
symmetryS S

Article

Novel Fuzzy Clustering Methods for Test Case
Prioritization in Software Projects

A. D. Shrivathsan 1 , K. S. Ravichandran 1, R. Krishankumar 1, V. Sangeetha 1, Samarjit Kar 2,*,
Pawel Ziemba 3 and Jaroslaw Jankowski 4

1 School of Computing, SASTRA University, Thanjavur 613401, TN, India;
shrivathsan.a.d@mca.sastra.edu (A.D.S.); raviks@sastra.edu (K.S.R.); krishankumar@sastra.ac.in (R.K.);
sangeetha@sastra.ac.in (V.S.)

2 Department of Mathematics, National Institute of Technology, Durgapur, West Bengal 713209, India
3 Faculty of Economics and Management, University of Szczecin, Mickiewicza 64, 71-101 Szczecin, Poland;

pawel.ziemba@usz.edu.pl
4 Department of Computer Science and Information Technology, West Pomeranian University of Technology,

Zolnierska 49, 71-210 Szczecin, Poland; jjankowski@wi.zut.edu.pl
* Correspondence: samarjit.kar@maths.nitdgp.ac.in

Received: 9 August 2019; Accepted: 5 October 2019; Published: 12 November 2019
����������
�������

Abstract: Systematic Regression Testing is essential for maintaining software quality, but the cost
of regression testing is high. Test case prioritization (TCP) is a widely used approach to reduce this
cost. Many researchers have proposed regression test case prioritization techniques, and clustering
is one of the popular methods for prioritization. The task of selecting appropriate test cases and
identifying faulty functions involves ambiguities and uncertainties. To alleviate the issue, in this
paper, two fuzzy-based clustering techniques are proposed for TCP using newly derived similarity
coefficient and dominancy measure. Proposed techniques adopt grouping technology for clustering
and the Weighted Arithmetic Sum Product Assessment (WASPAS) method for ranking. Initially,
test cases are clustered using similarity//dominancy measures, which are later prioritized using the
WASPAS method under both inter- and intra-perspectives. The proposed algorithms are evaluated
using real-time data obtained from Software-artifact Infrastructure Repository (SIR). On evaluation,
it is inferred that the proposed algorithms increase the likelihood of selecting more relevant test
cases when compared to the recent state-of-the-art techniques. Finally, the strengths of the proposed
algorithms are discussed in comparison with state-of-the-art techniques.

Keywords: regression testing; test case prioritization; grouping technology; clustering; WASPAS

1. Introduction

The quality of software can be improved through a software testing process. However, a software
testing process is a tedious process, and it consumes more testing time. Strenuous efforts need to be
vested if testing happens to be in the cycle, which is otherwise known as regression testing (RT) [1–4].
RT is a continuous process, and it has to be stopped at an apt time, where a reasonable number of bugs
have been fixed. During every cycle of testing, bugs are found and fixed. Debugging may impact the
lines of code that result in new errors. These new errors are fixed in subsequent iterations. RT ascertains
that changes in software during bug fixing will not affect the overall quality and performance of the
software product being developed [5].

Chittimalli and Harrold [6] proved that the RT is more expensive, and it requires more than 33%
of the cumulative expenses of the software. Yoo and Harman [7] examined various regression test
cases and showed the importance of a reduction of time in the test suite in RT. The reduction in time

Symmetry 2019, 11, 1400; doi:10.3390/sym11111400 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7324-6533
https://orcid.org/0000-0002-4414-8547
https://orcid.org/0000-0002-3658-3039
http://www.mdpi.com/2073-8994/11/11/1400?type=check_update&version=1
http://dx.doi.org/10.3390/sym11111400
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 1400 2 of 22

for software testing mainly depends on any one of the following strategies: (i) Test Suite Minimization
(TSM)—a methodology of removal of repetitive experiments to reduce the number of tests to run [8],
(ii) Test Case Selection (TCS)—another way of reducing the number of tests to run [9] by way of
modifications, and (iii) Test Case Prioritization (TCP) [10,11]—the most significant approach to reduce
the number of tests to run by way of optimization.

RT should not be obviated because of its substantial impact on a time constraint. Rather, test cases
in the test suite should be prioritized. Many ways of prioritizing test cases are based on their fault,
exposing potential. The factors towards fault exposure are purely a white-box approach having a focus
on branch coverage, and statement coverage [12]. Huang et al. [5] focused on the past data, such as
the severity of the fault identified, the time spent for exercising the relevant test case, and the very
first test case that identified specific severe fault, which is the backbone for finding the cost-cognizant
average of faults detected. Keeping this as a fitness function and applying genetic algorithm resulted
in optimized ordering of test cases which was a breakthrough in regression test prioritization.

The historical information about each test case reveals the number of times exercised, code
coverage, and the iteration number in which the fault was uncovered, ends up in discovering an
innovative equation setting up the priority numbers to the test cases [12]. Further, Huang et al. [13]
prioritized test cases for GUI using weighted methods. Dennis Jeffrey et al. [8] viewed the programs
written as slices based on their data and control flow. Every slice may represent multiple specifications.
A single test case may cover a few of the requirements in a particular slice. Moreover, the output
influencing statements of the slice and expressions present in the slice is the area in which attention
must be paid. All of these aspects are applied heuristically to achieve prioritization. The workflow of
the proposed methodologies is given in Figure 1. Figure 1 shows the various TCP methods used by
researchers in RT, and in this paper, we have proposed two methods under the similarity/dominancy
category. It is observed that the two clustering methods are developed to tackle two different
perspectives. Similarity-based clustering is used in a situation where accuracy is more importance than
time. In contrast, dominance-based clustering is used in situations where time is more importance than
accuracy. Finally, after clustering, the clusters and the test cases are prioritized using the Weighted
Arithmetic Sum Product Assessment (WASPAS) method.

The details of those methods will be discussed in Section 3. The construction of this paper is as
follows. Section 2 discusses the previous studies related to TCP techniques. Section 3 provides the
proposed methodology where the core contributions are discussed. Further, in Section 4, a numerical
example is presented, and Section 5 gives the real case analysis where the strength of the proposed
framework is discussed. Finally, in Section 6, concluding remarks are provided along with the future
scope of research.

Symmetry 2019, 11, 1400 3 of 22
Symmetry 2019, 11, x FOR PEER REVIEW 3 of 23

Figure 1. The workflow of the proposed similarity-based test case prioritization (TCP).

2. Related Studies of Test Case Prioritization (TCP)

Prioritizing test cases is a predominant optimization problem, in which the least prioritized test
cases may be ignored to save time, while the quality remains intact [14]. Test case prioritization is an
attempt to arrange the test cases, in such a way that highly formidable test cases lead the remaining
ones based on the factors such as critical bugs' coverage and satisfying the customer's critical
requirements. This leads to exemplary permutation of test cases, forming an archetypal test suite.
The test cases in such test suites are used to uncover the bugs at the earliest, even though few of the
trailing test cases are not exercised. Such prioritization is an optimization effort since it never
undermines the power of testing. Several prioritization approaches have been developed for the
researchers in the last decade, which is based on coverage, search, fault, risk, requirements, history,
similarity, and others. From the survey published by Muhammad Khatibsyarbini et al. [15], more
than 70% of the published works deals with STP (Software Testing Prioritization) which is based on

Figure 1. The workflow of the proposed similarity-based test case prioritization (TCP).

2. Related Studies of Test Case Prioritization (TCP)

Prioritizing test cases is a predominant optimization problem, in which the least prioritized test
cases may be ignored to save time, while the quality remains intact [14]. Test case prioritization is an
attempt to arrange the test cases, in such a way that highly formidable test cases lead the remaining ones
based on the factors such as critical bugs’ coverage and satisfying the customer’s critical requirements.
This leads to exemplary permutation of test cases, forming an archetypal test suite. The test cases
in such test suites are used to uncover the bugs at the earliest, even though few of the trailing test
cases are not exercised. Such prioritization is an optimization effort since it never undermines the
power of testing. Several prioritization approaches have been developed for the researchers in the last
decade, which is based on coverage, search, fault, risk, requirements, history, similarity, and others.
From the survey published by Muhammad Khatibsyarbini et al. [15], more than 70% of the published
works deals with STP (Software Testing Prioritization) which is based on search, coverage, faulty,
requirement, and history, whereas the other methods occupy the rest of the percentage which is
inclusive of similarity-based STP.

Singh [16] presented a detailed review of 65 studies in Regression-based TCP (RTCP) which
covers the period of 1997–2011. This study covered the empirical study of eight main approaches

Symmetry 2019, 11, 1400 4 of 22

and discussed gaps, metrics, and artifact used. Catal and Misha [17] elaborated another review of
120 studies in RTCP from 2001 to 2011, which discusses the trends in TCP approaches, including
evaluation metrics. Yoo and Harman [7] conducted a literature review of RTs over 159 studies over the
period of 1977–2009. This study covers four important TCP approaches of RTs namely TCP, TSM & TCS.

Similarly, Refs. [18,19] discussed 19 and 90 studies of literature review in RTCP, respectively.
Khatibsyarsini et al. [15] presented 80 studies in RTCP from 1998 to 2016. They selected 80 studies
from 707 articles collected from the above said period for discussing various quality assessments.
This review covers the types of RT, TCP, tools, and evaluation metrics used. The limitations of the above
systematic literature review consist of: (i) there is no empirical evidence for other TCP approaches,
(ii) gaps have not been identified regarding the usage of artifacts on TCP approaches, and (iii) reasons
behind the importance of the evaluation metrics are not clearly stated.

In this paper, similarity-based approaches for TCP have been concentrated. This will provide
priority to the test cases that are the most dissimilar from those already selected. Recently, many
researchers have derived similarity-based approaches [12,13,20–22] for TCP. Thomas et al. [23] proposed
text analysis method for static TCP. In this paper, the main objective of the similarity-based techniques is
to maximize the commonality and minimize the diversity, which is the opposite to researchers that have
been obtaining priority that is based on maximizing the diversity and minimizing the similarity [24–27].
In general, similarity-based TCP is mainly divided into two types, which are distribution based and
ART (Adaptive Random Test) inspired. TCP for the first case is derived from clustered test cases
through dissimilarities between test cases [28,29]. ART is used as an improvised methodology of
random testing, and in almost all cases, it outperforms all the cases expect when the size of code is
less [30]. ART-inspired is an extension method of ART in TCP, the test cases with higher similarity
are only considered instead of considering all of them, and this provides better results than ART [26].
Yves Ledru et al. [31] proposed a TCP model using four similarity-based different string distances,
and then it was been proved that the proposed method has better Average Percentage Fault Detection
(APFD) than randomly ordered test suites.

Zhang et al. [32] and Jiang et al. [33] have proposed adaptive random testing based prioritization
techniques guided by code-coverage. Breno Miranda et al. [34] have extended the concepts of [32,33]
using FAST approach, and finally, they proved that the FAST method performs better scaling and
timing. ART (Adaptive Random Testing) [2] is a variant of random test generation that tries to spread,
as evenly as possible, the test inputs in the input domain. In the present experimentation, the FAST
approaches have been compared against both [26,35], which are further described in Section 5. Also,
the approach proposed by Fang et al. [36] is based on code coverage information, from which they
exploit the execution frequency profiles. Among black-box methods, Ledru et al. [31] propose a
similarity-based approach solely considering the strings that express the test cases, i.e., the input data
or the JUnit test cases. Also, FAST has been compared against this approach (see Section 5). Noor and
Hemmati [37] developed a history-based approach in which, among new or modified test cases, those
that are the most similar to failing ones are prioritized. FAST does not currently use historical data.

In software testing, diversity is a useful measure for both selecting and prioritizing test cases,
and several similarity-based approaches have been proposed [14,24,26,28,35]. In this, clustering plays
the role of prioritizing test cases. ARS approach clusters the test cases according to the number of
objects and methods using k-means and k-medoids clustering algorithms. Another method which
clusters the test cases according to object and method invocation sequence similarity metric uses the
k-medoids clustering algorithm [14].

Model-Based Black-Box Techniques

White-box clustering is also profoundly used in clustering. Program entities such as assignment
statements and control structures are analyzed. These are categorized based on the frequency of
execution with respect to test cases. Clusters are formed having the same amount of frequencies. Inner
elements of the cluster are further clustered using a greedy approach. Ultimately, a representative

Symmetry 2019, 11, 1400 5 of 22

of each cluster gives an ordered sequence of test cases. This methodology uses both similarity and
distance measures [36].

Event-oriented graph models and the importance of events lead to the clustering of events using
unsupervised neural network and fuzzy c-means clustering in finding the frequently occurring event
groups, thus providing high ranking to their respective test cases [38].

Various similarity measures over the test cases based on their code coverage have been studied and
analyzed. Subsequently, many prioritization algorithms, such as Adaptive Random Testing and Global
similarity-based algorithms, are scrutinized using various similarity measures. The apt prioritization
algorithms with the best-fit similarity measures are suggested by [1,2]. The factors, namely, customer
priority, implementation complexity, fault proneness, and volatility of the requirements are weighed,
and their weight factors paved the way for prioritizing the associated test cases. Yuen Ta Kyu et al. [3]
addressed the issues in transforming specifications into code, especially when the logical expressions
are prone to drift away from the intended meaning. Different forms of the same expression result in
multiple results, which may be undesirable. Test cases must be prioritized to obtain compelling test
cases that can resolve such an issue.

Requirement based black box prioritization techniques were enhanced by introducing regression
test factors such as the impact of fault in requirements, completeness, and traceability. Apart from the
severity of faults detected, test efforts on a total and average basis are also used to discern the weight
of test cases in attaining the ordering [22]. A new revolutionized approach in the field of prioritization
has been introduced by Stephen W. Thomas et al. [23]. Their work focused on text analysis, wherein
keywords, literals, comments, and identifiers were extracted from the documents. The test cases which
are associated with the identified phrases or topics are considered, and the similarity among them was
measured. The most dissimilar test cases were assigned with high ranking.

A novel method of prioritization was to introduce a mutant version of programs raising faults.
These are generated through automation rather than hand seeded. Then the rate of fault detection
was measured using block coverage, functional coverage, and random coverage and established that
mutation-based prioritization was one of the best approaches [24]. Location services-based applications
often suffer into the anomaly of rendering undesired locations. Hence, KeZhai et al. [25] introduced a
new set of metrics and classified faults in five different categories. Based on these categories, test cases
were prioritized and assessed by the harmonic mean of fault detection.

Li et al. [39] analyzed the search algorithms in prioritization which focused on coding facets,
giving a stance over choosing the right algorithm from the greedy, meta-heuristic, or genetic and
size up the factors determining the efficiency of the search algorithms. Elberzhager et al. [40] did
a comprehensive survey of software testing articles and classified them. These classifications help
the test manager in determining the required effort in testing, deciding over the stop point of testing
and setting up the quality assurance aspects triggered by inspections and reviews. Furthermore,
Elbaum et al. [41] presented a method for selection of test cases in a cost-effective manner.

Studies [11,40] presents a systematic review on TCP techniques and analysis its effects on software
testing. Yoo and Harman [7], have also done survey and reviews on various test case optimization
research methodologies. Do et al. [42] conducted a study on six different prioritization techniques
and figured out the performance of the methods by varying time constraints imposed on them.
Shrivathsan et al. [43] have done a substantial survey of test case prioritization techniques.

The advantages of the proposed similarity measures are: (i) similarity measures can be evaluated
separately in the test cases, as well as the faulty items which are based on the grouping technology;
(ii) it is based on the newly developed similarity measuring formula; and (iii) two-way similarity
measures provide better classification accuracy than one-way similarity measures provide.

From the above literature survey, it shows that the improvement may take place by proposing an
effective similarity-based TCP which will increase the testing accuracy and for that purpose, the present
work proposes two similarity-based TCP and, finally, it is proved that the proposed method provides
considerably good coverage of test cases.

Symmetry 2019, 11, 1400 6 of 22

From the investigation of the literature, the following challenges are encountered:

1. Clustering methods proposed in the literature are single-sided clustering, that is, clustering
is done from the perspectives of test cases. This will cause potential information loss, as the
interrelationship between test cases and faulty functions is ignored.

2. The similarity measures used in literature do not concentrate on the distribution of the data
(input), which affects the convergence process. Moreover, literature studies do not provide
methods pertaining to accuracy and time separately, and this is an open challenge to address.

3. Prioritization methods do not consider inter- and intra-clustering, which eventually causes loss
of information.

4. Finally, customization on constraints is not dominantly provided in TCP. This would restrict the
convergence and cause inaccuracies.

Motivated from these open challenges and to overcome them, the following contributions are
made in this paper:

1. Challenge one is resolved by proposing a novel two-way clustering that clusters both test cases
and faulty functions for better understanding the interrelationship among them.

2. Challenge two is addressed by proposing a new similarity measure that utilizes the power
of exponent measure and provides smoothening of data for effective convergence. Further,
the distribution of the data is also taken into consideration, and dominancy measure is proposed
along with similarity measure for properly managing accuracy time trade-off.

3. The WASPAS method is extended for inter- and intra-clustering prioritization, which effectively
prioritizes test cases.

4. Finally, the programming model is put forward for better customization of parameters to obtain
an optimal test case for the set of faulty functions.

3. Proposed Methodology

Practically, in the context of Regression testing for software quality assurance, test case
prioritization is a crucial aspect. In this paper, a fuzzy similarity-based test case prioritization
model is proposed to improve the performance of regression testing compared to the existing literature.
AbdurRahman et al. [44] proposed Call Dependency Graph (CDG) method, which uses the measure
based on the similarity, wherein the degree of relationship between two test cases is measured through
similarity. Boolean values are used to find the presence and absence of connectivity.

3.1. Proposed Fuzzy-Similarity Test Case Prioritization (TCP) Model (FSTPM)

All requirements are not equally important to the clients. Therefore, a software technique needs
to be developed for selecting the requirements which are important to the clients. Hence, specific
requirements need more attention from testers. Thus, the requirements clusters are prioritized, and their
priority information is used to select test cases from each cluster, obtaining a complete set of reordered
test cases. That is, the clusters with higher priority can be visited at an earlier time, and several test
cases could be selected from it.

Proposed Fuzzy-Similarity Test Case Prioritization (TCP) Model (FSTPM) is a clustering model,
and its solution procedure is based on grouping. Optimal clustering is obtained by using optimal
grouping between the test cases and the faulty functions. The solution procedure for FSTPM is
given below:

Given the fuzzy linguistic matrix F = [Lij], where the values of Lij are linguistic and for the sake of
convenience, the following linguistic levels are identified. The linguistic levels are low (LL), low-high
(LH), medium (MM), medium-high (MH), high (HH), and very high (VH). Here, Lij is represented
as the fault fj, which is identified by the test case TCi. The Gaussian membership function is used to
associate the truth value to the linguistic levels.

Symmetry 2019, 11, 1400 7 of 22

Modify the linguistic matrix F into fuzzy matrix F1 = [bij] where bij is the fuzzified value of the
given linguistic levels in F. All the entries of the fuzzy matrix F1 lies within 0 and 1. This value is the
degree of relationship between the test cases and the fault.

To convert the given fuzzy matrix F1 into 0–1 adjacency matrix F2 = [aij], whose elements are
defined by:

ai j =

{
0 i f bi j ≤ ϑ

1 i f bi j > ϑ
, (1)

where the value of ϑ is chosen based on the testing-time constraint. If higher the testing-time then
lower the ϑ value and lesser testing-time leads to higher ϑ value. The value of ϑ is calculated by:

ϑ = min
{

1
ρ

,
Gc

N

}
, (2)

where ρ = maximum number of permissible test cases in a group; GC = number of permissible grouping
and N = number of test-cases (or) a maximum number of faults identified by a test case. The value of ρ
must satisfy the condition: ρ = N+1

Gc
.

After finding the 0–1 adjacency matrix F2, grouping between the test cases is identified.
The following procedure is used to find the grouping of similar test cases.

Construct a lower triangular similarity matrix for the given test cases from the 0–1 adjacency
matrix F2 by using:

TCsim =
{
Si j; i > j and ∀i, j = 1, 2, 3, . . . , N

}
, where N = total number of test cases and

Si j =

a
(

a
ne(

n−a
n+a)

+ d
)

[
a
(

a
ne(

n−a
n+a)

)
+ b + c + ad

]
. (3)

Here, a is the number of faults that exists on both the test cases TCi and TCj; b is the number of
faults that exists only on TCi; c is the number of faults that exists only on TCj and d is the number of
faults that do not exist on test cases TCi and TCj.

When test cases uncover faulty function, repetition of test cases may occur; if such a scenario exists,
then any of the repeated test cases is removed before applying the grouping techniques. Suppose
Si j = 1, then TCi and TCj have the same faulty functions, and either TCi or TCj is removed, and these
two test cases are tagged into one, namely TCij. This will reduce the processing time of the problem.

After modifying the similarity matrix, all dominant similarity coefficients are swapped into the
first Gc columns (Gc—number of groups), because of the maximum number of clusters is Gc. For this
purpose, the similarity matrix is further modified as follows: (i) if larger similarity coefficient value
appears between the test cases in the first Gc column of each row, then all the values are retained as
such; (ii) if the largest similarity value appears after Gc column, then that column is interchanged to any
one of the first Gc columns; and (iii) if the largest similarity value occurs in various places including
the first Gc column, then ε quantity is added to the highest similarity appeared in the first Gc column
and this quantity lies typically between 0.001 and 0.005. The nature of the problem is not affected by
this. A few problems require this modification.

For finding the optimal grouping of the test cases, the following 0–1 optimization problem
is constructed:

The optimal clustering problem for grouping test cases which maximizes the sum of similarities
Si j is given by:

Max Z =
∑N

i=1

∑N

j=1
Si jyi j f or i > j, (4)

where yi j =

{
1; both the test cases TCi and TC jare mutually inclusive
0; both the test cases TCi and TC jare mutually exclusive

Symmetry 2019, 11, 1400 8 of 22

Subject to the constraints:

N∑
i=1

yi j = 1 f or j = 1, 2, . . . , N and i ≥ j, (5)

N∑
j = 1
i = j

yi j = Gc f or j = 1, 2, . . . , N, (6)

ρy j j +
N∑

i=1

yi j ≥ 0 f or j = 1, 2, . . . , N and i > j, (7)

and yi j = 0 or 1 f or i, j = 1, 2, 3, . . . , N. (8)

Using similarity values obtained from 4(d) the optimization problem is derived as per Equations (4)
through (8) and using MATLAB® software, the optimal grouping between the test cases is obtained.
Optimization toolbox is used that adopts linear programming solver with a dual-simplex algorithm.
Further, the parameters are set according to the application, and they are discussed below.

After finding the 0–1 adjacency matrix F2, there is the need to find grouping between the faultiness.
The following procedure is used to find the grouping of the similarity values between the faulty
functions, which are similar to step (4) with minor modifications.

Construct a lower triangular similarity matrix for the given faulty functions from the 0–1 adjacency
matrix F2 from:

FAULTsim =
{
Si j; i > j and ∀i, j = 1, 2, 3, . . . , M

}
, where M = total number of faultiness

identified by all the test cases and:

Si j =

a
(

a
ne(

n−a
n+a)

+ d
)

[
a
(

a
ne(

n−a
n+a)

)
+ b + c + ad

]
. (9)

Here, a is the number of faulty functions exists on both the faulty functions FAULTi and FAULTj;
b is the number of faults exists only on FAULTi c is the number of faults exists only on FAULTj and d is
the number of faults does not exist on faulty functions FAULTi and FAULTj.

When faulty function uncovered by test cases, repetition of faulty functions may occur; if such
a scenario exists, then any of the faulty function is removed before applying grouping techniques.
Suppose Sij = 1, then FAULTi and FAULTj have the same faulty functions, and either FAULTi or FAULTj

is removed, and these two test cases are tagged into one, namely FAULTij. This will reduce the time
complexity of the problem.

For finding the optimal grouping of the test cases, the following 0–1 optimization problem has
been constructed:

The optimal clustering problem for grouping test cases, which maximizes the sum of similarities
Si j and it is derived as:

Max Z =
∑M

i=1

∑M

j=1
Si jxi j f or i > j, (10)

where xi j =

{
1; both the f aulty items are mutually inclusive
0; both the f aulty items are mutually exclusive

and M = number of faulty functions

identified by the test cases.
Subject to the constraints:

M∑
j=1

xi j = 1 f or i = 1, 2, . . . , M and i ≥ j, (11)

M∑
j=1

x j j = Gc f or j = 1, 2, . . . , M, (12)

Symmetry 2019, 11, 1400 9 of 22

ρx j j +
M∑

i=1

xi j ≥ 0 f or j = 1, 2, . . . , M and i > j, (13)

and xi j = 0 or 1 f or i, j = 1, 2, 3, . . . , M. (14)

Using similarity values, the optimization problem is derived as per Equations (10) through (14)
and solved by using MATLAB® software (MathWorks, Natick, MA, USA) with linear programming
solver and dual-simplex algorithm. As mentioned earlier, parameter values are application-specific,
and they are discussed below. Finally, the optimal grouping between the faultiness is obtained

Using the optimal grouping between the test cases and faultiness, the incidence matrix F2 is
rearranged as per the grouping got from steps (4) and (5) and then finally, optimal clustering is obtained.

For ease of understanding Algorithm 1 is presented, which clearly describes the working of
fuzzy-similarity test case prioritization model.

Algorithm 1: Pseudo code for fuzzy-similarity test case prioritization model (FSTPM)

Input: Given F = [Lij], for i = 1, 2, . . . , n and j = 1, 2, . . . , m are the linguistic relationship matrix between the
set of n-test cases and m-faulty items.
Output: F1 = [aij], for i = 1, 2, . . . , n and j = 1, 2, . . . , m, with clustering partition between the set of test cases
and faultiness.
1. Using Gaussian membership function, convert the given F-linguistic relationship matrix into F1 = [bij] for
i = 1, 2, . . . , n and j = 1, 2, . . . , m as fuzzy matrix
2. To compute fuzzy 0–1 matrix F2 = [aij] for i = 1, 2, . . . , n and j = 1, 2, . . . , m from F1 by using the relation

ai j ←

{
0 i f bi j ≤ ϑ

1 i f bi j > ϑ
where ϑ← min

{
1
ρ , Gc

N

}
3. for i = 1 to n do

{
for j = 1 to n do

{
i. to compute a, b, c and d values between the ith and jth row

ii. to compute the similarity between the test cases by using the relation Si j ←

a
(

a

ne(
n−a
n+a)

+d
)

[
a
(

a

ne(
n−a
n+a)

)
+ b+c+ad

]

}
}

4. using the similarity index Sij as obtained from step-3, to solve the following 0–1 programming:

Max Z =
N∑

i=1

N∑
j=1

Si jyi j f or i > j

where yi j =

{
1; both the test cases TCi and TC jare mutually inclusive
0; both the test cases TCi and TC jare mutually exclusive

subject to the constraints
N∑

i=1
yi j = 1 f or j = 1, 2, . . . , N and i ≥ j

N∑
j = 1
i = j

yi j = Gc f or j = 1, 2, . . . , N

ρy j j +
N∑

i=1
yi j ≥ 0 f or j = 1, 2, . . . , N and i > j and yi j = 0 or 1 f or i, j = 1, 2, 3, . . . , N

5. Apply steps 3 and 4 for faultiness and based on the yij, values, group/cluster the faultiness
6. Based on the group of test cases and the faultiness, rearrange the rows and columns of F2, then we got the
clustering. This will be the given input of an inter and intra ranking of clusters

Symmetry 2019, 11, 1400 10 of 22

3.2. Dominancy Test Based Clustering for Test Case Prioritization (DTTCP)

The limitation of FSTPM is the random assumption of many terms, namely (i). The number of
clustering, (ii). The maximum number of test cases accommodated in a group, (iii) Fixation of the
threshold value, and so on. Again, if the number of groups varies, then the clustering accuracy also
varies. In the above example, if the number of groups is fixed as 3, then the clustering accuracy is
above 60%, whereas for the same problem if we fix the number of groups as 2, then the clustering
accuracy exceeds 85%. The limitation of the FSTPM is that they cannot handle clusters of varying
numbers between test cases and faculty functions. To overcome these limitations, a new clustering
method based on the dominancy test for test case prioritization (DTTCP) has been proposed.

The advantages of the DTTCP are: (1) based on the nature of the problem, the number of clusters
can be calculated systematically and (2) if the number of grouping between the test cases and faulty
items mismatch, then the resultant matrix is used to find the clustering, which requires very less
computational time when compared to its counterpart. Once the dominancy test is applied, the size of
the problem will reduce drastically. The following is the procedure for DTTCP:

Start with the matrix F2 derived from Section 3.1. T1, T2 . . . , Tn is the set of test cases (given in
rows) and F1, F2, . . . , Fm is the set of faulty items (given in columns).

Compare the dominance between the rows. If the row vector Ta contains the row vector Tb then
row Tb is removed and re-designate row Ta by Tab. If Ta ⊇ Tb ⊇ Tc then remove rows Tb and Tc and
re-designate row Ta by Tabc. Similarly, if Ta ⊇ Tb . . . ⊇ Tk then removes rows Tb, Tc, . . . Tk and
re-designate row Ta by Tab . . . k.

For the ease of understanding, Algorithm 2 is presented, which describes the working of DTTCP.

Algorithm 2: Pseudo code for dominancy test for test case prioritization (DTTCP)

Input: Given F = [Lij], for i = 1, 2, . . . , n and j = 1, 2, . . . , m are the linguistic relationship matrix between the
set of n-test cases and m-faulty items.
Output: F2 = [aij], for i = 1, 2, . . . , n and j = 1, 2, . . . , m, with clustering partition between the set of test cases
and faultiness (or) Recommended to move to FSTPM with reduced F2 fuzzy 0–1 matrix

1. Using Gaussian membership function, convert the given F-linguistic relationship matrix into F1 = [bij] for
i = 1, 2, . . . , n and j = 1, 2, . . . , m as fuzzy matrix

2. To compute fuzzy 0–1 matrix F2 = [aij] for i = 1, 2, . . . , n and j = 1, 2, . . . , m from F1 by using the relation

ai j ←

{
0 i f bi j ≤ ϑ

1 i f bi j > ϑ
where ϑ← min

{
1
ρ , Gc

N

}
3. To apply the following steps to find the cluster or the reduced F2 matrix:

a. If the row vector Ta contains (⊇) the row vector Tb, then row Tb is removed and re-designate row
Ta by Tab.

b. If no more rows are contains with other rows, then stop the process
c. Apply steps 3a and 3b for columns also, and do the same process

4. If the size of the matrix is a square matrix then stop the process. The resulting matrix is partitioned
accordingly. Otherwise, the size of the matrix of F2 is drastically reduced and then performs steps 3 to 6
as FSTPM.

Symmetry 2019, 11, 1400 11 of 22

In the previous example, TC1 ⊇ TC8 and TC6 ⊇ TC5, then remove rows TC5 and TC8, then the
resultant F2 matrix is modified as follows:

F2 = Testcases

1 2 3 4 5 6 7 8 9
18
2
3
4

65
7
9

1 0 0 1 1 1 1 0 0
0 1 1 1 1 1 0 0 0
0 1 1 1 0 0 1 1 0
0 1 1 0 0 0 1 1 1
1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 0
1 1 1 1 0 1 0 0 0

.

Similarly, perform step-2 for columns also. Here, F2 ⊇ F3⊇ F8, then remove columns three & eight
and re-designate column F2 by F238. Likewise, F6 ⊇ F5, then remove columns five and re-designate
column F6 by F65. Again, F7 ⊇ F9, then remove column 9 and re-designate column F7 by F79. Hence,
the resultant F2 is given by:

F2 = Testcases

1 238 4 65 79
18
2
3
4
65
7
9

1 0 0 1 1
0 1 1 1 1
0 1 1 1 0
0 1 1 0 0
1 0 0 0 1
1 1 1 1 0
1 1 1 1 0

.

Apply steps 2 and 3 until the number of groups of rows and columns is equal in number.
From step 2 we get, F18 ⊇ F65, then remove row 65 and re-designate column F18 by F1865. Again

TC3 ⊇ TC4 and TC9 ⊇ TC7, then remove rows TC4 and TC7, then the resultant F2 matrix is modified
as follows:

F2 = Testcases

1 238 4 65 79
1865

2
34
97

1 0 0 1 1
0 1 1 1 1
0 1 1 1 0
0 1 1 0 0

.

Similarly, it is applied to columns and rows, and finally, the matrix F2 is reduced as:

F2 = Testcases

651 238 784

1865
972
34

1 0 0
0 1 1
0 1 1

 .

Expanding the above matrix, the required clustering is obtained, which is the output of the
final clustering for dominancy test. The APFD measure of the above two methods, along with
non-prioritization, is given in the following Figure 2a–c.

Clearly, from the above Figure 2a–c, it is concluded that cluster based on the similarity coefficient
performs better than the other methods.

Symmetry 2019, 11, 1400 12 of 22

Symmetry 2019, 11, x FOR PEER REVIEW 12 of 23

Expanding the above matrix, the required clustering is obtained, which is the output of the final
clustering for dominancy test. The APFD measure of the above two methods, along with
non-prioritization, is given in the following Figure 2a–c.

Figure 2. Area plot: (a) Average Percentage Fault Detection (APFD) measure for non-prioritization;
(b) APFD measure for cluster-based similarity coefficient prioritization; and (c) APFD measure for
cluster-based on prioritization.

Clearly, from the above Figure 2a–c, it is concluded that cluster based on the similarity
coefficient performs better than the other methods.

3.3. Discussion

As per the client's requirement, not all the requirements are equally important, and some
requirements are used frequently when the software is deployed. Hence, those frequently addressed
requirements are more important during the clustering process. For this purpose, we have taken
input as linguistic, and it provides the degree of relationship between the test cases and the faulty
functions. The uniqueness of the proposed clustering methodology is that the identical properties
among the test-cases and the faulty functions are identified separately and then combined. The
proposed methodology performs better than the other clustering algorithms suggested in the recent
state-of-the-art techniques by Gokce et al. [38], Mohammed et al. [44], Chaurasia et al. [45], and
Mohammed and Do [46]. Grouping accuracy is based on: (i) the number of clusters to select and (ii)
the number of test cases accommodated in each cluster.

Three different measures are used for measuring the performance of the proposed method. The
first one is an accuracy, which is based on how many 1’s are accommodated in the clusters. For
optimal ρ, G , and ϑ , the proposed method achieved nearly 71% accuracy, whereas the other
state-of-the-art techniques achieved a maximum of 62% with regards to the final clustering. In the
above example, in cluster-1, the detected faults are f2, f3, and f4, and the undetected fault is f5.
Similarly, in cluster-2, detected faults are f7 and f9; and in this case, no fault is being undetected. In
cluster-3, detected faults are f1 and f6, and fault f8 is undetected. The advantage of this clustering

Figure 2. Area plot: (a) Average Percentage Fault Detection (APFD) measure for non-prioritization;
(b) APFD measure for cluster-based similarity coefficient prioritization; and (c) APFD measure for
cluster-based on prioritization.

3.3. Discussion

As per the client’s requirement, not all the requirements are equally important, and some
requirements are used frequently when the software is deployed. Hence, those frequently addressed
requirements are more important during the clustering process. For this purpose, we have taken input
as linguistic, and it provides the degree of relationship between the test cases and the faulty functions.
The uniqueness of the proposed clustering methodology is that the identical properties among
the test-cases and the faulty functions are identified separately and then combined. The proposed
methodology performs better than the other clustering algorithms suggested in the recent state-of-the-art
techniques by Gokce et al. [38], Mohammed et al. [44], Chaurasia et al. [45], and Mohammed and
Do [46]. Grouping accuracy is based on: (i) the number of clusters to select and (ii) the number of test
cases accommodated in each cluster.

Three different measures are used for measuring the performance of the proposed method.
The first one is an accuracy, which is based on how many 1’s are accommodated in the clusters.
For optimal ρ, Gc, and ϑ, the proposed method achieved nearly 71% accuracy, whereas the other
state-of-the-art techniques achieved a maximum of 62% with regards to the final clustering. In the
above example, in cluster-1, the detected faults are f2, f3, and f4, and the undetected fault is f5. Similarly,
in cluster-2, detected faults are f7 and f9; and in this case, no fault is being undetected. In cluster-3,
detected faults are f1 and f6, and fault f8 is undetected. The advantage of this clustering methodology
is that applying grouping technology for test cases separately and faults separately, so that the number
of undetected faults is very less, compared to the other clustering algorithms.

Depending on the clusters set, the clustering accuracy varies. In the same example, if the number
of cluster set is assumed to be two, then the clustering accuracy will be 87.5%. Hence, the assumption
of cluster sets is critical while applying clustering techniques for prioritization.

The performance analysis, before and after clustering is ascertained through Average Percentage
Fault Detection (APFD) measure. APFD achieves a better result of 51.34% through the clustering
method than other methods (without clustering) with an APFD score of 48.76%. Hence, the clustering

Symmetry 2019, 11, 1400 13 of 22

method of prioritization gives a relatively better result. The following session discusses the variously
estimated clustering, and the ranking among the clustering, which is calculated through the Weighted
Arithmetic Sum and Product Assessment (WASPAS) method.

3.4. An Inter and Intra Ranking of Clusters

Consider the procedure for ranking the clusters and then selecting desirable order in which test
cases must be utilized for better performance.

Step 1: Obtain k clusters each having an evaluation matrix of order m by n where m denotes the
number of test cases, and n denotes the number of criteria.

Step 2: The values in these matrices are linguistic. These are converted into fuzzy values by using
Gaussian membership function.

Step 3: Initially, the dominant cluster is estimated by using the weighted arithmetic method given
in Equation (15). The weight of each test case is considered to be equal, and this helps the
procedure to pay equal attention to each test case.

ζi =
n∑

j=1

wjµij, (15)

where n is the number of criteria, wj is the weight of the criteria with 0 ≤ wj ≤ 1, and
∑
j

wj = 1

and µij is the fuzzy value.

Step 4: Using step 3, the weighted arithmetic value of each test case pertaining to a particular cluster is
obtained. The average is calculated for each cluster, and these values are normalized to obtain
the weight of the cluster. They are given by Equations (16) and (17):

cp =

∑m
i=1 ζi

m
, (16)

ϕp =
cp∑k

p=1 cp
, (17)

where p is the number of clusters taken for the study.
Step 5: From step 4, the weight of each cluster is obtained, and using these values dominant cluster can

be determined.
Step 6: The matrix of order m by n is chosen from the dominant cluster, and the test cases are ranked

using the WASPAS method. The formulations are given by Equations (18)–(20):

Q1 =
n∑

j=1

wjµij, (18)

Q2 =
n∏

j=1

(
µij

)wj , (19)

Q3 = λQ1 + (1− λ)Q2, (20)

where Q1 is the weighted sum method (WSM), Q2 is the weighted product method (WPM), Q3
is the final rank value wj is the weight of the jth criterion with 0 ≤ wj ≤ 1 and

∑
j

wj = 1 and λ is

the strategy value with 0 ≤ λ ≤ 1.
Step 7: The Q3 value is obtained for each test case and the test case, which has the highest value is a

highly preferred test case and so on.

Symmetry 2019, 11, 1400 14 of 22

4. Numerical Example

4.1. Illustration of Clustering of Test Cases

The proposed algorithm is illustrated with nine test cases, which uncovers nine faults and the
scenario of uncovering is as shown below:

TC1 = { f1, f4, f5, f6, f7}, TC2 = { f2, f3, f4, f5, f6}, TC3 = {f1, f2, f3, f4, f7, f8}, TC4 = { f2, f3, f7, f8, f9},

TC5 = { f1, f4, f6, f7, f9}, TC6 = { f1, f3, f5, f6, f7, f9 }, TC7 = { f1, f2, f3, f4, f8}, TC8 = { f1, f6, f8},

TC9 = { f1, f2, f3, f4, f6}.

From the available information, the fuzzy-linguistic matrix F is constructed as shown below:

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 23

Q = λQ + 1 − λ)Q , (20)

where Q is the weighted sum method (WSM), Q is the weighted product method (WPM), Q is
the final rank value w is the weight of the jth criterion with 0 ≤ w ≤ 1 and ∑ w = 1 and λ is the
strategy value with 0 ≤ λ ≤ 1.
Step 7: The Q value is obtained for each test case and the test case, which has the highest value is a

highly preferred test case and so on.

4. Numerical Example

4.1. Illustration of Clustering of Test Cases

The proposed algorithm is illustrated with nine test cases, which uncovers nine faults and the
scenario of uncovering is as shown below:

TC1 = { f1, f4, f5, f6, f7}, TC2 = { f2, f3, f4, f5, f6}, TC3 = {f1, f2, f3, f4, f7, f8}, TC4 = { f2, f3, f7,
f8, f9}, TC5 = { f1, f4, f6, f7, f9}, TC6 = { f1, f3, f5, f6, f7, f9 }, TC7 = { f1, f2, f3, f4, f8}, TC8 = {

f1, f6, f8}, TC9 = { f1, f2, f3, f4, f6}.

From the available information, the fuzzy-linguistic matrix F is constructed as shown below: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝐹 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡

𝑉𝐻 − − − − 𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝑀 − − − −− − 𝐻𝐻 𝑀𝑀 𝐻𝐻 𝑉𝐻 𝑀𝑀 − − − − − −𝐿𝐿 𝐻𝐻 𝑉𝐻 𝑀𝐻 − − − − 𝑀𝑀 𝑉𝐻 − −− − 𝑀𝑀 𝑀𝑀 − − − − − − 𝑀𝐻 𝐻𝐻 𝑉𝐻𝑀𝐻 − − − − 𝐿𝐿 − − 𝑉𝐻 𝑀𝑀 − − 𝐻𝐻𝑀𝐻 − − 𝐿𝐻 − − 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑉𝐻𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝐻 − − − − − − 𝐻𝐻 − −𝐻𝐻 − − − − − − − − 𝑉𝐻 − − 𝐿𝐿 − −𝑀𝑀 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑀𝑀 − − − − − −⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
.

By applying appropriate value to their concerned Gaussian Membership Function, the following
fuzzy-matrix F1 is derived. The input membership function for the given problem is defined in Figure 3.

Figure 3. Input Gaussian Membership function.

𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

F1 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.89 0.00 0.00 0.34 0.92 0.71 0.34 0.00 0.000.00 0.81 0.89 0.74 0.88 0.36 0.00 0.00 0.000.12 0.77 0.89 0.67 0.00 0.00 0.34 0.92 0.000.00 0.44 0.53 0.00 0.00 0.00 0.75 0.73 0.850.70 0.00 0.00 0.13 0.00 0.88 0.53 0.00 0.690.56 0.00 0.12 0.00 0.74 0.85 0.72 0.00 0.890.34 0.96 0.66 0.74 0.00 0.00 0.00 0.68 0.000.76 0.00 0.00 0.00 0.00 0.89 0.00 0.14 0.000.36 0.67 0.95 0.78 0.00 0.35 0.00 0.00 0.00⎦⎥⎥

⎥⎥⎥
⎥⎥⎤

By applying appropriate value to their concerned Gaussian Membership Function, the following
fuzzy-matrix F1 is derived. The input membership function for the given problem is defined in
Figure 3.

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 23

Q = λQ + 1 − λ)Q , (20)

where Q is the weighted sum method (WSM), Q is the weighted product method (WPM), Q is
the final rank value w is the weight of the jth criterion with 0 ≤ w ≤ 1 and ∑ w = 1 and λ is the
strategy value with 0 ≤ λ ≤ 1.
Step 7: The Q value is obtained for each test case and the test case, which has the highest value is a

highly preferred test case and so on.

4. Numerical Example

4.1. Illustration of Clustering of Test Cases

The proposed algorithm is illustrated with nine test cases, which uncovers nine faults and the
scenario of uncovering is as shown below:

TC1 = { f1, f4, f5, f6, f7}, TC2 = { f2, f3, f4, f5, f6}, TC3 = {f1, f2, f3, f4, f7, f8}, TC4 = { f2, f3, f7,
f8, f9}, TC5 = { f1, f4, f6, f7, f9}, TC6 = { f1, f3, f5, f6, f7, f9 }, TC7 = { f1, f2, f3, f4, f8}, TC8 = {

f1, f6, f8}, TC9 = { f1, f2, f3, f4, f6}.

From the available information, the fuzzy-linguistic matrix F is constructed as shown below: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝐹 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡

𝑉𝐻 − − − − 𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝑀 − − − −− − 𝐻𝐻 𝑀𝑀 𝐻𝐻 𝑉𝐻 𝑀𝑀 − − − − − −𝐿𝐿 𝐻𝐻 𝑉𝐻 𝑀𝐻 − − − − 𝑀𝑀 𝑉𝐻 − −− − 𝑀𝑀 𝑀𝑀 − − − − − − 𝑀𝐻 𝐻𝐻 𝑉𝐻𝑀𝐻 − − − − 𝐿𝐿 − − 𝑉𝐻 𝑀𝑀 − − 𝐻𝐻𝑀𝐻 − − 𝐿𝐻 − − 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑉𝐻𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝐻 − − − − − − 𝐻𝐻 − −𝐻𝐻 − − − − − − − − 𝑉𝐻 − − 𝐿𝐿 − −𝑀𝑀 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑀𝑀 − − − − − −⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
.

By applying appropriate value to their concerned Gaussian Membership Function, the following
fuzzy-matrix F1 is derived. The input membership function for the given problem is defined in Figure 3.

Figure 3. Input Gaussian Membership function.

𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

F1 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.89 0.00 0.00 0.34 0.92 0.71 0.34 0.00 0.000.00 0.81 0.89 0.74 0.88 0.36 0.00 0.00 0.000.12 0.77 0.89 0.67 0.00 0.00 0.34 0.92 0.000.00 0.44 0.53 0.00 0.00 0.00 0.75 0.73 0.850.70 0.00 0.00 0.13 0.00 0.88 0.53 0.00 0.690.56 0.00 0.12 0.00 0.74 0.85 0.72 0.00 0.890.34 0.96 0.66 0.74 0.00 0.00 0.00 0.68 0.000.76 0.00 0.00 0.00 0.00 0.89 0.00 0.14 0.000.36 0.67 0.95 0.78 0.00 0.35 0.00 0.00 0.00⎦⎥⎥

⎥⎥⎥
⎥⎥⎤

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 23

Q = λQ + 1 − λ)Q , (20)

where Q is the weighted sum method (WSM), Q is the weighted product method (WPM), Q is
the final rank value w is the weight of the jth criterion with 0 ≤ w ≤ 1 and ∑ w = 1 and λ is the
strategy value with 0 ≤ λ ≤ 1.
Step 7: The Q value is obtained for each test case and the test case, which has the highest value is a

highly preferred test case and so on.

4. Numerical Example

4.1. Illustration of Clustering of Test Cases

The proposed algorithm is illustrated with nine test cases, which uncovers nine faults and the
scenario of uncovering is as shown below:

TC1 = { f1, f4, f5, f6, f7}, TC2 = { f2, f3, f4, f5, f6}, TC3 = {f1, f2, f3, f4, f7, f8}, TC4 = { f2, f3, f7,
f8, f9}, TC5 = { f1, f4, f6, f7, f9}, TC6 = { f1, f3, f5, f6, f7, f9 }, TC7 = { f1, f2, f3, f4, f8}, TC8 = {

f1, f6, f8}, TC9 = { f1, f2, f3, f4, f6}.

From the available information, the fuzzy-linguistic matrix F is constructed as shown below: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝐹 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡

𝑉𝐻 − − − − 𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝑀 − − − −− − 𝐻𝐻 𝑀𝑀 𝐻𝐻 𝑉𝐻 𝑀𝑀 − − − − − −𝐿𝐿 𝐻𝐻 𝑉𝐻 𝑀𝐻 − − − − 𝑀𝑀 𝑉𝐻 − −− − 𝑀𝑀 𝑀𝑀 − − − − − − 𝑀𝐻 𝐻𝐻 𝑉𝐻𝑀𝐻 − − − − 𝐿𝐿 − − 𝑉𝐻 𝑀𝑀 − − 𝐻𝐻𝑀𝐻 − − 𝐿𝐻 − − 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑉𝐻𝑀𝑀 𝑉𝐻 𝑀𝐻 𝑀𝐻 − − − − − − 𝐻𝐻 − −𝐻𝐻 − − − − − − − − 𝑉𝐻 − − 𝐿𝐿 − −𝑀𝑀 𝐻𝐻 𝑉𝐻 𝐻𝐻 − − 𝑀𝑀 − − − − − −⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
.

By applying appropriate value to their concerned Gaussian Membership Function, the following
fuzzy-matrix F1 is derived. The input membership function for the given problem is defined in Figure 3.

Figure 3. Input Gaussian Membership function.

𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

F1 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.89 0.00 0.00 0.34 0.92 0.71 0.34 0.00 0.000.00 0.81 0.89 0.74 0.88 0.36 0.00 0.00 0.000.12 0.77 0.89 0.67 0.00 0.00 0.34 0.92 0.000.00 0.44 0.53 0.00 0.00 0.00 0.75 0.73 0.850.70 0.00 0.00 0.13 0.00 0.88 0.53 0.00 0.690.56 0.00 0.12 0.00 0.74 0.85 0.72 0.00 0.890.34 0.96 0.66 0.74 0.00 0.00 0.00 0.68 0.000.76 0.00 0.00 0.00 0.00 0.89 0.00 0.14 0.000.36 0.67 0.95 0.78 0.00 0.35 0.00 0.00 0.00⎦⎥⎥

⎥⎥⎥
⎥⎥⎤

Figure 3. Input Gaussian Membership function.

In the sample problem, the number of test-cases (N = 9) and the number of faults identified
by all the test-cases (M = 9) are equal. Let us assume that the number of groups Gc = 3. Therefore,
ϑ = min

{
1
ρ , Gc

N

}
= min

{
1
4 , 3

9

}
= 0.25. Hence, modify the fuzzy matrix F1 into 0–1 incidence matrix,

namely F2 using Equation (2) as:

Symmetry 2019, 11, 1400 15 of 22

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 23

In the sample problem, the number of test-cases (N = 9) and the number of faults identified by
all the test-cases (M = 9) are equal. Let us assume that the number of groups Gc = 3. Therefore, 𝜗 =𝑚𝑖𝑛 , = 𝑚𝑖𝑛 , = 0.25. Hence, modify the fuzzy matrix F1 into 0–1 incidence matrix, namely

F2 using Equation (2) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 1 2 3 4 5 6 7 8 9
F2 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
1 0 00 1 10 1 1 1 1 11 1 11 0 0 1 0 00 0 01 1 00 1 11 0 01 0 0 0 0 00 0 10 1 1 1 1 11 0 11 0 11 1 11 0 01 1 1 1 0 00 0 11 0 1 0 1 00 0 00 0 0⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
.

From F2, construct a lower or upper triangular similarity index matrix for test cases TCsim = 𝑆 ; 𝑖 >𝑗𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑣𝑠 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑆
= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.609 0.000 − − − − − − −0.130 0.458 0.000 − − − − − −0.000 0.254 0.945 0.000 − − − − −0.751 0.130 0.250 0.445 0.000 − − − −0.857 0.255 0.130 0.255 0.945 0.000 − − −0.255 0.609 0.762 0.609 0.130 0.000 0.000 − −0.754 0.419 0.092 0.033 0.858 0.754 0.419 0.000 −0.609 0.863 0.271 0.255 0.459 0.255 0.863 0.754 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ .

Substitute TCsim(Sij) value in the optimization function given in (4) and expand the constraints
given in Equations (5)–(8).Then by using MATLAB® software (optimization toolbox, with solver as
linear programming) solve the 0–1 programming, to obtain the following result. (Since Gc is 3, by
applying Equation (2), the maximum number of test cases accommodated in a single group will be 𝜌 = 4 and the remaining indices not mentioned below (varying between i = 1–9 and j = 1–9) are zero.
Hence, relating the above, three clusters among test cases have been obtained, namely Cluster-1 = {1,
5, 6, 8}, Cluster-2 = {2, 9, 7} and Cluster-3 = {3, 4}.

y66 = y77 = y44 = y16 = y29 = y34 = y56 = y85 = y97 = 1

In a similar mechanism, grouping technology concepts are applied to faulty functions using
step (5) in the solution procedure from F2, construct a lower or upper triangular similarity index
matrix for faulty functions FAULTsim = 𝑆 ; 𝑖 >𝑗 𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑣𝑠 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑆

= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.000 0.000 − − − − − − −0.000 1.00 0.000 − − − − − −0.609 0.762 0.762 0.000 − − − − −0.459 0.271 0.271 0.754 0.000 − − − −0.837 0.000 0.000 0.609 0.762 0.000 − − −0.379 0.255 0.255 0.130 0.623 0.379 0.000 − −0.130 0.869 0.869 0.419 0.092 0.000 0.623 0.000 −0.459 0.271 0.271 0.033 0.566 0.459 0.869 0.566 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤.

From F2, construct a lower or upper triangular similarity index matrix for test cases TCsim ={
Si j; i > j and ∀i, j = 1, 2, 3, . . . , 9

}
using Equation (3) as:

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 23

In the sample problem, the number of test-cases (N = 9) and the number of faults identified by
all the test-cases (M = 9) are equal. Let us assume that the number of groups Gc = 3. Therefore, 𝜗 =𝑚𝑖𝑛 , = 𝑚𝑖𝑛 , = 0.25. Hence, modify the fuzzy matrix F1 into 0–1 incidence matrix, namely

F2 using Equation (2) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 1 2 3 4 5 6 7 8 9
F2 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
1 0 00 1 10 1 1 1 1 11 1 11 0 0 1 0 00 0 01 1 00 1 11 0 01 0 0 0 0 00 0 10 1 1 1 1 11 0 11 0 11 1 11 0 01 1 1 1 0 00 0 11 0 1 0 1 00 0 00 0 0⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
.

From F2, construct a lower or upper triangular similarity index matrix for test cases TCsim = 𝑆 ; 𝑖 >𝑗𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑣𝑠 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑆
= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.609 0.000 − − − − − − −0.130 0.458 0.000 − − − − − −0.000 0.254 0.945 0.000 − − − − −0.751 0.130 0.250 0.445 0.000 − − − −0.857 0.255 0.130 0.255 0.945 0.000 − − −0.255 0.609 0.762 0.609 0.130 0.000 0.000 − −0.754 0.419 0.092 0.033 0.858 0.754 0.419 0.000 −0.609 0.863 0.271 0.255 0.459 0.255 0.863 0.754 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ .

Substitute TCsim(Sij) value in the optimization function given in (4) and expand the constraints
given in Equations (5)–(8).Then by using MATLAB® software (optimization toolbox, with solver as
linear programming) solve the 0–1 programming, to obtain the following result. (Since Gc is 3, by
applying Equation (2), the maximum number of test cases accommodated in a single group will be 𝜌 = 4 and the remaining indices not mentioned below (varying between i = 1–9 and j = 1–9) are zero.
Hence, relating the above, three clusters among test cases have been obtained, namely Cluster-1 = {1,
5, 6, 8}, Cluster-2 = {2, 9, 7} and Cluster-3 = {3, 4}.

y66 = y77 = y44 = y16 = y29 = y34 = y56 = y85 = y97 = 1

In a similar mechanism, grouping technology concepts are applied to faulty functions using
step (5) in the solution procedure from F2, construct a lower or upper triangular similarity index
matrix for faulty functions FAULTsim = 𝑆 ; 𝑖 >𝑗 𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑣𝑠 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑆

= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.000 0.000 − − − − − − −0.000 1.00 0.000 − − − − − −0.609 0.762 0.762 0.000 − − − − −0.459 0.271 0.271 0.754 0.000 − − − −0.837 0.000 0.000 0.609 0.762 0.000 − − −0.379 0.255 0.255 0.130 0.623 0.379 0.000 − −0.130 0.869 0.869 0.419 0.092 0.000 0.623 0.000 −0.459 0.271 0.271 0.033 0.566 0.459 0.869 0.566 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤.

Substitute TCsim(Sij) value in the optimization function given in (4) and expand the constraints
given in Equations (5)–(8). Then by using MATLAB® software (optimization toolbox, with solver as
linear programming) solve the 0–1 programming, to obtain the following result. (Since Gc is 3, by
applying Equation (2), the maximum number of test cases accommodated in a single group will be
ρ = 4 and the remaining indices not mentioned below (varying between i = 1–9 and j = 1–9) are zero.
Hence, relating the above, three clusters among test cases have been obtained, namely Cluster-1 = {1, 5,
6, 8}, Cluster-2 = {2, 9, 7} and Cluster-3 = {3, 4}.

y66 = y77 = y44 = y16 = y29 = y34 = y56 = y85 = y97 = 1

In a similar mechanism, grouping technology concepts are applied to faulty functions using step
(5) in the solution procedure from F2, construct a lower or upper triangular similarity index matrix for
faulty functions FAULTsim =

{
Si j; i > j and ∀i, j = 1, 2, 3, . . . , 9

}
using Equation (3) as:

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 23

In the sample problem, the number of test-cases (N = 9) and the number of faults identified by
all the test-cases (M = 9) are equal. Let us assume that the number of groups Gc = 3. Therefore, 𝜗 =𝑚𝑖𝑛 , = 𝑚𝑖𝑛 , = 0.25. Hence, modify the fuzzy matrix F1 into 0–1 incidence matrix, namely

F2 using Equation (2) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 1 2 3 4 5 6 7 8 9
F2 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
1 0 00 1 10 1 1 1 1 11 1 11 0 0 1 0 00 0 01 1 00 1 11 0 01 0 0 0 0 00 0 10 1 1 1 1 11 0 11 0 11 1 11 0 01 1 1 1 0 00 0 11 0 1 0 1 00 0 00 0 0⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
.

From F2, construct a lower or upper triangular similarity index matrix for test cases TCsim = 𝑆 ; 𝑖 >𝑗𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑣𝑠 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑆
= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.609 0.000 − − − − − − −0.130 0.458 0.000 − − − − − −0.000 0.254 0.945 0.000 − − − − −0.751 0.130 0.250 0.445 0.000 − − − −0.857 0.255 0.130 0.255 0.945 0.000 − − −0.255 0.609 0.762 0.609 0.130 0.000 0.000 − −0.754 0.419 0.092 0.033 0.858 0.754 0.419 0.000 −0.609 0.863 0.271 0.255 0.459 0.255 0.863 0.754 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ .

Substitute TCsim(Sij) value in the optimization function given in (4) and expand the constraints
given in Equations (5)–(8).Then by using MATLAB® software (optimization toolbox, with solver as
linear programming) solve the 0–1 programming, to obtain the following result. (Since Gc is 3, by
applying Equation (2), the maximum number of test cases accommodated in a single group will be 𝜌 = 4 and the remaining indices not mentioned below (varying between i = 1–9 and j = 1–9) are zero.
Hence, relating the above, three clusters among test cases have been obtained, namely Cluster-1 = {1,
5, 6, 8}, Cluster-2 = {2, 9, 7} and Cluster-3 = {3, 4}.

y66 = y77 = y44 = y16 = y29 = y34 = y56 = y85 = y97 = 1

In a similar mechanism, grouping technology concepts are applied to faulty functions using
step (5) in the solution procedure from F2, construct a lower or upper triangular similarity index
matrix for faulty functions FAULTsim = 𝑆 ; 𝑖 >𝑗 𝑎𝑛𝑑 ∀𝑖, 𝑗 = 1, 2, 3, … , 9} using Equation (3) as: 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑣𝑠 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑆

= 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9123456789 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
0.000 − − − − − − − −0.000 0.000 − − − − − − −0.000 1.00 0.000 − − − − − −0.609 0.762 0.762 0.000 − − − − −0.459 0.271 0.271 0.754 0.000 − − − −0.837 0.000 0.000 0.609 0.762 0.000 − − −0.379 0.255 0.255 0.130 0.623 0.379 0.000 − −0.130 0.869 0.869 0.419 0.092 0.000 0.623 0.000 −0.459 0.271 0.271 0.033 0.566 0.459 0.869 0.566 0.000⎦⎥⎥

⎥⎥⎥
⎥⎥⎤.

Symmetry 2019, 11, 1400 16 of 22

Substitute FAULTsim (Sij) value in the optimization function given in (9) and expanding the
constraints given in Equations (10)–(13), and then using MATLAB® software to solve the 0–1
programming, the following results were obtained (Assumed Gc is 3, then using (2), the maximum
number of test cases accommodated in a single group will be ϑ = 4).

x66 = x22 = x77 = x15 = x34 = x42 = x56 = x87 = x98 = 1

The indices not mentioned in Equation (15) (varying for i = 1–9, and j = 1–9) are zero. Hence,
relating the above, three clusters have been obtained for faulty functions, namely Cluster-1 = {1, 5, 6},
Cluster-2 = {2, 3, 4} and Cluster-3 = {7, 8, 9}. Here also, if we set Gc as 2, then test case numbered 8
is either added to the first cluster or the second cluster. Rearrange the matrix F2 as per the equality
constraints given above, the resultant matrix is a clustering matrix and is given in (16).

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 23

Substitute FAULTsim (Sij) value in the optimization function given in (9) and expanding the
constraints given in Equations (10)–(13), and then using MATLAB® software to solve the 0–1
programming, the following results were obtained (Assumed Gc is 3, then using (2), the maximum
number of test cases accommodated in a single group will be 𝜗 = 4).

x66 = x22 = x77 = x15 = x34 = x42 = x56 = x87 = x98 = 1

The indices not mentioned in Equation (15) (varying for i = 1–9, and j = 1–9) are zero. Hence,
relating the above, three clusters have been obtained for faulty functions, namely Cluster-1 = {1, 5, 6},
Cluster-2 = {2, 3, 4} and Cluster-3 = {7, 8, 9}. Here also, if we set Gc as 2, then test case numbered 8 is
either added to the first cluster or the second cluster. Rearrange the matrix F2 as per the equality
constraints given above, the resultant matrix is a clustering matrix and is given in (16). 𝐹𝑎𝑢𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝐹𝑖𝑛𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 = 𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 1 2 3 4 5 6 7 8 9156829734 ⎣⎢⎢

⎢⎢⎢
⎢⎢⎡
1 1 1 0 0 1 1 0 01 0 1 0 0 0 1 0 11 1 1 0 0 0 1 0 11 0 1 0 0 0 0 0 00 1 1 1 1 1 0 0 01 0 1 1 1 1 0 0 01 0 0 1 1 1 0 1 00 0 0 1 1 1 1 1 00 0 0 1 1 1 1 1 1⎦⎥⎥

⎥⎥⎥
⎥⎥⎤

4.2. An illustrative Example for Inter and Intra Test Case Prioritization

Form matrices of order 𝑚 × 𝑛 where m represents the test cases and n represents the faults.
Based on the clustering process, these matrices are formed of order 4 × 3 , 3 × 3 , and 2 × 2 ,
respectively.

Matrix1=

0.89 0.92 0.710.7 0 0.880.56 0.74 0.850.76 0 0.89 Matrix 2=
0.81 0.89 0.740.67 0.95 0.780.96 0.66 0.74 Matrix 3= 0.34 0.92 00.75 0.73 0.83

Calculate the WASPAS parameters using Equations (20)–(22) and they are shown in Table 1.
From Table 1, the intra ranking is given by TC1 > TC5 > TC6 > TC8 for cluster-1, TC2 > TC9 > TC7 for

cluster 2 and TC3 > TC4 for cluster 3, respectively. The inter ranking is given by C3 > C1 > C2 with
values 3.59, 2.63, and 2.4, respectively. A similar idea is adopted for Tables 2 and 3 as well.

Table 1. Rank value analysis for cluster-1.

Alternative Sum Product Rank
A1 0.84 0.834 0.83
A2 0.526 0 0.26
A3 0.716 0.706 0.711
A4 0.55 0 0.275

Table 2. Value analysis for cluster-2.

Alternative Sum Product Rank
A1 0.813 0.81 0.81
A2 0.8 0.79 0.7959
A3 0.786 0.77 0.781

Table 3. Rank value analysis for cluster-3.

4.2. An illustrative Example for Inter and Intra Test Case Prioritization

Form matrices of order m× n where m represents the test cases and n represents the faults. Based
on the clustering process, these matrices are formed of order 4× 3, 3× 3, and 2× 2, respectively.

Matrix1 =

0.89 0.92 0.71
0.7 0 0.88

0.56 0.74 0.85
0.76 0 0.89

Matrix 2 =

0.81 0.89 0.74
0.67 0.95 0.78
0.96 0.66 0.74

 Matrix 3 =

[
0.34 0.92 0
0.75 0.73 0.83

]

Calculate the WASPAS parameters using Equations (20)–(22) and they are shown in Table 1.

Table 1. Rank value analysis for cluster-1.

Alternative Sum Product Rank

A1 0.84 0.834 0.83
A2 0.526 0 0.26
A3 0.716 0.706 0.711
A4 0.55 0 0.275

From Table 1, the intra ranking is given by TC1 > TC5 > TC6 > TC8 for cluster-1, TC2 > TC9 > TC7

for cluster 2 and TC3 > TC4 for cluster 3, respectively. The inter ranking is given by C3 > C1 > C2 with
values 3.59, 2.63, and 2.4, respectively. A similar idea is adopted for Tables 2 and 3 as well.

Table 2. Value analysis for cluster-2.

Alternative Sum Product Rank

A1 0.813 0.81 0.81
A2 0.8 0.79 0.7959
A3 0.786 0.77 0.781

Symmetry 2019, 11, 1400 17 of 22

Table 3. Rank value analysis for cluster-3.

Alternative Sum Product Rank

A1 0.42 0 0.21
A2 0.776 0.7749 0.7758

5. A Real Case Study Analysis

The proposed technique is tested with the programs developed by researchers and is extracted
from the local software company, which is collaborated with some group of students in the university,
and it is available in (https://sir.unl.edu). The programs chosen for testing purpose are illustrated with
descriptions in Table 4. The chosen programs belong to the category of concurrency. These programs
inherently have the quality of multithreaded activities requiring arbitration.

Table 4. Software projects tested.

Objects Language Req. Versions Size
(KLoC) Classes # Faulty

Versions
Fault
Types

Bug
Type Bug Description

Pool 1 Java 19 2 3.62 28 36 Real Race Thread execution order and
execution speed problem

Pool 2 Java 59 2 18.66 88 114 Real Deadlock Resource allocation
contention problem

Pool 3 Java 123 3 38.09 124 136 Real Deadlock Resource allocation
contention problem

Pool 4 Java 84 4 20.43 94 112 Real Deadlock Resource allocation
contention problem

In Table 4, each of the objects is associated with the programming languages which are used
to create an object, the number of lines of code in the program, number of classes used in an object,
number of faulty versions, the number of versions, number of requirements and its types, and the types
of bugs based on the given requirements. The test case studied in this work is a functional test case
associated with requirements. The performance analysis of the proposed methods with the following
ten popular prioritization techniques is given below.

Total statement coverage prioritization (P1): Test cases are ordered with respect to the number of
statements covered by them. The greater the number of statements covered, the higher the prioritization.
When more than one test case covers the same number of statements, then they are assigned priority
randomly, being next to each other.

Additional statement coverage prioritization (P2): Test cases are ordered based on their higher
number of statements coverage. Then, this ordering is adjusted based on which test case covers the
uncovered statements.

Total branch coverage prioritization (P3): It is very similar to the total statement coverage
prioritization, except that the coverage is for branches, rather than for the statements.

Additional branch coverage prioritization (P4): It is very similar to the additional statement
coverage prioritization, except that the coverage is for branches, rather than for the statements.

Total function coverage prioritization (P5): It is very similar to the total statement coverage
prioritization, except that the coverage is for functions, rather than for the statements.

Additional function coverage prioritization (P6): It is very similar to the additional statement
coverage prioritization, except that the coverage is for functions, rather than for the statements.

Total fault exposing potential prioritization (P7): This technique considers the identification of
a fault in two dimensions. The first dimension is that the test covers a faulty statement. Another
dimension is that the fault of a statement failing a test case means that the test case does not expose the
fault. Based on both dimensions, a test case will be awarded value. This awarded value is computed by
considering three factors. 1) Statement execution probability. 2) Probability in a change of state (computed
through statement mutation) when mutants are exposed and or are not exposed 3) The subsequent state
changes due to the preceding factor. For a test case, this awarded value is found for each of the

https://sir.unl.edu

Symmetry 2019, 11, 1400 18 of 22

statements covered by it. Moreover, the summation of these values will be the Total Fault Exposing
Potential value of that test case. The test cases of the suite are reordered according to the descending
order of total Fault Exposing Potential (FEP) value, yielding prioritization.

Total FEP-function level prioritization (P8): This technique is analogous to total FEP statement-level
prioritization, and a function is considered for coverage in lieu of statements.

Additional fault exposing potential prioritization (P9): It is an extension of Total fault exposing
potential prioritization. The Fault Exposing Potential (FEP) value of a test case with respect to a
statement is adjusted, by lowering the award values of all other test cases covering the same statement.
The rationale behind this is the correctness of the statement is very first ascertained by the test case
covering it first. This value is estimated by means of a factor called “confidence”, ranging between 0
and 1. When a test case exercises a statement and not finding any fault, then the confidence value of
that statement increases. The confidence of a statement is influenced by the FEP of the test case too.
Additional confidence of a statement is obtained by finding the difference between prior confidence
value and posterior confidence value of that statement. If a test case “TCi” covers ‘m’ statements,
then the additional confidence values of all ‘m’ statements covered by TCi is summed up to figure
out Additional fault exposing the potential of the test case TCi. Finally, the test cases are arranged in
descending order of Additional fault exposing potential values.

Additional FEP-function level prioritization (P10): This technique is analogous to additional FEP
statement-level prioritization. And, a function is considered for coverage in lieu of statements.

From the literature, it is highly evident that the performances of the prioritization techniques
are improving the performance of software testing in terms of Average Percentage of Faults Detected
(APFD) measure and Code Complexity Measure (CCM) measures. Hence, these two metrics are used
in software testing to validate the test case prioritization. The details of the performance metrics are
given below.

Various runs are made for the programs mentioned in Table 4 as per coverage techniques stated
above, and their efficiency is analyzed in terms of Average Percentage of Faults Detected (APFD)
measure. The APFD measure is given in Equation (21).

APFD = 1−
FCPI + FCP2 + . . .+ FCPtf

ttc× tf
+

1
2× ttc

(21)

In Equation (21), ‘FCP’ signifies the fault covered in its very first position among the test cases,
‘ttc’ refers a total number of test cases considered, and ‘tf’ refers a total number of faults. This is one of
the performance measurement metrics, and during the execution of the test suite, the APFD measure is
obtained, and this value lies typically between 0 and 100. A higher APFD measure signifies higher
prioritization and a lesser APFD value implies lesser prioritization. Depending on LoC, the number of
clusters is taken. In this study, the performance is tested with three different cluster sizes, namely 3, 6,
and 9. Then the performance of the test case prioritization is estimated with different cluster sizes and
is given in Table 2.

The second performance measure, the Code Complexity Measure (CCM) depends on three pieces
of information, lines of code (LOC), Nested block depth (NBD), and McCabe cyclomatic complexity
(MCC). The LOC is the total number of lines in a class, NBD is the number of nested statements used
in a class and MCC is the number of linearly independent paths to reach the goal of a method. CMM is
obtained from the relation:

CMM =
1
3

(
LOC

max(LOC)
+

NBD
max(NBD)

+
MCC

max(MCC)

)
. (22)

Figure 4a–d summarizes the performance analysis of the proposed methods and others with
respect to the percentage of APFD scores after having applied prioritization techniques for the programs
extracted from sources given above with respect to the generated random test cases. Here, N1 and N2
represents the two proposed methods namely clustering based prioritization with similarity coefficient
and clustering based prioritization with dominancy. The performance analyses of the proposed
methods with 3, 6, and 9 clusters are tested and Table 2 shows the percentage of APFD score below.

Symmetry 2019, 11, 1400 19 of 22

Symmetry 2019, 11, x FOR PEER REVIEW 19 of 23

Table 5. APFD score values in different number of clusters.

Proposed
Methods

Pool 1
No. of Clusters

Pool 2
No. of Clusters

Pool 3
No. of Clusters

Pool 4
No. of Clusters

3 6 9 3 6 9 3 6 9 3 6 9
N1 73.21 72.56 69.23 73.48 78.36 75.86 74.16 77.12 73.57 73.31 74.67 71.78
N2 71.97 71.64 70.05 74.51 76.43 74.09 74.82 76.07 75.66 66.85 70.96 68.32

Figure 4. Box plot: (a) Performance analysis of the proposed methods and others—Pool 1; (b)
Performance analysis of the proposed methods and others—Pool 2; (c) Performance analysis of the
proposed methods and others—Pool 3; (d) Performance analysis of the proposed methods and
others—Pool 4.

Table 5 shows that the optimal groupings for Pool 1 to Pool 4 are 3, 6, 6, and 6, respectively. From
the box plots, Figure 4a–d indicates that the proposed method performs better than the other
state-of-the-art techniques available in the literature. By applying various rounds of prioritization
techniques, the standard deviation of N1 and N2 are better than many of the other techniques and
comparing mean and median values with other methods are always better. In Pool 3, one data of N1 is
moving to the outlier and this may easily be corrected by using any of the removals of outlier methods.

6. Conclusion

Figure 4. Box plot: (a) Performance analysis of the proposed methods and others—Pool 1;
(b) Performance analysis of the proposed methods and others—Pool 2; (c) Performance analysis
of the proposed methods and others—Pool 3; (d) Performance analysis of the proposed methods and
others—Pool 4.

Table 5 shows that the optimal groupings for Pool 1 to Pool 4 are 3, 6, 6, and 6, respectively.
From the box plots, Figure 4a–d indicates that the proposed method performs better than the other
state-of-the-art techniques available in the literature. By applying various rounds of prioritization
techniques, the standard deviation of N1 and N2 are better than many of the other techniques and
comparing mean and median values with other methods are always better. In Pool 3, one data of N1 is
moving to the outlier and this may easily be corrected by using any of the removals of outlier methods.

Table 5. APFD score values in different number of clusters.

Proposed
Methods

Pool 1
No. of Clusters

Pool 2
No. of Clusters

Pool 3
No. of Clusters

Pool 4
No. of Clusters

3 6 9 3 6 9 3 6 9 3 6 9

N1 73.21 72.56 69.23 73.48 78.36 75.86 74.16 77.12 73.57 73.31 74.67 71.78
N2 71.97 71.64 70.05 74.51 76.43 74.09 74.82 76.07 75.66 66.85 70.96 68.32

6. Conclusions

This paper proposes and demonstrates two fuzzy based clustering techniques, FSTPM and
DTCTP, which are based on the newly developed similarity coefficient and the dominancy test,
respectively. These proposed methods are implemented, tested, and analyzed using an empirical study
that accesses requirement based fuzzy clustering techniques in test case prioritization. The results
show that the requirements-based-fuzzy-clustering-approach which incorporates traditional code
analysis information can improve the effectiveness of test case prioritization techniques, but the results

Symmetry 2019, 11, 1400 20 of 22

vary based on the cluster size. Finally, it is concluded that, by grouping test cases associated with
a similarity or dominancy related set of requirements, regression testing processes can be managed
more effectively.

Author Contributions: A.D.S., R.K. and V.S. prepared the initial plan of the research, collected data, pre-processed
the data, and prepared a prototype of the research model. K.S.R. and S.K. fine-tuned the idea and gave valuable
suggestion throughout the research work. A.D.S. and R.K. implemented the fine-tuned idea and prepared the
manuscript. J.J. and P.Z. provided good insights on research paper writing and verified out result.

Funding: Authors are extremely thankful to the funding agencies for the financial aid from University Grants
Commission (UGC), India, (F./2015-17/RGNF-2015-17-TAM-83), Department of Science and Technology (DST),
India, (SR/FST/ETI-349/2013), Council of Scientific & Industrial Research (CSIR), India (09/1095/(0026)18-EMR-I),
and partially within the framework of the program of the Minister of Science and Higher Education under the
name “Regional Excellence Initiative” in the years 2019-2022, project number 001/RID/2018/19, the amount of
financing PLN 10,684,000.00.

Acknowledgments: The authors thank the editor and the anonymous reviewers for their valuable comments,
which promoted the quality of the paper to a better extent.

Conflicts of Interest: Authors share no conflict of interest.

Appendix A

The symbols used in the equations along with their meaning are provided in Table A1.

Table A1. Symbols along with explanations.

Symbol Description

F Fuzzy linguistic matrix
F1 Fuzzy matrix of F
F2 Fuzzy 0–1 matrix
Lij Linguistic relationship between the test case i and faulty item j
LL Low
LH Low-high
MM Medium
MH Medium-high
HH High
TCi Test case i

fj Faulty item j
aij 1 if the faultiness j is in test case i; otherwise 0

a Faulty item is occurring in both the test cases i and j, while finding the similarity coefficient
between ith and jth test cases

b Faulty item is occurring in the test case i but not j
c Faulty item is occurring in the test case j but not i
d Faulty item is not occurring in both of the test cases i and j
N Total number of test cases
M Total number of faultiness available in the test cases
Gc Number of permissible groups
ρ Maximum number of permissible test cases
υ Threshold value
Sij Similarity between test cases i and j / faultiness j and j
yij Decision variables used during test cases grouping
xij Decision variables used during faultiness grouping
Ta Test case a
Ti ith faults
Wi Weight criteria i
µij Fuzzy value between ith and jth criterion
ζi Weighted arithmetic value
cp Average weighted arithmetic
ϕp Normalized weighted arithmetic
Q1 Weighted sum method
Q2 Weighted product method
Q3 Final rank
λ Strategy value

Symmetry 2019, 11, 1400 21 of 22

References

1. Wang, R.; Jiang, S.; Chen, D.; Zhang, Y. Empirical Study of the effects of different similarity measures on test
case prioritization. Math. Probl. Eng. 2016. [CrossRef]

2. Srikanth, H.; Banerjee, S. Improving test efficiency through system test prioritization. J. Syst. Softw. 2012, 85,
1176–1187. [CrossRef]

3. Yu, Y.T.; Lau, M.F. Fault-based test suite prioritization for specification-based testing. Inf. Softw. Technol.
2012, 54, 179–202. [CrossRef]

4. Rothermel, G.; Untch, R.H.; Chu, C.; Harrold, M.J. Prioritizing Test Cases for Regression Testing. IEEE Trans.
Softw. Eng. 2001, 27. [CrossRef]

5. Huang, Y.-C.; Peng, K.-L.; Huang, C.-Y. A history-based cost-cognizant test case prioritization technique in
regression testing. J. Syst. Softw. 2012, 85, 626–637. [CrossRef]

6. Chittimalli, P.K.; Harrold, M.J. Recomputing coverage information to assist regression testing. IEEE Trans.
Softw. Eng. 2009, 35, 452–469. [CrossRef]

7. Yoo, S.; Harman, M. Regression testing minimisation, selection and prioritisation: A survey. Test Verif. Reliab.
2007, 22, 1–7.

8. Jeffrey, D.; Gupta, N. Improving fault detection capability by selectively retaining test cases during test suite
reduction. IEEE Trans. Softw. Eng. 2007, 33, 108–123. [CrossRef]

9. Elbaum, S.; Kallakuri, P.; Malishevsky, A.G.; Rothermel, G.; Kanduri, S. Understanding the effects of changes on
the cost-effectiveness of regression testingtechniques. J. Softw. Test. Verif. Reliab. 2003, 12, 65–83. [CrossRef]

10. Rothermel, G.; Untch, R.H.; Chu, C.C.; Harrold, M.J. Test case prioritization: An empirical study.
In Proceedings of the IEEE International Conference on Software Maintenance, (ICSM 99), Oxford, UK,
30 August–3 September 1999; pp. 179–188.

11. Elbaum, S.; Malishevsky, A.G.; Rothermel, G. Test case prioritization: A family of empirical studies.
IEEE Trans. Softw. Eng. 2002, 28, 159–182. [CrossRef]

12. Khalilian, A.; Azgomi, M.A.; Fazlalizadeh, Y. An improved method for test case prioritization by incorporating
historical test case data. Sci. Comput. Program. 2012, 78, 93–116. [CrossRef]

13. Huang, C.-Y.; Chang, J.-R.; Chang, Y.H. Design and analysis of GUI test-case prioritization using weight-based
methods. J. Syst. Softw. 2010, 83, 646–659. [CrossRef]

14. Chen, J.; Zhu, L.; Chen, T.; Towey, D.; Kuo, F.-C.; Huang, R.; Guo, Y. Test Case Prioritization for Object-Oriented
Software: An adaptive random sequence approach based on clustering. J. Syst. Softw. 2018, 135, 107–125.
[CrossRef]

15. Muhammad, K.; Isa, M.A.; Jawawi, D.N.A.; Tumeng, R. Test case prioritization approaches in regression
testing: A systematic literature review. Inf. Softw. Technol. 2018, 93, 74–93.

16. Singh, Y. Systematic literature review on regression test prioritization techniques. Informatica 2012, 36,
379–408.

17. Catal, C.; Mishra, D. Test case prioritization: A systematic mapping study. Softw. Qual. J. 2012, 21, 445–478.
[CrossRef]

18. Kumar, A.; Singh, K. A Literature Survey on Test Case Prioritization. Compusoft 2014, 3, 793. [CrossRef]
19. Kiran, P.; Chandraprakash, K. A literature survey on TCP-test case prioritization using the RT-regression

techniques. Glob. J. Res. Eng. 2015. Available online: https://engineeringresearch.org/index.php/GJRE/article/

view/1312 (accessed on 11 October 2019).
20. Jeffrey, D.; Gupta, N. Experiments with test case prioritization using relevant slices. J. Syst. Softw. Sci. Direct.

2007, 196–221. [CrossRef]
21. Lijun, M.; Chan, W.K.; Tse, T.H.; Robert, G. Merkel. XML-manipulating test case prioritization for

XML-manipulating services. J. Syst. Softw. 2011, 84, 603–619. [CrossRef]
22. Krishnamoorthi, R.; Sahaaya Arul Mary, S.A. Factor oriented requirement coverage based system test case

prioritization of new and regression test cases. Inf. Softw. Technol. 2009, 51, 799–808. [CrossRef]
23. Thomas, S.W.; Hemmati, H.; Hassan, A.E.; Blostein, D. Static test case prioritization using topic models.

Empir. Softw. Eng. 2012. [CrossRef]
24. Do, H.; Rothermel, G. On the use of mutation faults in empirical assessments of test case prioritization

techniques. IEEE Trans. Softw. Eng. 2006, 32. [CrossRef]

http://dx.doi.org/10.1155/2016/8343910
http://dx.doi.org/10.1016/j.jss.2012.01.007
http://dx.doi.org/10.1016/j.infsof.2011.09.005
http://dx.doi.org/10.1109/32.962562
http://dx.doi.org/10.1016/j.jss.2011.09.063
http://dx.doi.org/10.1109/TSE.2009.4
http://dx.doi.org/10.1109/TSE.2007.18
http://dx.doi.org/10.1002/stvr.263
http://dx.doi.org/10.1109/32.988497
http://dx.doi.org/10.1016/j.scico.2012.01.006
http://dx.doi.org/10.1016/j.jss.2009.11.703
http://dx.doi.org/10.1016/j.jss.2017.09.031
http://dx.doi.org/10.1007/s11219-012-9181-z
http://dx.doi.org/10.6084/ijact.v3i5.320
https://engineeringresearch.org/index.php/GJRE/article/view/1312
https://engineeringresearch.org/index.php/GJRE/article/view/1312
http://dx.doi.org/10.1016/j.jss.2007.05.006
http://dx.doi.org/10.1016/j.jss.2010.11.905
http://dx.doi.org/10.1016/j.infsof.2008.08.007
http://dx.doi.org/10.1007/s10664-012-9219-7
http://dx.doi.org/10.1109/TSE.2006.92

Symmetry 2019, 11, 1400 22 of 22

25. Zhai, K.; Bo, J.; Chan, W.K. Prioritizing Test Cases for Regression Testing of Location-Based Services: Metrics,
Techniques, and Case Study. IEEE Trans. Serv. Comput. 2014, 7, 54–67. [CrossRef]

26. Haidry, S.; Miller, T. Using Dependency Structures for Prioritization of Functional Test Suites. IEEE Trans.
Softw. Eng. 2013, 39, 258–275. [CrossRef]

27. Srikanth, H.; Hettiarachchi, C.; Do, H. Requirements based test prioritization using risk factors: An Industrial
Study. Inf. Softw. Technol. 2016, 69, 71–83. [CrossRef]

28. Hettiarachchi, C.; Do, H.; Choi, B. Risk-based test case prioritization using a fuzzy expert system. Inf. Softw.
Technol. 2016, 69, 1–15. [CrossRef]

29. Huang, R.; Chen, J.; Towey, D.; Chan, A.T.S.; Lu, Y. Aggregate-strength interaction test suite prioritization.
J. Syst. Softw. 2015, 99, 36–51. [CrossRef]

30. Jiang, B.; Chan, W.K. Input-based adaptive randomized test case prioritization: A local beams approach.
J. Syst. Softw. 2015, 105, 91–106. [CrossRef]

31. Ledru, Y.; Petrenko, A.; Boroday, S.; Mandran, N. Prioritizing test cases with string distances. Autom. Softw.
Eng. 2012, 19, 65–95. [CrossRef]

32. Zhang, C.; Chen, Z.; Zhao, Z.; Yan, S.; Zhang, J.; Xu, B. An improved regression test selection technique
by clustering execution profiles. In Proceedings of the 10th International Conference on Quality Software
(QSIC’10), Washington, DC, USA, 14–15 July 2010; pp. 171–179. [CrossRef]

33. Jiang, B.; Zhang, Z.; Chan, W.; Tse, T. Adaptive random test case prioritization. In Proceedings of the 24th
International Conference on Automated Software Engineering (ASE’09), Auckland, New Zealand, 16–20
November 2009; pp. 233–244. [CrossRef]

34. Breno, M.; Bertolino, A. Scope-aided test prioritization, selection and minimization for software reuse. J. Syst.
Softw. 2017, 131, 528–549.

35. Kim, J.M.; Porter, A. A History-based Test Prioritization Technique for Regression Testing in Resource
Constrained Environments. In Proceedings of the 24th International Conference on Software Engineering,
Orlando, FL, USA, 19–25 May 2002; pp. 119–129. [CrossRef]

36. Fang, C.; Chen, Z.; Wu, K.; Zhao, Z. Similarity based test case prioritization using ordered sequence of
program entities. Softw. Qual. J. 2014, 22, 335–361. [CrossRef]

37. Noor, T.B.; Hemmati, H. A similarity-based approach for test case prioritization using historical failure data.
In Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),
Gaithersbury, MD, USA, 2–5 November 2015.

38. Gokce, N.; Belli, F.; Eminli, M.; Dincer, B.T. Model-based test case prioritization using cluster analysis:
A soft-computing approach. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 623–640. [CrossRef]

39. Li, Z.; Harman, M.; Hierons, R.M. Search algorithms for regression test case prioritization. IEEE Trans.
Softw. Eng. 2007, 33, 225–237. [CrossRef]

40. Elberzhager, F.; Rosbach, A.; Munch, J.; Eschbach, R. Reducing test effort: A systematic mapping study on
existing approaches. Inf. Softw. Technol. 2012, 54, 1092–1106. [CrossRef]

41. Elbaum, S.; Rothermel, G.; Kanduri, S.; Malishevsky, A.G. Selecting a Cost-Effective Test Case Prioritization
Technique. Softw. Qual. J. 2004, 12, 185–210. [CrossRef]

42. Do, H.; Mirarab, S.; Tahvildari, L.; Rothermel, G. The effects of Time Constraints on Test Case Prioritization:
A Series of Controlled Experiments. IEEE Trans. Softw. Eng. 2010, 36, 593–617. [CrossRef]

43. Shrivathsan, A.D.; Ravichandran, K.S. Meliorate test efficiency: A survey. World Appl. Sci. J. 2014, 133–139.
[CrossRef]

44. Mohammed, A.R.; Mohammed, A.H.; Mohammed, S.S. Prioritizing Dissimilar Test Cases in Regression
Testing using Historical Failure Data. Int. J. Comput. Appl. 2018, 180. [CrossRef]

45. Chaurasia, G.; Agarwal, S. A Hybrid Approach of Clustering and Time-aware based Novel Test Case
Prioritization Technique. Int. J. Database Theory Appl. 2016, 9, 23–44. [CrossRef]

46. Mohammed, J.A.; Do, H. Test Case Prioritization using Requirements-Based Clustering. In Proceedings of
the 2013 IEEE Sixth International Conference on Software Testing, Verification, and Validation, Luxembourg,
18–22 March 2013; pp. 312–321. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSC.2012.40
http://dx.doi.org/10.1109/TSE.2012.26
http://dx.doi.org/10.1016/j.infsof.2015.09.002
http://dx.doi.org/10.1016/j.infsof.2015.08.008
http://dx.doi.org/10.1016/j.jss.2014.09.002
http://dx.doi.org/10.1016/j.jss.2015.03.066
http://dx.doi.org/10.1007/s10515-011-0093-0
http://dx.doi.org/10.1109/QSIC.2010.16
http://dx.doi.org/10.1109/ASE.2009.77
http://dx.doi.org/10.1145/581339.581357
http://dx.doi.org/10.1007/s11219-013-9224-0
http://dx.doi.org/10.3906/elk-1209-109
http://dx.doi.org/10.1109/TSE.2007.38
http://dx.doi.org/10.1016/j.infsof.2012.04.007
http://dx.doi.org/10.1023/B:SQJO.0000034708.84524.22
http://dx.doi.org/10.1109/TSE.2010.58
http://dx.doi.org/10.5829/idosi.wasj.2014.29.dmsct.25
http://dx.doi.org/10.5120/ijca20189162589
http://dx.doi.org/10.14257/ijdta.2016.9.4.02
http://dx.doi.org/10.1109/ICST.2013.12
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies of Test Case Prioritization (TCP)
	Proposed Methodology
	Proposed Fuzzy-Similarity Test Case Prioritization (TCP) Model (FSTPM)
	Dominancy Test Based Clustering for Test Case Prioritization (DTTCP)
	Discussion
	An Inter and Intra Ranking of Clusters

	Numerical Example
	Illustration of Clustering of Test Cases
	An illustrative Example for Inter and Intra Test Case Prioritization

	A Real Case Study Analysis
	Conclusions
	
	References

