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Abstract: In this article, an axisymmetric three-dimensional stagnation point flow of a nanofluid
on a moving plate with different slip constants in two orthogonal directions in the presence of
uniform magnetic field has been considered. The magnetic field is considered along the axis of the
stagnation point flow. The governing Naiver–Stokes equation, along with the equations of nanofluid
for three-dimensional flow, are modified using similarity transform, and reduced nonlinear coupled
ordinary differential equations are solved numerically. It is observed that magnetic field M and slip
parameter λ1 increase the velocity and decrease the boundary layer thickness near the stagnation
point. Also, a thermal boundary layer is achieved earlier than the momentum boundary layer,
with the increase in thermophoresis parameter Nt and Brownian motion parameter Nb. Important
physical quantities, such as skin friction, and Nusselt and Sherwood numbers, are also computed
and discussed through graphs and tables.
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1. Introduction

The phenomenon of stagnation point flow has various uses in and aerodynamic industries. Such
flows mainly compact with the movement of fluid close to the stagnated region of a rigid surface
flowing in the fluid material, or retained with dynamics of fluid. Stagnation point has been studied
by many researchers in the past because of its wide range of applications in engineering. Initially,
stagnation point flow was analyzed by Hiemenz in 1911. He studied the two-dimensional stagnation
point flow on a stationary plate. Stagnation point flow applications include cooling of electronic devices
by fans, cooling of nuclear reactors, polymer extrusion, wire drawing, drawing of plastic sheets, and
many hydrodynamic processes in engineering applications. Stagnation point flow possesses much
physical significance, as it is used to calculate the velocity gradients and the rate of heat and mass
transfer abutting to stagnation area of frames in high-speed flows, cooling of transpiration, rustproof
designs of bearings, etc.

Recently, Borrelli et al. [1] deliberated over the impact of buoyancy on three-dimensional (3D)
stagnation point flow. They stated that the buoyancy forces tend to favor an opposite flow. Later,
Lok et al. [2] expanded on the work of Weidman [3] with buoyancy forces. They observed the discrete
results for free convection and forced convection due to a singularity rising in the convection term.
Steady oblique stagnation point flow of a viscous fluid was studied by Grosan et al. [4]. They solved
the nonlinear coupled differential equation numerically using the Runge–Kutta method. It is observed
that the location of the stagnation point depends strongly on the value of the shear parameter and
magnetic parameter. Wang [5–7] discussed the three-dimensional stagnation flow in the absence of
MHD and nanofluids on a flat plate, shrining disk, and rotating disk. Two-dimensional (2D) stagnation
flow was discussed by Nadeem et al. [8] using HAM on a stretchable surface.
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A fluid, heated by electric current in the presence of strong magnetic field, for example crystal
growth in melting, has relevance in manufacturing industries. During the fluid motion, the association
of electric current and magnetic field produces a divergence of Lorentz forces. This phenomenon
prevents the convective motion of fluid and heat transfer characteristic changes accordingly. Ariel [9]
investigated the flow near the stagnation point numerically for small magnetic fields; for large magnetic
numbers, the perturbation technique was used. Raju and Sundeep [10] proved that with an increase in
the magnetic number, there is an increase in the heat and mass transfer rates. They studied numerically
the MHD flow of non-Newtonian fluid over a rotating cone or plate.

Generally, the size of nanoparticles is (1–100 nm). Currently, nanofluids are used for drug
delivery in infected areas of the human body. Self-propagating objects containing drugs are used to
remove blood clots in sensitive areas such as the brain, eye, heart, etc. Kleinstreuer [11] discussed the
drug delivery system in humans at normal body temperature under the influence of some physical
parameters such as nanoparticle length, artery diameter, and velocity of fluid. Recently, a mathematical
model of nanofluid was developed by Choi [12]. Later, a contribution to heat transfer analysis in
nanofluid was made by Buongiorno [13]. His mathematical model dealt with the non-homogeneous
model for transport phenomena and heat transfer in nanofluids with applications to turbulence.
Saleem et al. [14] discussed the effects of Brownian diffusion and thermophoresis on non-Newtonian
fluid models, using HAM in the domain of a vertical rotating cone. Bachok et al. [15] studied the
three-dimensional stagnation flow of a viscous fluid numerically, analyzed the velocity and heat
transfer for different physical parameters, and compared three nanoparticles, namely Cu, Al2O3, TiO3.
In [16] Ellahi et al. explored the heat and mass transfer of non-Newtonian fluid in an annulus in
a porous medium using HAM. Recently, Sheikholeslami et al. [17] studied the effects of thermal
radiation on steady viscous nanofluid in the presence of MHD numerically. Khan [18] explored
Brownian diffusion and thermophoresis on stagnation point flow. He considered dual solutions for
shrinking/stretching parameters and heat transfer in the presence of buoyancy forces on a stretchable
surface. Mustafa et al. [19] investigated 3D nanofluid flow and heat transfer in two opposite directions
on a plane horizontal stretchable surface. Thermal and momentum boundary layers were discussed
using physical parameters such as Brownian motion and thermophoretic forces. Some more useful
studies related to nanofluids can be found in [20–29].

In this article, an axisymmetric 3D stagnation point flow of a nanofluid on a moving plate with
different slip constants in two orthogonal directions in the presence of uniform magnetic field has been
considered and solved numerically.

2. Mathematical Formulation

Consider a stagnation point flow of a nanofluid over a plate with anisotropic slip in a Cartesian
coordinate system, so that the x-axis is taken along the corrugations of plates, the y-axis is normal to the
corrugations, and the z-axis is considered with the axis of stagnation flow. The velocities of the moving
plate are (u, v) in (x, y) directions, respectively. A constant magnetic field is applied perpendicular to
the corrugation along the axis of the stagnation flow in such a way that the magnetic Reynolds number
is small. According to Wang [5], the potential flow far from the plate is defined as:
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and the boundary conditions are:

u−U = N1µ
∂u
∂z

, v−V = N2µ
∂v
∂z

, T = Tw, C = C∞ at z = 0,

u→ ax, v→ ay, T → T∞, C → C∞ at z→ ∞. (6)

where (u, v) are the velocity components in the (x, y) directions, ν is the kinematic viscosity, T is the
temperature, αm is the thermal diffusivity, C is the volume of nanoparticles, (ρC)p is the effective heat
capacity of nanoparticles, (ρC) f is the heat capacity of fluid, DB is the Brownian diffusion coefficient
and DT is the thermophoretic diffusion coefficient. For the non-dimensionalization, we use the
following similarity variables:

u = ax f
′
(η) + Uh(η),

v = ayg
′
(η) + Vk(η),

w = −
√

aν [ f (η) + g(η)] . (7)

where η =
√

a/ν z. Using Equation (7) in Equations (5) and (6) finally we get:
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and boundary conditions are:

f
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(0) = λ1 f
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′
(0) = λ2g
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(0), h(0) = 1 + λ1h

′
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(∞)→ 1, h(∞)→ 1, k(∞)→ 1, θ(0) = 1, θ(∞)→ 0, φ(0) = 1, φ(∞)→ 0. (14)

here λ1 and λ2 are the slip parameters, Pr the prantle number, Sc the Schmidt number, Nt and Nb are
thermophoresis parameter, Brownian motion parameters, respectively.

The expression for the skin friction coefficient, the local Nusselt number, and Sherwood number
for second-grade fluid are defined as:

Re1/2
x C f = f

′′
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′
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x = −ϕ
′
(0), (15)
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where Rex = Uwx
ν is the local Reynolds number. The solution of above coupled nonlinear differential

equations are found numerically and discussed in the following section.

3. Result and Discussion

A system of nonlinear ordinary differential Equations (8)–(13) subject to the boundary conditions
of Equation (14) are solved numerically using the Richardson extrapolation enhancement method.
Richardson extrapolation is generally faster, and capable of handling BVP systems with unknown
parameters. The values of these parameters can be determined under the presence of a sufficient
number of boundary conditions. The solutions are discussed through graphs from Figures 1–10, and
values of physical quantities, such as skin friction and Nusselt and Sherwood numbers, are presented
in Tables 1–3.

Figures 1 and 2 show the variation of velocity profile f ′ and g′ against η for different values of
magnetic field M and slip parameter λ1. It was observed that increasing in the values of M and λ1

causes increase in the velocity profile, while boundary layer thickness reduces. Thus, these parameters
cause a reduction in the momentum boundary layer. Analysis shows that increasing the values of
these parameters to a sufficiently large level shows the monotonic behavior of velocity throughout the
whole domain. Figures 3 and 4 shows the opposite behavior of h and k with the increment of M and
λ1, such that with the increase in value of these parameters, h and k decreases.

The temperature profile for the nanofluid against different values of thermophoresis parameter
Nt and Brownian motion parameter Nb are plotted in Figures 5 and 6. As the temperature increase
within the boundary layer, the values of these parameters increase. The thermal boundary layer is
achieved earlier than the momentum boundary layer. The variation of nanoconcentration for different
values of Schmidt number Sc and Nt is presented in Figures 7 and 8, respectively. It is observed that
nanoconcentration φ decreases as the increase in Sc and boundary layer thickness decreases. Also,
with the increase in Nt, the nanoconcentration decreases. Figures 9 and 10 show the velocity profile
for different values of magnetic parameter M = 0 and for M = 2. It is observed that in the absence
of magnetic parameter M, the boundary layer thickness is larger than while M is present. M = 0 in
Figures 11 and 12 represents the results of Wang [5]. The slip parameter ratio can be defined as γ = λ2

λ1
.

Figures 13 and 14 describe the f ′(η), g′(η) for γ = 0.5. The range of γ varies from 0.2 to 10. γ = 1
represents the isotropic case where f ′(η) = g′(η) and h(η) = k(η).

Table 1 shows local Nusselt number Nux and local Sherwood number Shx for the variation of Pr

and thermophoresis parameter Nb. Here we see that with the increase of Pr, the local Nusselt number
decreases, while local Sherwood number gives opposite results, meaning Shx increases. Moreover,
with the increase of Nb, the results are again the opposite for Nux and Shx. Table 2 shows local Nusselt
number and local Sherwood number for variations of slip parameter λ1 and Brownian motion Nb.
Here it is observed that with the increase of λ1 both Nusselt number and local Sherwood number
increase. Table 3 shows the skin friction coefficient C f for different values of λ1 and magnetic parameter
M. Note that with the increment in λ1, the value of skin friction decreases. A high value of M gives
larger values of skin friction.
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Figure 1. Variation of f ′(η) for different M.

Figure 2. Variation of g′(η) for different M.
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Figure 3. Variation of f ′(η) for different λ1.

Figure 4. Variation of g′(η) for different λ2.
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Figure 5. Variation of h(η) for different M.

Figure 6. Variation of k(η) for different M.
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Figure 7. Variation of h(η) for different λ1.

Figure 8. Variation of k(η) for different λ2.
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Figure 9. Variation of θ(η) for different Nb.

Figure 10. Variation of θ(η) for different Nt.
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Figure 11. Variation of φ(η) for different Nt.

Figure 12. Variation of φ(η) for different Sc.
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Figure 13. f ′(η) solid curves and g′(η) dashed curves for γ = λ2
λ1

= 0.5. From top: λ1 = 10, 1, 0.1.

Figure 14. h(η) solid curves and k(η) dashed curves for γ = λ2
λ1

= 0.5. From top: λ1 = 10, 1, 0.1.
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Table 1. Variation of Local Nusselt number Nux and Sherwood number Shx for different Nb and Pr.

λ1 = 1, λ2 = 1, Sc = 2, M = 2, Nt = 0.5

Nb = 0.1 Nb = 0.3 Nb = 0.5

Pr Nux Shx Nux Shx Nux Shx

5.5 0.67084 1.47332 0.45477 1.58078 0.30641 1.77542
5.6 0.66527 1.47440 0.44833 1.58438 0.29987 1.78168
5.7 0.65976 1.47546 0.44197 1.58792 0.29346 1.78781
5.8 0.65431 1.47651 0.43570 1.59139 0.28716 1.79381
5.9 0.64890 1.47754 0.42950 1.59481 0.28098 1.79968
6.0 0.64355 1.47856 0.42343 1.59816 0.27492 1.80543
6.1 0.63826 1.47956 0.41742 1.60145 0.26897 1.81105
6.2 0.63302 1.48055 0.41150 1.60468 0.26314 1.81655
6.3 0.62784 1.48152 0.40566 1.60785 0.25742 1.82192
6.4 0.62272 1.48248 0.39992 1.61096 0.25181 1.82718
6.5 0.61766 1.48342 0.39425 1.61401 0.24631 1.83232

Table 2. Variation of Local Nusselt number Nux and Sherwood number Shx for different M and λ1.

λ2 = 1, Sc = 2, Nb = 0.5, Nt = 0.5, Pr = 6.2

M = 2 M = 4 M = 6

λ1 Nux Shx Nux Shx Nux Shx

0.5 0.25129 1.78860 0.27363 1.85616 0.28527 1.88559
0.6 0.25465 1.79657 0.27603 1.86128 0.28698 1.88892
0.7 0.25737 1.80301 0.27791 1.86529 0.28829 1.89145
0.8 0.25962 1.80831 0.27943 1.86850 0.28933 1.89350
0.9 0.26152 1.81276 0.28068 1.87114 0.29018 1.89513
1.0 0.26314 1.81655 0.28172 1.87335 0.29087 1.89648
1.1 0.26453 1.81980 0.28261 1.87522 0.29146 1.89762
1.2 0.26575 1.82263 0.28337 1.87683 0.29196 1.89859
1.3 0.26682 1.82511 0.28403 1.87822 0.29239 1.89942
1.4 0.26776 1.82731 0.28461 1.87944 0.29277 1.90015
1.5 0.26861 1.82926 0.28513 1.88052 0.29310 1.90079

Table 3. Variation of Skin friction coefficient for different M and λ1.

λ2 = 1, Sc = 2, Nb = 0.5, Nt = 0.5, Pr = 6.2

M = 2 M = 4 M = 6

λ1 C f C f C f

0.5 1.12177 1.36687 1.51354
0.6 1.00998 1.20285 1.31469
0.7 0.91823 1.07391 1..16200
0.8 0.84163 0.96991 1.04108
0.9 0.77675 0.88425 0.94294
1.0 0.72109 0.81248 0.86171
1.1 0.67283 0.75148 0.79336
1.2 0.63060 0.69899 0.73505
1.3 0.59334 0.65335 0.68473
1.4 0.56022 0.61330 0.64086
1.5 0.53059 0.57788 0.60227

4. Conclusions

The current paper investigated the effects of uniform magnetic field of axisymmetric
three-dimensional stagnation point flow of a nanofluid on a moving plate with different slip constants.



Symmetry 2019, 11, 132 13 of 15

The governing equations were made dimensionless and then solved using the Richardson extrapolation
enhancement method. The following are the findings of the above work:

• An increase in the magnetic field M and slip parameter λ1 causes an increase in the velocity
profile and decrease in the boundary layer thickness near the stagnation point.

• It is observed that in the absence of magnetic parameter M the boundary layer thickness is larger
than while M is present.

• The thermal boundary layer increases with an increase in the thermophoresis parameter Nt and
Brownian motion parameter Nb. It is observed that the thermal boundary layer is achieved earlier
compared to the momentum boundary layer.

• It is observed that with the increase in Sc and Nt the nanoconcentration φ decreases and vice versa.
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Abbreviations

The following abbreviations are used in this manuscript:

(u, v) velocity Components
ν kinematic viscosity
N1, N2 slip coefficient
T temperature
αm thermal diffusivity
C volume of nano particles
(ρC) f heat capacity of fluid
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
λ1, λ2 slip parameters
Nt thermophoresis parameter
Nb browning motion parameter
C f skin friction coefficient
Nux local Nusselt number
Shx Sherwood number
Rex local Reynolds number
Sc Schmidt number
Pr prantle number
γ ratio of slip parameters
φ nano concentration
M magnetic parameter
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