributed system, the network components may not always work well. A node is said to be
fault-free if it follows algorithm specifications during the execution of an algorithm; otherwise, the
node is said to be faulty.

The symptoms of node failure can be classified into two categories. There are dormant faults and
malicious faults [15]. Dormant faults of nodes include crashes and omissions. A crash fault occurs
when the node is damaged. Omission faults occur when nodes cannot send or receive messages on
time or at all. In the event of a malicious failure, the behavior of the faulty node is unpredictable and
arbitrary. The message transmitted by the malicious faulty node is random or arbitrary. This is the
most destructive type of failure and leads to the most serious problems. If the agreement problem can
be resolved in the case of a malicious fault, then the agreement problem can also be resolved in other
failure modes.

3. The Proposed Protocol

In this study, the agreement problem is discussed in the proposed MIoT platform; no delay of
nodes or communication media is included in our discussion. Therefore, the nodes executing our
new algorithm should receive messages from other nodes within a predictable period of time. If the
message is not received on time, the message must have been influenced by faulty components.

In the agreement problem, the number of faulty components allowed is determined by the total
number of nodes. In Lamport et al.’s algorithm [15], the constraint is n > 3f, where n is the number of
nodes and f is the total number of allowable malicious faulty nodes in the distributed system.

Symmetry 2019, 11, 167 7 of 17

In this research, MECAA is used to solve the agreement problem in MIoT with malicious fallible
nodes. With consideration for efficient agreement, the UEs of MIoT is used to request the specific
IoT application, the procedure Consensus is applied to the MEC nodes of the MEC-layer, and the
procedure Interactive Consistency is applied to each cloud node in the CC-layer.

Therefore, the constraints of the MECAA are as follows.

• (Constraint of MEC-layer): nEj >

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 2fmEj where nEj is the number of MEC nodes
and fmEj is the total number of allowable malicious faulty MEC nodes in MEC cluster Ej of the
MEC-layer. This constraint specifies the number of MEC nodes required in MEC cluster Ej.

• (Constraint of CC-layer): The (Constraint of CC-layer) is similar to the (Constraint of MEC-layer)
in that nC >

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 2fmC where nC is the number of cloud nodes and fmC is the total
number of allowable malicious faulty cloud nodes in the CC-layer.

(Constraint of MEC-layer) specifies the number of MEC nodes in MEC cluster Ej of MEC-layer
required; due to the unit of the MEC cluster Ej of MEC-layer is MEC node, so that an agreement can be
achieved if nEj >

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 2fmEj. (Constraint of CC-layer) specifies the number of cloud nodes
required in the CC-layer; due to the unit of the CC-layer being a cloud node, an agreement can be
achieved if nC >

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 2fmC.
In this study, MECAA is proposed to solve the agreement problem with fallible nodes underlying

the MIoT platform. The proposed algorithm MECAA is divided into two parts based on the two layers
of MIoT. The nodes of the MEC-layer execute procedure Consensus, and the nodes of the CC-layer
execute procedure Interactive Consistency.

When UE makes a specific service request, the request for the specific application service is
transferred to the corresponding MEC cluster of the MEC-layer. In procedure Consensus, the MEC
node takes the majority value of the requests received from UEs firstly, and the majority value is used
as the initial value (vi) of MEC node to execute function Agreement. When the Consensus value of
each MEC cluster is obtained, the value is represented as the result of a specific service. Finally, the
Consensus value is transferred to the CC-layer. In procedure Interactive Consistency, the primary
work of cloud nodes in the CC-layer is to collect the results of different specific services, and then the
request vector of the interactive consistency can be obtained to provide an integrated service such as
connecting vehicles, smart cities, and shopping centers. The progression steps of MECAA are shown
in Figure 5.

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.

The received messages of Request Gathering Step are stored in a tree structure called the
request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

In the Request Gathering Step of function Agreement, the vertices with repeated node names in each rg-tree
will be deleted. Finally, all fault-free nodes use function VOTE to remove the faulty influence from faulty
nodes to obtain the common value. When the function VOTE is applied to the root of each corresponding
rg-tree, and then the common value VOTE(i) is obtained. The proposed algorithm MECAA is presented in
Table 1.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer
need to execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive
Consistency. In procedures Consensus and Interactive Consistency, the function Agreement will be called
up. There are two steps of function Agreement, one is the Request Gathering Step, and the other is the
Request Deciding Step. The parameters of Agreement include σ, vs, and nA, where σ is the required

Symmetry 2019, 11, 167 8 of 17

rounds, vs is the initial value, and nA is the number of nodes participating in the agreement. In order
for all fault-free nodes to reach agreement, each node must collect enough exchanged messages from
all other nodes if they are fault-free. As a result, exchanging the received values helps fault-free nodes
to collect enough exchanged messages.

Fischer and Lynch proved that

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(n − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 is the rounds of message exchanges sufficient to
solve an agreement problem, where n is the number of nodes in the underlying network [17,18]. Based
on the works of Fischer and Lynch,

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(n − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 rounds of message exchanges are the lower bound
for solving the agreement problem. Therefore, the required rounds σ is

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 when MEC
nodes execute the function Agreement of procedure Consensus, where nEj is the number of MEC nodes
in MEC cluster Ej of MEC-layer and nEj > 3. Moreover, the required rounds σ is

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1
when cloud nodes execute the function Agreement of procedure Interactive Consistency, where nC is the
number of cloud nodes in the CC-layer and nC > 3.

The received messages of Request Gathering Step are stored in a tree structure called the
request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free
node maintains such an rg-tree during the execution of MECAA. In the first round of the Request
Gathering Step, node i transmits its initial request to other nodes. However, that each receiver node
can always identify the sender of a request is assumed. When a fault-free node receives the request
sent from node i, it stores the received value, denoted as req(i), at the root of its rg-tree. In the second
round, each node transmits the root value of its rg-tree to all other nodes. If node 1 sends request req(i)
to node 2, then node 2 stores the received request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly,
if node 2 sends request req(i1) to node 1, the received request is named req(i12) and stored in vertex i12
of node 1’s rg-tree in the third round. Generally, request req(i12 . . . n), stored in the vertex i12 . . . n of a
rg-tree, implies that the request just received was sent through the node i, the node 1, . . . , the node n;
and the node n is the latest node to pass the request. When a request is transmitted through a node
more than once, the name of the node will also be repeated. For instance, request req(11), stored in
vertex 11, indicates that the request is sent to node 1, then to node 1 again; therefore, name 1 appears
twice in vertex name 11. In summary, the root of rg-tree is always named i to denote that the stored
request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node names.
The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

Symmetry 2019, 11, 167 8 of 15

Figure 6. An example of rg-tree.

Table 1. The algorithm MECAA.

MEC Agreement Algorithm (MECAA)

Main
1. The requests for the application services are sent to the corresponding MEC cluster of MEC-layer by UEs.
2. The MEC nodes of the MEC-layer execute procedure Consensus.
3. The cloud nodes of the CC-layer execute procedure Interactive Consistency.
Procedure Consensus (for the MEC node eij in the MEC cluster Ej of MEC-layer, 1≤i≤nEj where nEj is the number of
MEC nodes in MEC cluster Ej of MEC-layer and nEj>3)
1. The MEC node eij receives the requests sent from UEs.
2. The received requests are taken as the majority. And the majority value is used as the initial value (vi) of eij

when function Agreement is executed.
3. Compute the number of rounds required, σ = (nEj–1)/3+1. Execute function Agreement(σ, vi, nEj), then the

agreement vector of the specific application service requests is obtained.
4. Take the majority value of the agreement vector, and then the Consensus value is obtained.
5. The Consensus value is transferred to CC-layer.
Procedure Interactive Consistency (for the cloud node ci in the CC-layer, 1≤j≤nC, where nC is the number of cloud
nodes in the CC-layer and nC>3)
1. The cloud node cj receives the Consensus values transferred from nodes in the MEC cluster Ej of MEC-layer.
2. The received Consensus values from nodes in the MEC cluster Ej of MEC-layer are taken as the majority. And

the majority value is used as the initial value (vj) of cj when function Agreement is executed.
3. Compute the number of rounds required, σ = (nC–1)/3+1. Execute function Agreement(σ, vj, nC), then the

agreement vector is obtained.
4. The obtained vector is IC value.
Agreement(σ, vs, nA) (σ is the required rounds, vs is the initial value and nA is the number of nodes participating in
the agreement)
Request Gathering Step:

If r =1
then:

1) Each node broadcasts its initial value vs to other nodes in the same cluster simultaneously.
2) Each node receives and stores the nA values sent from nA nodes of the same cluster in the

corresponding root of its rg-tree.
For
2<r≤σ, do:

1) Each node transmits the values at level r−1 in its rg-tree to other nodes in the same cluster
simultaneously.

2) Each receiver node stores the received values in the corresponding vertices at level r of its rg-tree.
Request Deciding Step:

Step 1: Reorganize each rg-tree by deleting the vertices with repeated node names.
Step 2: Using function VOTE with the root i of each node’s rg-tree and obtaining the common value VOTE(i).
VOTE(α)= If the α is a leaf, then outputs the value α.

If the majority value does not exist, then output the default value φ.

However, analysis of algorithms under varying parameters and practical constraints through computer
simulation can be key to understanding the performance and trade-offs of theoretically well-performing
algorithms [20]. In order to facilitate the simulation experiment, the pseudo code of the proposed MECAA is
shown in Table 2. There are four parts of MECAA, including Consensus(nEj, Ej), Interactive Consistency(nC, Ej),
Agreement(σ, vs, nA), and vote_value(α). The functions involved in MECAA are listed as follows:

trans(req, Ej): transfer the request of a specific application service to MEC cluster Ej.

Figure 6. An example of rg-tree.

In the Request Gathering Step of function Agreement, the vertices with repeated node names in each
rg-tree will be deleted. Finally, all fault-free nodes use function VOTE to remove the faulty influence
from faulty nodes to obtain the common value. When the function VOTE is applied to the root of
each corresponding rg-tree, and then the common value VOTE(i) is obtained. The proposed algorithm
MECAA is presented in Table 1.

Symmetry 2019, 11, 167 9 of 17

Table 1. The algorithm MECAA.

MEC Agreement Algorithm (MECAA)

Main

1. The requests for the application services are sent to the corresponding MEC cluster of MEC-layer by UEs.
2. The MEC nodes of the MEC-layer execute procedure Consensus.
3. The cloud nodes of the CC-layer execute procedure Interactive Consistency.

Procedure Consensus (for the MEC node eij in the MEC cluster Ej of MEC-layer, 1 ≤ i ≤ nEj where nEj is the
number of MEC nodes in MEC cluster Ej of MEC-layer and nEj > 3)

1. The MEC node eij receives the requests sent from UEs.
2. The received requests are taken as the majority. And the majority value is used as the initial value (vi) of eij

when function Agreement is executed.
3. Compute the number of rounds required, σ =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1. Execute function Agreement(σ, vi, nEj), then
the agreement vector of the specific application service requests is obtained.

4. Take the majority value of the agreement vector, and then the Consensus value is obtained.
5. The Consensus value is transferred to CC-layer.

Procedure Interactive Consistency (for the cloud node ci in the CC-layer, 1 ≤ j ≤ nC, where nC is the number of
cloud nodes in the CC-layer and nC > 3)

1. The cloud node cj receives the Consensus values transferred from nodes in the MEC cluster Ej of MEC-layer.
2. The received Consensus values from nodes in the MEC cluster Ej of MEC-layer are taken as the majority.

And the majority value is used as the initial value (vj) of cj when function Agreement is executed.

3. Compute the number of rounds required, σ =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1. Execute function Agreement(σ, vj, nC), then
the agreement vector is obtained.

4. The obtained vector is IC value.

Agreement(σ, vs, nA) (σ is the required rounds, vs is the initial value and nA is the number of nodes participating in
the agreement)

Request Gathering Step:

If r = 1 then:

(1) Each node broadcasts its initial value vs to other nodes in the
same cluster simultaneously.

(2) Each node receives and stores the nA values sent from nA
nodes of the same cluster in the corresponding root of its
rg-tree.

For 2 < r ≤ σ, do:

(1) Each node transmits the values at level r−1 in its rg-tree to
other nodes in the same cluster simultaneously.

(2) Each receiver node stores the received values in the
corresponding vertices at level r of its rg-tree.

Request Deciding Step:

Step 1: Reorganize each rg-tree by deleting the vertices with repeated
node names.

Step 2: Using function VOTE with the root i of each node’s rg-tree and
obtaining the common value VOTE(i).

VOTE(α)= If the α is a leaf, then outputs the value α.
If the majority value does not exist, then output the default value ϕ.

However, analysis of algorithms under varying parameters and practical constraints through
computer simulation can be key to understanding the performance and trade-offs of theoretically
well-performing algorithms [20]. In order to facilitate the simulation experiment, the pseudo code of the
proposed MECAA is shown in Table 2. There are four parts of MECAA, including Consensus(nEj, Ej),
Interactive Consistency(nC, Ej), Agreement(σ, vs, nA), and vote_value(α). The functions involved in
MECAA are listed as follows:

trans(req, Ej): transfer the request of a specific application service to MEC cluster Ej.

recv(req, Ej): receive the requests sent from UEs in the MEC cluster Ej.

majority(recv(req, Ej)): take the majority of the received requests from UEs.

recv(cv, Ej): receive the Consensus values transferred from nodes in the MEC cluster Ej.

Symmetry 2019, 11, 167 10 of 17

majority(recv(cv, Ej)): take the majority of the received Consensus values from nodes in the MEC
cluster Ej.

trans(cv, Ej): transfer the Consensus value of MEC cluster Ej to CC-layer.

send(i, <vs>, nA): node i sends the initial value vs to all nA nodes in the same cluster.
rvst(i, nA, <vs, >, rg-tree(root)): node i receives and stores the nA <vs, > sent from nA nodes of same
cluster in the corresponding root of its rg-tree.
send(i, <val, r − 1>, nA): node i sends the values at level r − 1 in its rg-tree to other nA nodes in
same cluster.
rvst(i, nA, <val, r − 1>, re-tree(r)): node i receives and stores the nA <val, r − 1> sent from nA nodes
of same cluster in the corresponding vertices at level r of its rg-tree.
retree(i, rg-tree): delete the vertices in node i’s rg-tree with repeated node names.
vote_value(new_rg-tree): compute the function value at the root of the new_rg-tree.
tree_maj(α): take the majority value of new_rg-tree.

Table 2. Pseudo code of MECAA.

Symmetry 2019, 11, 167 10 of 16

Table 2. Pseudo code of MECAA.

MECAP MECAA /* MEC Agreement Algorithm*/
{
for i = 1 to NUE /* NUE is the total number of UEs */
trans(req, Ej);
end
for j = 1 to NE /* NE is the total number of MEC
clusters in MEC-layer */

Consensus(nEj, Ej)
Interactive Consistency(nC, Ej)

end
}

Consensus(nEj, Ej)

{
for i = 1 to nEj

recv(req, Ej));
vi = majority(recv(req, Ej));
σ = (nEj–1)/3+1;
cv=Agreement(σ, vi, nEj);
trans(cv, Ej);

end
}

Interactive Consistency(nC, Ej)
{
for j = 1 to nC

recv(cv, Ej);
vj =najority(recv(cv, Ej));
σ = (nC–1)/3+1;
IC=Agreement(σ, vj, nC);

end
}

Agreement(σ, vs, nA) /* σ is the required rounds,
vs is the initial value and nA is the number of nodes
participating in the agreement */
{
int VOTE[nA];
/* Request Gathering Step */
for i = 1 to nA do

send(i, <vs, >, nA);
rvst(i, nA, <vs, >, rg-tree(root));

end
for r = 2 to σ do

for i=1 to nA do
send(i, <val, r-1>, nA);
rvst(i, nA, <val, r-1>, re-tree(r));

end
/* Request Deciding Step */
for i=1 to nA do

new_rg-tree=retree(i, rg-tree);
VOTE(i)=vote_value(new_rg-tree);

end
return(VOTE);
}

vote_value(α)
{

if (α is a leaf)
return(α);

else
if (tree_maj(α)=m) /* m is 0 or 1/

return(m);
else

return(φ);

4. An Example of the Execution of MECAA

An example of executing MECAA, the application of connected vehicles by MIoT, is presented in Figure
7. Each vehicle (UE) asks for the service of traffic status. The request of each UE is shown in Figure 7a. And,
the requests of UEs are transferred to MEC cluster E1 of MEC-layer.

In procedure Consensus, each node in MEC cluster E1 receives the requests transferred from UEs. The
received requests are taken as the majority and the majority value is used as the initial value (vi) of node in
MEC cluster E1 when function Agreement is executed. The initial value may be the initial time or the time
stamp of the central traffic controller. Then, the number of rounds required, σ = (nEj–1)/3+1, is computed
and function Agreement(σ, vi, nEj) is executed. The initial value of each node in MEC cluster E1 of MEC-layer is
shown in Figure 7b.

For this example, two rounds (σ=(nE1–1)/3+1= (5–1)/3+1=2, where nE1 is the number of nodes in MEC
cluster E1) are required to exchange the messages when Agreement is executed. In this example, there are five
nodes in MEC cluster E1 and MEC node e15 is assumed in malicious fault. Figure 7b gives the initial value of
each node in MEC cluster E1. During the first round of Request Gathering Step, each node of MEC cluster E1
transmits the initial value to all nodes of MEC cluster E1 simultaneously, and stores the received nE1 (=5)
values in the corresponding root of each rg-tree, as shown in Figure 7c. In the second round, each node
transmits the values in the root of the corresponding rg-tree to other nodes in MEC cluster E1 simultaneously,
and stores the received values in level 1 of the nE1 (=5) corresponding rg-trees. The progression of nodes e11 and
e13 during Request Gathering Step is shown in Figure 7d,f. Subsequently, in the Request Deciding Step, the rg-tree
is reorganized by deleting those vertices with repeated node names. The corresponding rg-tree of nodes e11

4. An Example of the Execution of MECAA

An example of executing MECAA, the application of connected vehicles by MIoT, is presented in
Figure 7. Each vehicle (UE) asks for the service of traffic status. The request of each UE is shown in
Figure 7a. And, the requests of UEs are transferred to MEC cluster E1 of MEC-layer.

Symmetry 2019, 11, 167 11 of 17

Symmetry 2019, 11, 167 10 of 16

(a)

(b)

(c)

(d)

(e)

Figure 7. Cont.

Symmetry 2019, 11, 167 12 of 17
Symmetry 2019, 11, 167 11 of 16

(f)

(g)

(h)

(i)

(j)

Figure 7. Cont.

Symmetry 2019, 11, 167 13 of 17

Symmetry 2019, 11, 167 12 of 16

(k)

(l)

(m)

(n)

(o)

 root
level 1

level 2

level 3

c4

1
req(1)=1

12
req(12)=1

13
req(13)=0

14
req(14)=1

15
req(15)=1

2
req(2)=1

21
req(21)=1

23
req(23)=0

24
req(24)=1

25
req(25)=1

3
req(3)=0

31
req(31)=0

32
req(32)=1

34
req(34)=0

35
req(35)=0

4
req(4)=1

41
req(41)=1

42
req(42)=1

43
req(43)=0

45
req(45)=1

5
req(5)=1

51
req(51)=1

52
req(52)=1

53
req(53)=1

54
req(54)=1

Figure 7. (a) The request data of each UE for the connected vehicles; (b) The initial value of each node
in MEC cluster E1 of MEC-layer.; (c) The rg-tree of each node in MEC cluster E1 at the 1st round of
Request Gathering Step; (d) The final rg-tree of e11; (e) The rg-tree of e11 by Request Deciding Step; (f) The
final rg-tree of e13; (g) The rg-tree of e13 by Request Deciding Step; (h) The common value VOTE(i)
by in Decision Making g Phase of MEC-layer; (i) The initial value of each node in the CC-layer; (j) The
rg-tree of each node in the CC-layer at the first round of Request Gathering Step; (k) The final rg-tree of c1;
(l) The rg-tree of c1 by Request Deciding Step; (m) The final rg-tree of c4; (n) The rg-tree of c4 by Request
Deciding Step; (o) The common value VOTE(i) in Decision Making Phase of the CC-layer.

Symmetry 2019, 11, 167 14 of 17

In procedure Consensus, each node in MEC cluster E1 receives the requests transferred from UEs.
The received requests are taken as the majority and the majority value is used as the initial value
(vi) of node in MEC cluster E1 when function Agreement is executed. The initial value may be the
initial time or the time stamp of the central traffic controller. Then, the number of rounds required,
σ =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1, is computed and function Agreement(σ, vi, nEj) is executed. The initial value of
each node in MEC cluster E1 of MEC-layer is shown in Figure 7b.

For this example, two rounds (σ =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nE1 − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(5–1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 = 2, where nE1 is the number
of nodes in MEC cluster E1) are required to exchange the messages when Agreement is executed.
In this example, there are five nodes in MEC cluster E1 and MEC node e15 is assumed in malicious
fault. Figure 7b gives the initial value of each node in MEC cluster E1. During the first round of
Request Gathering Step, each node of MEC cluster E1 transmits the initial value to all nodes of MEC
cluster E1 simultaneously, and stores the received nE1 (=5) values in the corresponding root of each
rg-tree, as shown in Figure 7c. In the second round, each node transmits the values in the root of
the corresponding rg-tree to other nodes in MEC cluster E1 simultaneously, and stores the received
values in level 1 of the nE1 (=5) corresponding rg-trees. The progression of nodes e11 and e13 during
Request Gathering Step is shown in Figure 7d,f. Subsequently, in the Request Deciding Step, the rg-tree is
reorganized by deleting those vertices with repeated node names. The corresponding rg-tree of nodes
e11 and e13 is shown in Figure 7e,g. Then, function VOTE is applied on the rg-tree root of each node to
take the majority value. The majority value of the agreement vector is taken, and the Consensus value
is obtained. The Consensus value of nodes e11 and e13 is obtained and shown in Figure 7h. Finally, the
Consensus value of each MEC cluster in the MEC-layer is transferred to the CC-layer.

In procedure Interactive Consistency, the cloud node in the CC-layer receives the Consensus value
from nodes in the MEC cluster of MEC-layer. The received Consensus values from nodes in the MEC
cluster are taken as the majority. The majority value is used as the initial value of the cloud node
when function Agreement is executed. The initial value of each node in the CC-layer is shown in
Figure 7i. For this example, two rounds (σ =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 + 1 =

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(5–1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 = 2, where nC is the
number of nodes in the CC-layer) are required to execute Agreement. In this example, there are five
nodes in the CC-layer and cloud node c3 is assumed to have a malicious fault. Figure 7i is the initial
value of each node in the CC-layer. During the first round of Request Gathering Step, each node of the
CC-layer transmits the initial value to all nodes of the CC-layer and stores the received nC (=5) values
in the corresponding root of each rg-tree simultaneously, as shown in Figure 7j. In the second round,
each node transmits the values in the root of the corresponding rg-tree to other nodes in the CC-layer
simultaneously, and stores the received values in level 1 of the nC (=5) corresponding rg-trees. The
progression of nodes c1 and c4 during Request Gathering Step is shown in Figure 7k,m. Subsequently, in
the Request Deciding Step, the rg-tree is reorganized and the corresponding rg-tree of nodes c1 and c4
is shown in Figure 7l,n. Then, function VOTE is applied on the rg-tree root of each node to take the
majority value.

The majority value obtained through function Agreement is mapped to a traffic status. The IC
value is a vector, and each element in the vector is the majority value obtained through Agreement
function. Each element is used to present the request of a specific application. The IC value of nodes c1

and c4 is shown in Figure 7o. Eventually, an agreement is reached in MIoT. Finally, the service of traffic
control system can be supported by each cloud node in the CC-layer.

5. The Complexity of MECAA

The following theorems are used to prove the complexity of MECAA, following the method
of [21]. The complexity of MECAA is evaluated in terms of (1) the minimal number of rounds of
message exchanges, and (2) the maximum number of allowable faulty nodes. Theorems 1 and 2 below
will show that the optimal solution is reached.

Symmetry 2019, 11, 167 15 of 17

Theorem 1. The number of required rounds of message exchanges by MECAA is the minimum.

Proof: The total number of required rounds of message exchanges by MECAA can be discussed by
two layers of MIoT.

(1) MEC-layer: Because message passing is required only in the Request Gathering Step, the Request
Gathering Step is time consuming. Dolev and Reischuk pointed out that

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(n–1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 rounds are
the minimum number of rounds to send sufficient messages to achieve agreement in an n-node
fallible distributed system [21]. However, in the fallible MEC-layer, the MEC nodes maybe in
malicious fault. In addition, each node in the fallible MEC-layer must exchange messages with
other nodes. Therefore, a constraint on the minimum number of rounds can be applied to the
study. In other words, in the MEC-layer, there are nEj nodes in the MEC cluster Ej; MECAA
needs

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 rounds to exchange messages. In an E-clusters MEC-layer, the nodes in
each MEC cluster execute MECAA simultaneously, where E is the total number of clusters in the
MEC-layer of MIoT. Therefore, the required rounds for executing MECAA by each node in all
MEC clusters depend on the number of nodes in the MEC cluster.

(2) CC-layer: As in the discussion of the number of message exchanges required in the MEC-layer.
In the CC-layer, the research of Dolev and Reischuk can still be applied [21]. In the CC-layer,
there are nC nodes; MECAA needs

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

+ 1 rounds to exchange messages.

In short, number of required rounds of message exchanges by MECAA in MIoT is the minimum. �

Theorem 2. The number of allowable faulty nodes by MECAA is the maximum.

Proof: The total number of allowable faulty nodes by MECAA is illustrated by the two layers of MIoT.

(1) MEC-layer: Fischer and Lynch indicate the lower bound for agreement problem for node faults
as f ≤

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(n − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

, where f is the total number of allowable malicious faulty nodes and n is the
total number of nodes in a distributed computing system [17]. Therefore, f ≤

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(n − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

in the
study of Fischer and Lynch [17] can be applied to fmEj ≤

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nEj − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

in the MEC-layer, where
fmEj is the total number of allowable malicious faulty MEC nodes in MEC cluster Ej and nEj is
the number of nodes in MEC cluster Ej. Then, TFE = ∑E

j=1 fmEj where E is the total number of
MEC clusters in the MEC-layer of MIoT, and TFE is the total number of allowable faulty nodes in
the MEC-layer.

(2) CC-layer: The research results of Fischer and Lynch [17] can also be applied to the
CC-layer. Therefore, fmC is the total number of allowable faulty nodes in the CC-layer, and
fmC ≤

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC − 1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

where nC is the number of cloud nodes.

In summary, the maximum number of allowable faulty components by MECAA is T = TFE + fmC
= ∑E

j=1 fmEj +

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

(nC-1)/3

Symmetry 2019, 11, 167 7 of 15

provide an integrated service such as connecting vehicles, smart cities, and shopping centers. The
progression steps of MECAA are shown in Figure 5.

Figure 5. The progression steps of MECAA.

MECAA is initiated by the UEs to ask for a specific application service. The nodes of MEC-layer need to
execute procedure Consensus and the nodes of CC-layer need to execute procedure Interactive Consistency. In
procedures Consensus and Interactive Consistency, the function Agreement will be called up. There are two
steps of function Agreement, one is the Request Gathering Step, and the other is the Request Deciding Step. The
parameters of Agreement include σ, vs, and nA, where σ is the required rounds, vs is the initial value, and nA is
the number of nodes participating in the agreement. In order for all fault-free nodes to reach agreement, each
node must collect enough exchanged messages from all other nodes if they are fault-free. As a result,
exchanging the received values helps fault-free nodes to collect enough exchanged messages.

Fischer and Lynch proved that (n-1)/3+1 is the rounds of message exchanges sufficient to solve an
agreement problem, where n is the number of nodes in the underlying network [17–18]. Based on the works
of Fischer and Lynch, (n-1)/3+1 rounds of message exchanges are the lower bound for solving the
agreement problem. Therefore, the required rounds σ is (nEj–1)/3+1 when MEC nodes execute the function
Agreement of procedure Consensus, where nEj is the number of MEC nodes in MEC cluster Ej of MEC-layer and
nEj>3. Moreover, the required rounds σ is (nC–1)/3+1 when cloud nodes execute the function Agreement of
procedure Interactive Consistency, where nC is the number of cloud nodes in the CC-layer and nC>3.




The received messages of Request Gathering Step are stored in a tree structure called the

request-gathering tree (rg-tree), which is similar to that proposed by Bar-Noy et al. [19]. Each fault-free node
maintains such an rg-tree during the execution of MECAA. In the first round of the Request Gathering Step,
node i transmits its initial request to other nodes. However, that each receiver node can always identify the
sender of a request is assumed. When a fault-free node receives the request sent from node i, it stores the
received value, denoted as req(i), at the root of its rg-tree. In the second round, each node transmits the root
value of its rg-tree to all other nodes. If node 1 sends request req(i) to node 2, then node 2 stores the received
request, denoted as req(i1), in vertex i1 of its rg-tree. Similarly, if node 2 sends request req(i1) to node 1, the
received request is named req(i12) and stored in vertex i12 of node 1’s rg-tree in the third round. Generally,
request req(i12…n), stored in the vertex i12…n of a rg-tree, implies that the request just received was sent
through the node i, the node 1,…, the node n; and the node n is the latest node to pass the request. When a
request is transmitted through a node more than once, the name of the node will also be repeated. For
instance, request req(11), stored in vertex 11, indicates that the request is sent to node 1, then to node 1 again;
therefore, name 1 appears twice in vertex name 11. In summary, the root of rg-tree is always named i to denote
that the stored request is sent from node i in the first round; the vertex of an rg-tree is labeled by a list of node
names. The node name list contains the names of the nodes through which the stored request was transferred.
Figure 6 shows an example of rg-tree.

. T is the maximum number of allowable faulty nodes in MIoT. �

As a result, MECAA takes the minimum number of rounds and tolerates the maximum number
of faulty components to make fault-free nodes reach a common agreement. The optimality of the
polynomial time algorithm is proven.

6. Conclusions

The last decade has seen cloud computing emerging as a new paradigm of computing. The vast
resources available in the cloud can be leveraged to deliver elastic computing power and storage to
support resource-constrained end-user devices. However, for various reasons, the cloud computing
paradigm cannot meet the low latency and jitter, environment awareness, and mobility support
requirements that are important for several applications.

The long propagation delay is the main drawback of cloud computing. Therefore, proximity
access through the MEC is widely considered to be a key technology for implementing various

Symmetry 2019, 11, 167 16 of 17

next-generation IoT visions. The IoT can achieve innovations that improve quality of life, but will
generate an unprecedented amount of data that is difficult for traditional systems to handle. So, the
MEC is designed to overcome these limitations [4]. The main goal of the MEC study is to seamlessly
integrate the two disciplines of wireless communications and mobile computing to form a new design
of offloading computation technology.

MEC extends the cloud computing paradigm to the edge of the network, thus enabling a new
breed of applications and services [19]. While MEC nodes provide localization, therefore enabling low
latency and context awareness, the cloud provides global centralization. In this study, a highly flexible
and reliable IoT platform MIoT is proposed. By using MIoT, the QoS for IoT application services can
be improved.

The agreement problem is fundamental to a distributed system, and has been extensively studied.
Network topology is an important issue related to consistency. However, MIoT is a new concept for
distributed systems. It has encouraged distributed system design and practice to support user-oriented
services. In this study, the agreement problem was redefined by the MECAA algorithm in the MIoT.
The proposed algorithm ensures that all faulty nodes in the MIoT can reach an agreement value to
cope with the influences of the faulty nodes by using the minimum number of message exchanges,
while tolerating the maximum number of faulty nodes at any time. Our algorithm is the first to treat
the agreement problem under an IoT platform based on cloud computing and MEC. In the future, an
experimental evaluation will be conducted to compare the efficiency of the algorithm under different
faulty nodes.

Author Contributions: S.-C.W. and Y.-T.T. conceived the proposed method; Y.-T.T. and W.-S.H. designed the
algorithm; S.-C.W., W.-S.H., and C.-F.H. analyzed the examples and theorems; S.-C.W. and Y.-T.T. wrote the paper.

Acknowledgments: This work was supported in part by the Ministry of Science and Technology
MOST 107-2221-E-324-005-MY3.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. On the Integration of Cloud Computing and Internet
of Things. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud
(FiCloud), Barcelona, Spain, 27–29 August 2014; pp. 23–30.

2. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer
2016, 49, 112–116. [CrossRef]

3. Roman, R.; Lopez, J.; Mambo, M. Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security
Threats and Challenges. Future Gener. Comput. Syst. 2018, 78, 680–698. [CrossRef]

4. Puthal, D.; Sahoo, B.P.S.; Mishra, S.; Swain, S. Cloud Computing Features, Issues, and Challenges: A Big
Picture. In Proceedings of the 2015 International Conference on Computational Intelligence and Networks
(CINE), Bhubaneshwar, India, 12–13 January 2015; pp. 116–123.

5. Kumar, P.; Gupta, S.K. Abstract Model of Fault Tolerance Algorithm in Cloud Computing Communication
Networks. Int. J. Comput. Sci. Eng. 2011, 3, 3283.

6. Wang, S.C.; Wang, S.S.; Yan, K.Q. New Anatomy of Trustworthy Mobile Cloud Computing. Inf. Technol.
Control 2016, 45, 349–357. [CrossRef]

7. Khalid, O.; Khan, M.U.S.; Khan, S.U.; Zomaya, A.Y. Omnisuggest: A Ubiquitous Cloud-Based Context-Aware
Recommendation System for Mobile Social Networks. IEEE Trans. Serv. Comput. 2014, 7, 401–414. [CrossRef]

8. Mach, P.; Zdenek, B. Mobile Edge Computing: A Survey on Architecture and Computation Offloading.
IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

9. Dinh, H.T.; Lee, C.; Niyato, D.; Wang, P. A Survey of Mobile Cloud Computing: Architecture, Applications,
and Approaches. Wirel. Commun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]

10. Mauch, V.; Kunze, M.; Hillenbrand, M. High Performance Cloud Computing. Future Gener. Comput. Syst.
2013, 29, 1408–1416. [CrossRef]

http://dx.doi.org/10.1109/MC.2016.245
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.5755/j01.itc.45.4.12415
http://dx.doi.org/10.1109/TSC.2013.53
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1016/j.future.2012.03.011

Symmetry 2019, 11, 167 17 of 17

11. Ficco, M.; Esposito, C.; Xiang, Y.; Palmieri, F. Pseudo-Dynamic Testing of Realistic Edge-Fog Cloud
Ecosystems. IEEE Commun. Mag. 2017, 55, 98–104. [CrossRef]

12. Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An Information Framework for Creating a Smart City through
International of Things. IEEE Internet Things J. 2014, 1, 112–121. [CrossRef]

13. Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things-A Survey of Topics and Trends. Inf. Syst. Front.
2015, 17, 261–274. [CrossRef]

14. Li, X.; Chen, X.; Xie, Y. Agreement of Networks of Discrete-Time Agents with Mixed Dynamics and Time
Delays. Math. Probl. Eng. 2015. [CrossRef]

15. Lamport, L.; Shostak, R.; Pease, M. The Byzantine general Problem. ACM Trans. Progr. Lang. Syst. 1982, 4,
382–401. [CrossRef]

16. Meyer, F.J.; Pradhan, D.K. Consensus with Dual Failure Modes. IEEE Trans. Parallel Distrib. Syst. 1991, 2,
214–222. [CrossRef]

17. Fischer, M.J.; Lynch, N.A. A Lower Bound for the Time to Assure Interactive Consistency. Inf. Process. Lett.
1981, 14, 183–186. [CrossRef]

18. Wang, S.C.; Wang, S.S.; Yan, K.Q. Reaching Optimal Interactive Consistency in a Fallible Cloud Computing
Environment. J. Inf. Sci. Eng. 2018, 34, 205–223.

19. Bar-Noy, A.; Dolev, D.; Dwork, C.; Strong, H.R. Shifting Gears: Changing Algorithms on the Fly to Expedite
Byzantine Agreement. Inf. Comput. 1992, 97, 205–233. [CrossRef]

20. Agrawal, S.; Daudjee, K. A Performance Comparison of Algorithms for Byzantine Agreement in Distributed
Systems. In Proceedings of the 12th European Dependable Computing Conference (EDCC), Gothenburg,
Sweden, 5–9 September 2016; pp. 249–260.

21. Dolev, D.; Reischuk, R. Bounds on Information Exchange for Byzantine Agreement. J. ACM 1985, 32, 191–204.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCOM.2017.1700328
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://dx.doi.org/10.1007/s10796-014-9489-2
http://dx.doi.org/10.1155/2015/957028
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1109/71.89066
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0890-5401(92)90035-E
http://dx.doi.org/10.1145/2455.214112
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	The Network Structure
	Agreement Problems
	Failure Types

	The Proposed Protocol
	An Example of the Execution of MECAA
	The Complexity of MECAA
	Conclusions
	References

