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Abstract: The main aim of the paper is to give the crossing number of the join product G + Dn for
the disconnected graph G of order five consisting of one isolated vertex and of one vertex incident
with some vertex of the three-cycle, and Dn consists of n isolated vertices. In the proofs, the idea of
the new representation of the minimum numbers of crossings between two different subgraphs that
do not cross the edges of the graph G by the graph of configurations GD in the considered drawing
D of G + Dn will be used. Finally, by adding some edges to the graph G, we are able to obtain the
crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices
for three other graphs.
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1. Introduction

The investigation of the crossing number of graphs is a classical and very difficult problem
provided that computing of the crossing number of a given graph in general is an NP-complete
problem. It is well known that the problem of reducing the number of crossings in the graph has been
studied in many areas, and the most prominent area is very large-scale integration technology.

In the paper, we will use notations and definitions of the crossing numbers of graphs like
in [1]. We will often use Kleitman’s result [2] on crossing numbers of the complete bipartite graphs.
More precisely, he proved that:

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if m ≤ 6.

Using Kleitman’s result [2], the crossing numbers for join of two paths, join of two cycles, and
for join of path and cycle were studied in [1]. Moreover, the exact values for crossing numbers of
G + Dn and G + Pn for all graphs G of order at most four are given in [3]. Furthermore, the crossing
numbers of the graphs G + Dn are known for a few graphs G of order five and six in [4–10]. In all of
these cases, the graph G is connected and contains at least one cycle. Further, the exact values for the
crossing numbers G + Pn and G + Cn have been also investigated for some graphs G of order five and
six in [5,7,11,12].

The methods presented in the paper are new, and they are based on multiple combinatorial
properties of the cyclic permutations. It turns out that if the graph of configurations is used like
a graphical representation of the minimum numbers of crossings between two different subgraphs,
then the proof of the main theorem will be simpler to understand. Similar methods were partially
used for the first time in the papers [8,13]. In [4,9,10,14], the properties of cyclic permutations were
also verified with the help of software in [15]. In our opinion, the methods used in [3,5,7] do not allow
establishing the crossing number of the join product G + Dn.

Symmetry 2019, 11, 123; doi:10.3390/sym11020123 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2837-8879
http://www.mdpi.com/2073-8994/11/2/123?type=check_update&version=1
http://dx.doi.org/10.3390/sym11020123
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 123 2 of 9

2. Cyclic Permutations and Configurations

Let G be the disconnected graph of order five consisting of one isolated vertex and of one vertex
incident with some vertex of the three-cycle. We will consider the join product of the graph G with the
discrete graph on n vertices denoted by Dn. The graph G + Dn consists of one copy of the graph G
and of n vertices t1, . . . , tn, where any vertex ti, i = 1, . . . , n, is adjacent to every vertex of G. Let Ti,
1 ≤ i ≤ n, denote the subgraph induced by the five edges incident with the vertex ti. Thus, the graph
T1 ∪ · · · ∪ Tn is isomorphic with the complete bipartite graph K5,n and:

G + Dn = G ∪ K5,n = G ∪
( n⋃

i=1

Ti
)

. (1)

In the paper, we will use the same notation and definitions for cyclic permutations and the
corresponding configurations for a good drawing D of the graph G + Dn like in [9,14]. Let D be
a drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti in the drawing D like the
cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave ti
has been defined by Hernández-Vélez, Medina, and Salazar [13]. We use the notation (12345) if
the counter-clockwise order the edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5.
We have to emphasize that a rotation is a cyclic permutation. In the paper, each cyclic permutation
will be represented by the permutation with one in the first position. Let rotD(ti) denote the inverse
permutation of rotD(ti). We will deal with the minimal necessary number of crossings between the
edges of Ti and the edges of T j in a subgraph Ti ∪ T j depending on the rotations rotD(ti) and rotD(tj).

We will separate all subgraphs Ti, i = 1, . . . , n, of the graph G + Dn into three mutually-disjoint
subsets depending on how many of the considered Ti cross the edges of G in D. For i = 1, . . . , n,
let RD = {Ti : crD(G, Ti) = 0} and SD = {Ti : crD(G, Ti) = 1}. Every other subgraph Ti crosses
the edges of G at least twice in D. Moreover, let Fi denote the subgraph G ∪ Ti for Ti ∈ RD,
where i ∈ {1, . . . , n}. Thus, for a given subdrawing of G, any subgraph Fi is exactly represented
by rotD(ti).

Let us suppose first a good drawing D of the graph G + Dn in which the edges of G do not
cross each other. In this case, without loss of generality, we can choose the vertex notation of the
graph in such a way as shown in Figure 1a. Our aim is to list all possible rotations rotD(ti) that
can appear in D if the edges of Ti do not cross the edges of G. Since there is only one subdrawing
of Fi \ {v2, v5} represented by the rotation (143), there are two possibilities for how to obtain the
subdrawing of Fi \ v5 depending on in which region the edge tiv2 is placed. Of course, the vertex v5

can be placed in one of four regions of the subdrawing Fi \ v5 with the vertex ti on their boundaries.
These 2× 4 = 8 possibilities under our consideration will be denoted by Ak and Bl , for k = 1, 2 and
l = 1, . . . , 6. The configuration is of type A or B in the considered drawing D, if the vertex v5 is placed
in the quadrangular or in the triangular region in the subdrawing D(Fi \ v5), respectively. As for our
considerations, it does not play a role in which of the regions is unbounded; assume the drawings
shown in Figure 2. Thus, the configurations A1, A2, B1, B2, B3, B4, B5, and B6 are represented by
the cyclic permutations (15432), (12435), (14532), (12453), (14325), (15243), (12543), and (14352),
respectively. In a fixed drawing of the graph G + Dn, some configurations fromM need not appear.
We denote byMD the subset ofM = {A1, A2, B1, B2, B3, B4, B5, B6} consisting of all configurations
that exist in the drawing D.

We remark that if two different subgraphs Fi and Fj with their configurations fromMD cross in
a considered drawing D of the graph G + Dn, then the edges of Ti are crossed only by the edges of T j.
Let X, Y be the configurations fromMD. We briefly denote by crD(X, Y) the number of crossings in D
between Ti and T j for two different Ti, T j ∈ RD such that Fi, Fj have configurations X, Y, respectively.
Finally, let cr(X, Y) = min{crD(X, Y)} over all good drawings of the graph G + Dn with X, Y ∈ MD.
Our aim shall be to establish cr(X, Y) for all pairs X, Y ∈ M.
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Figure 1. Two good drawings of the graph G. (a): the planar drawing of G; (b): the drawing of G with
crD(G) = 1.
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Figure 2. Drawings of eight possible configurations fromM of the subgraph Fi.

The configurations A1 and A2 are represented by the cyclic permutations (15432) and (12435),
respectively. Since the minimum number of interchanges of adjacent elements of (15432) required
to produce cyclic permutation (12435) = (15342) is one, any subgraph T j with the configuration
A2 of Fj crosses the edges of Ti at least once, i.e., cr(A1, A2) ≥ 1. Details have been worked out by
Woodall [16]. The same reason gives cr(A1, B2) ≥ 2, cr(A1, B4) ≥ 2, cr(A1, B6) ≥ 2, cr(A2, B1) ≥ 2,
cr(A2, B3) ≥ 2, cr(A2, B5) ≥ 2, cr(Bi, Bj) ≥ 2, and cr(Ai, Bj) ≥ 3 for i ≡ j (mod 2). Moreover,
by a discussion of possible subdrawings, we can verify that cr(B1, B5) ≥ 4, cr(B3, B5) ≥ 4, cr(B2, B6) ≥ 4,
and cr(B4, B6) ≥ 4. Let Fi be the subgraph having the configuration B5, and let T j be a subgraph from
RD with j 6= i. Using Woodall’s result crD(Ti, T j) = Q(rotD(ti), rotD(tj)) + 2k for some nonnegative
integer k, let us also suppose that Q(rotD(ti), rotD(tj)) = 2. Of course, any subgraph Fj having the
configuration B1 or B3 satisfies the mentioned condition. One can easily see that if tj ∈ ω1,2 ∪ω3,4 ∪
ω1,2,3, then cr(Ti, T j) > 2. If tj ∈ ω2,4,5 and cr(Ti, T j) = 2, then the subdrawing D(Fj) induced by the
edges incident with the vertices v1 and v3 crosses the edges of Ti exactly once, and once, respectively.
Thus, rotD(tj) = (12435), i.e., the subgraph Fj has the configuration A2. This forces cr(B5, B1) ≥ 4
and cr(B5, B3) ≥ 4. Similar arguments are applied for cr(B6, B2) ≥ 4 and cr(B6, B4) ≥ 4. Clearly,
also cr(Ak, Ak) ≥ 4 and cr(Bl , Bl) ≥ 4 for any k = 1, 2 and l = 1, . . . , 6. Thus, all lower bounds of
the number of crossing of configurations fromM are summarized in the symmetric Table 1 (here,
Xk and Yl are configurations of the subgraphs Fi and Fj, where k, l are integers from {1, 2} or {1, . . . , 6},
and X, Y ∈ {A, B}).
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Table 1. The necessary number of crossings between Ti and T j for the configurations Xk, Yl .

− A1 A2 B1 B2 B3 B4 B5 B6

A1 4 1 3 2 3 2 3 2
A2 1 4 2 3 2 3 2 3
B1 3 2 4 3 2 3 4 3
B2 2 3 3 4 3 2 3 4
B3 3 2 2 3 4 3 4 3
B4 2 3 3 2 3 4 3 4
B5 3 2 4 3 4 3 4 3
B6 2 3 3 4 3 4 3 4

Assume a good drawing D of the graph G + Dn with one crossing among edges of the graph
G (in which there is a subgraph Ti ∈ RD). In this case, without loss of generality, we can choose
also the vertex notations of the graph in such a way as shown in Figure 1b. Since there is only one
subdrawing of Fi \ {v5} represented by the rotation (1324), we have four possibilities for how to
obtain the subdrawing of Fi depending on in which region the vertex v5 is placed. Thus, there are
four different possible configurations of the subgraph Fi denoted as A1, A2, A3, and A4, with the
corresponding rotations (13245), (13524), (13254), and (15324), respectively. We denote by ND the
subset of N = {A1, A2, A3, A4} consisting of all configurations that exist in the drawing D. The same
way as above can be applied for the verification of the lower bounds of the number of crossings of
two different configurations from N . Thus, all lower bounds of the numbers of crossings of two
configurations from N are summarized in the symmetric Table 2 (here, Ak and Al are configurations
of the subgraphs Fi and Fj, where k, l ∈ {1, 2, 3, 4}).

Table 2. The necessary number of crossings between Ti and T j for the configurations Ak, Al .

− A1 A2 A3 A4

A1 4 2 3 3
A2 2 4 3 3
A3 3 3 4 2
A4 3 3 2 4

3. The Graph of Configurations GD

In general, the low possible number of crossings between two different subgraphs in a good
subdrawing of G + Dn is one of the main problems in the proofs on the crossing number of the join of
the graph G with the discrete graphs Dn. The lower bounds of the numbers of crossings between two
subgraphs, which do not cross the edges of G, were summarized in the symmetric Table 1. Since some
configurations from the setM need not appear in the fixed drawing of G + Dn, we will first deal with
the smallest possible values in Table 1 as with the worst possible case in the mentioned proofs. Thus,
a new graphical representation of Table 1 by the graph of configurations will be useful.

Let us suppose that D is a good drawing of the graph G + Dn with crD(G) = 0, and let
MD be the nonempty set of all configurations that exist in the drawing D belonging to the set
M = {A1, A2, B1, B2, B3, B4, B5, B6}. A graph of configurations GD is an ordered triple (VD, ED, wD),
where VD is the set of vertices, ED is the set of edges, which is formed by all unordered pairs of distinct
vertices, and a weight function w : ED → N that associates with each edge of ED an unordered pair
of two vertices of VD. The vertex xk ∈ VD for some x ∈ {a, b} if the corresponding configuration
Xk ∈ MD for some X ∈ {A, B}, where k ∈ {1, 2} or k ∈ {1, . . . , 6}. The edge e = xkyl ∈ ED if xk and
yl are two different vertices of the graph GD. Finally, wD(e) = m ∈ N for the edge e = xkyl , if m is
the associated lower bound between two different configurations Xk, and Yl in Table 1. Of course,
GD is the simple undirected edge-weighted graph uniquely determined by the drawing D. Moreover,
if we define the graph G = (V, E, w) in the same way over the setM, then GD is the subgraph of G
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induced by VD for the considered drawing D. Since the graph G = (V, E, w) can be represented like
the edge-weighted complete graph K8, it will be more transparent to follow the subcases in the proof
of the main theorem; see Figure 3.

b1

b3
b4

a2
a1

b2

b5 b6

edge weight 1
edge weight 2

edge weight 3
edge weight 4

Figure 3. Representation of the lower bounds of Table 1 by the graph G = (V, E, w).

4. The Crossing Number of G + Dn

Two vertices ti and tj of G + Dn are antipodal in a drawing of G + Dn if the subgraphs Ti and
T j do not cross. A drawing is antipodal-free if it has no antipodal vertices. In the rest of the paper,
each considered drawing of the graph G + Dn will be assumed antipodal-free. In the proof of the main
theorem, the following lemma related to some restricted subdrawings of the graph G + Dn is helpful.

Lemma 1. Let D be a good and antipodal-free drawing of G + Dn, n > 2. If Ti, T j ∈ RD are different
subgraphs such that Fi, Fj have different configurations from any of the sets {A1, B2}, {A1, B6}, {A2, B1},
and {A2, B5}, then:

crD(G ∪ Ti ∪ T j, Tk) ≥ 4 for any Tk ∈ SD.

Proof of Lemma 1. Let us suppose the configuration A1 of the subgraph Fi, and note that it is exactly
represented by rotD(ti) = (15432). The unique drawing of the subgraph Fi contains four regions with
the vertex ti on their boundaries (Figure 2). If there is a Tk ∈ SD with crD(Ti, Tk) = 1, then one can
easily see that tk ∈ ω1,2,4,5. Of course, the edge tkv3 must cross one edge of the graph G. If tkv3 crosses
the edge v1v2, then the subgraph Fk is represented by rotD(tk) = (13245). If the edge tkv3 crosses the
edge v2v4, then there are only three possibilities for the considered subdrawing of Fk, i.e., the subgraph
Fk can be represented by three possible cyclic permutations (13452), (15234), or (12354).

For the remaining configurations A2, B1, B2, B5, and B6 of Fi, using the same arguments, one can
easily verify that the rotations of the vertex tk are from the sets {(15324), (12534), (13425), (13542)},
{(12345), (14235)}, {(15342), (15423)}, {(12345)}, and {(15342)}, respectively. This forces that there
is no subgraph Tk ∈ SD with crD(Ti ∪ T j, Tk) = 2, where the subgraph Fj has the configuration
B2 or B6. The same reason is given for the case of A2 with the configurations B1 and B5. Finally,
crD(G ∪ Ti ∪ T j, Tk) ≥ 1 + 3 = 4 for any Tk ∈ SD. This completes the proof.

We have to emphasize that we cannot generalize Lemma 1 for all pairs of different configurations
fromM. Let us assume the configurations A1 of Fi and B4 of Fj. For Tk ∈ SD, the reader can easily
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find a subdrawing of G ∪ Ti ∪ T j ∪ Tk in which crD(Ti, Tk) = crD(T j, Tk) = 1. The same remark holds
for pairs A2 with B3, B1 with B3, and B2 with B4.

Theorem 1. cr(G + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 1.

Proof of Theorem 1. The drawing in Figure 4b shows that cr(G + Dn) ≤ 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
. We prove

the reverse inequality by contradiction. The graph G + D1 is planar; hence, cr(G + D1) = 0. Since the
graph G + D2 contains a subdivision of the complete bipartite graph K3,3, we have cr(G + D2) ≥ 1.
Thus, cr(G + D2) = 1 by the good drawing of G + D2 in Figure 4a. Suppose now that for n ≥ 3,
there is a drawing D with:

crD(G + Dn) < 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
, (2)

and let
cr(G + Dm) ≥ 4

⌊m
2

⌋⌊m− 1
2

⌋
+
⌊m

2

⌋
for any integer m < n. (3)

(a) (b)

v1

v2

v3

v4

v5

Figure 4. The good drawings of G + D2 and of G + Dn. (a): the drawing of G + D2 with one crossing;

(b): the drawing of G + Dn with 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
crossings.

Let us first show that the considered drawing D must be antipodal-free. As a contradiction, suppose
that, without loss of generality, crD(Tn, Tn−1) = 0. Using positive values in Tables 1 and 2, one can
easily verify that both subgraphs Tn and Tn−1 are not from the set RD, i.e., crD(G, Tn ∪ Tn−1) ≥ 1.
The known fact that cr(K5,3) = 4 implies that any Tk, k = 1, . . . , n− 2, crosses the edges of the subgraph
Tn ∪ Tn−1 at least four times. Therefore, for the number of crossings in the considered drawing D,
we have:

crD(G + Dn) = crD (G + Dn−2) + crD(G, Tn ∪ Tn−1) + crD(Tn ∪ Tn−1) + crD(K5,n−2, Tn ∪ Tn−1)

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+
⌊n− 2

2

⌋
+ 1 + 0 + 4(n− 2) = 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

This contradiction with the assumption (2) confirms that D must be an antipodal-free drawing.
Moreover, if r = |RD| and s = |SD|, the assumption (3) together with the well-known fact

cr(K5,n) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
imply that in D, there are at least

⌈ n
2
⌉
+ 1 subgraphs Ti, which do not cross the

edges of G. More precisely:

crD(G) + crD(G, K5,n) ≤ crD(G) + 0r + 1s + 2(n− r− s) <
⌊n

2

⌋
,
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i.e.,
s + 2(n− r− s) <

⌊n
2

⌋
. (4)

This forces that r ≥ 2, and r ≥
⌈ n

2
⌉
+ 1. Now, for Ti ∈ RD, we will discuss the existence of

possible configurations of subgraphs Fi = G ∪ Ti in the drawing D.
Case 1. crD(G) = 0. Without loss of generality, we can choose the vertex notation of the graph G in

such a way as shown in Figure 1a. Thus, we will deal with the configurations belonging to the nonempty
setMD. According to the minimum value of the weights of edges in the graph GD = (VD, ED, wD),
we will fix one, or two, or three subgraphs with a contradiction with the condition (2) in the
following subcases:

i. {A1, A2} ⊆ MD, i.e., wD(a1a2) = 1. Without loss of generality, let us consider two different
subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have configurations A1 and A2, respectively.
Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 5 for any Ti ∈ RD with i 6= n− 1, n by summing the values in
all columns in the considered two rows of Table 1. Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 3 for any
subgraph Ti with i 6= n− 1, n due to the properties of the cyclic permutations. Hence, by fixing
the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5(r− 2) + 4(n− r) + 1 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + r− 9

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 9 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

ii. {A1, A2} 6⊆ MD, i.e., wD(e) ≥ 2 for any e ∈ ED.

Let us assume that {A1, B2, B4} ⊆ MD or {A2, B1, B3} ⊆ MD, i.e., there is a three-cycle in
the graph GD with weights of two of all its edges. Without loss of generality, let us consider
three different subgraphs Tn, Tn−1 Tn−2 ∈ RD such that Fn, Fn−1m and Fn−2 have different
configurations from {A1, B2, B4}. Then, crD(G ∪ Tn ∪ Tn−1 ∪ Tn−2, Ti) ≥ 8 for any Ti ∈ RD with
i 6= n − 1, n by Table 1, and crD(G ∪ Tn ∪ Tn−1 ∪ Tn−2, Ti) ≥ 5 for any subgraph Ti ∈ SD by
Lemma 1. Thus, by fixing the graph G ∪ Tn ∪ Tn−1 ∪ Tn−2,

crD(G + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 8(r− 3) + 5(n− r) + 6 ≥ 4

⌊n− 3
2

⌋⌊n− 4
2

⌋
+ 5n + 3r− 18

≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 5n + 3

(⌈n
2

⌉
+ 1
)
− 18 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

In the next part, let us suppose that {A1, B2, B4} 6⊆ MD and {A2, B1, B3} 6⊆ MD,

(1) {Aj, Bk} ⊆ MD for some k ≡ j + 1 (mod 2) or {Bj, Bj+2} ⊆ MD, where j ∈ {1, 2}. Without loss
of generality, let us consider two different subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have
configurations A1 and B2, respectively. Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 6 for any Ti ∈ RD with
i 6= n− 1, n by Table 1. Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 2 for any subgraph Ti with i 6= n− 1, n
due to properties of the cyclic permutations. Hence, if we fix the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + r + r− s− 10 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n +

⌈n
2

⌉
+ 1 + 1− 10 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.
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(2) {Aj, Bk} 6⊆ MD for any k ≡ j + 1 (mod 2) and {Bj, Bj+2} 6⊆ MD, where j = 1, 2, i.e., wD(e) ≥ 3
for any e ∈ ED. Without loss of generality, we can assume that Tn ∈ RD. Then, crD(Tn, Ti) ≥ 3
for any Ti ∈ RD with i 6= n. Thus, by fixing the graph G ∪ Tn,

crD(G + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(r− 1) + 2(n− r) + 0 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + r− 3

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

Case 2. crD(G) = 1. Without loss of generality, we can choose the vertex notation of the graph
G in such a way as shown in Figure 1b. Thus, we will deal with the configurations belonging to the
nonempty set ND in the following two cases:

i. {Ai, Ai+1} ⊆ ND for some i ∈ {1, 2}. Without loss of generality, let us consider two different
subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have different configurations from the set
{A1, A2}. Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 6 for any Ti ∈ RD with i 6= n − 1, n by Table 2.
Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 2 for any subgraph Ti with i 6= n− 1, n due to the properties of
the cyclic permutations. Hence, by fixing the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2 + 1 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + r + r− s− 9 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n +

⌈n
2

⌉
+ 1 + 1− 9 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

If Fn and Fn−1 have different configurations from the set {A3, A4}, then the same argument can
be applied.

ii. {Ai, Ai+1} 6⊆ ND for any i = 1, 2. Without loss of generality, we can assume that Tn ∈ RD.
Then, crD(Tn, Ti) ≥ 3 for any Ti ∈ RD with i 6= n. Thus, by fixing the graph G ∪ Tn,

crD(G + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(r− 1) + 2(n− r) + 1 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + r− 2

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌈n
2

⌉
+ 1
)
− 2 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

Thus, it was shown that there is no good drawing D of the graph G + Dn with less than
4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings. This completes the proof of Theorem 1.

5. Three Other Graphs

Finally, in Figure 4b, we are able to add the edges v3v5 and v1v5 to the graph G without additional
crossings, and we obtain three new graphs Hi for i = 1, 2, 3 in Figure 5. Therefore, the drawing of
the graphs H1 + Dn, H2 + Dn, and H3 + Dn with 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings is obtained. On the
other hand, G + Dn is a subgraph of each Hi + Dn, and therefore, cr(Hi + Dn) ≥ cr(G + Dn) for any
i = 1, 2, 3. Thus, the next results are obvious.

Corollary 1. cr(Hi + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 1, where i = 1, 2, 3.

We remark that the crossing numbers of the graphs H1 + Dn and H3 + Dn were already obtained
by Berežný and Staš [4], and Klešč and Schrötter [7], respectively. Moreover, into the drawing in
Figure 4b, it is possible to add n edges, which form the path Pn, n ≥ 2 on the vertices of Dn without
another crossing. Thus, the next results are also obvious.

Theorem 2. cr(G + Pn) = cr(H2 + Pn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 2.
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The crossing number of the graph H1 + Pn has been investigated in [12].

H1 H2 H3

Figure 5. Three graphs H1, H2, and H3 by adding new edges to the graph G.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the internal faculty research Project No. FEI-2017-39.

Conflicts of Interest: The author declares no conflict of interest.

References
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