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Abstract: Cyclodextrins (CDs) are cone-shaped molecular rings that have been widely employed
in supramolecular/host–guest chemistry because of their low cost, high biocompatibility, stability,
wide availability in multiple sizes, and their promiscuity for binding a range of molecular guests
in water. Consequently, CD-based host–guest complexes are often employed as templates for the
synthesis of mechanically bonded molecules (mechanomolecules) such as catenanes, rotaxanes, and
polyrotaxanes in particular. The conical shape and cyclodirectionality of the CD “bead” gives rise
to a symmetry-breaking effect when it is threaded onto a molecular “string”; even symmetrical
guests are rendered asymmetric by the presence of an encircling CD host. This review focuses on
the stereochemical implications of this symmetry-breaking effect in mechanomolecules, including
orientational isomerism, mechanically planar chirality, and topological chirality, as well as how they
support applications in regioselective and stereoselective chemical synthesis, the design of molecular
machine prototypes, and the development of advanced materials.

Keywords: catenane; rotaxane; machanomolecule; stereochemistry; mechanostereochemistry;
chirality; isomerism; molecular machine; cyclodectrin

1. Introduction

Cyclodextrins (CDs) [1] are a class of macrocyclic natural products that were first isolated in
1891 from cultures of starch-fermenting bacteria by Villiers [2]. Structurally, all CDs are oligomeric
loops of glucose; different sized rings [3] are denoted by Greek prefixes, beginning with α-CD (6-mer)
and continuing up to at least the 26-mer, u-CD [4]. The first three CDs—α-CD, β-CD, and γ-CD (6–8
glucose subunits; Figure 1)—are by far the most common and most widely available. After more than
half a century of historically important investigations by Schardinger [5], French [5], Freudenberg [6],
Cramer [6], and Pringsheim [7] on the structure and properties of CDs, it was Cramer [8,9] who
pioneered the study of cyclodextrin nclusion complexes beginning in the early 1950s—long before the
Nobel-recognized work of Pedersen [10], Cram [11], and Lehn [12] of a similar nature. The three main
CDs possess a conical shape; the wider “2,3-rim” (secondary face) is reinforced by hydrogen bonds
between the secondary alcohol groups at the 2 and 3 positions of the glucose subunits, while the narrower
“6-rim” (primary face) displays all of the primary alcohol groups at the 6 position. The hydrophobic
cavities of α-CD, β-CD, and γ-CD are approximately 5, 7, and 9 Å in diameter, respectively, and ~8 Å
in depth, allowing them to ensconce thousands of appropriately sized lipophilic guests in water [13,14].
While CDs continue to serve as a cornerstone of supramolecular/host–guest chemistry, they are also
important compounds in organocatalytic chemistry [15–17], analytical chemistry [18], separations [19],
medicine [20,21], food science [22], and other industrial applications [23].
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Figure 1. Structural, space-filling, and graphical representations of the three main cyclodextrin (CD) 
molecules: α-CD (yellow), β-CD (blue), and γ-CD (green). 

CD-based host–guest complexes are convenient templates for the synthesis of molecules with 
mechanical bonds [24–29], also known [30] as mechanomolecules. A mechanical bond is defined [30] 
as “an entanglement in space between two or more molecular entities (component parts) such that 
they cannot be separated without breaking or distorting chemical bonds between atoms”. The 
archetypal mechanomolecules are (i) [n]catenanes, in which n ring-shaped component parts are 
interlocked, and (ii) [n]rotaxanes, in which the n component parts comprise one or more rings 
encircling one or more acyclic “dumbbells”, which possess endgroups or “stoppers” that prevent the 
ring(s) from dissociating. Since complexation is driven by a hydrophobic effect, a simple and 
convenient template for making mechanomolecules is a hydrocarbon⊂CD pseudo-[2]rotaxane (the 
prefix pseudo- denotes an unstoppered threaded assembly). In general, CDs exhibit increased affinity 
for oligomethylenes as chain length increases, assuming the guests are water soluble [31,32]. Indeed, 
the first successful template-directed synthesis of a [2]rotaxane was carried out by Ogino [33] (Scheme 
1) using an amine-terminated dodecane (C12) guest with α-CD or β-CD hosts. Ogino used cis-
dichlorobis(ethylenediamine)cobalt(III) chloride [CoCl2(en)2]Cl to stopper CD-threaded 
H2NC12H24NH2 chains in Me2SO at 75 ºC, generating either α-R14+ (19% yield) or β-R14+ (7% yield) 
upon isolation by size-exclusion chromatography. The higher yield for α-R14+ compared to β-R14+ 
reflects the alkanes’ higher affinity for α-CD. Note that while the cobalt-capped hydrocarbon chain 
has a high symmetry (D∞h) by itself, the overall symmetry of the corresponding rotaxanes are reduced 

Figure 1. Structural, space-filling, and graphical representations of the three main cyclodextrin (CD)
molecules: α-CD (yellow), β-CD (blue), and γ-CD (green).

CD-based host–guest complexes are convenient templates for the synthesis of molecules with
mechanical bonds [24–29], also known [30] as mechanomolecules. A mechanical bond is defined [30]
as “an entanglement in space between two or more molecular entities (component parts) such
that they cannot be separated without breaking or distorting chemical bonds between atoms”.
The archetypal mechanomolecules are (i) [n]catenanes, in which n ring-shaped component parts
are interlocked, and (ii) [n]rotaxanes, in which the n component parts comprise one or more rings
encircling one or more acyclic “dumbbells”, which possess endgroups or “stoppers” that prevent
the ring(s) from dissociating. Since complexation is driven by a hydrophobic effect, a simple and
convenient template for making mechanomolecules is a hydrocarbon⊂CD pseudo-[2]rotaxane (the
prefix pseudo- denotes an unstoppered threaded assembly). In general, CDs exhibit increased
affinity for oligomethylenes as chain length increases, assuming the guests are water soluble [31,32].
Indeed, the first successful template-directed synthesis of a [2]rotaxane was carried out by Ogino [33]
(Scheme 1) using an amine-terminated dodecane (C12) guest with α-CD or β-CD hosts. Ogino
used cis-dichlorobis(ethylenediamine)cobalt(III) chloride [CoCl2(en)2]Cl to stopper CD-threaded
H2NC12H24NH2 chains in Me2SO at 75 ◦C, generating either α-R14+ (19% yield) or β-R14+ (7% yield)
upon isolation by size-exclusion chromatography. The higher yield for α-R14+ compared to β-R14+

reflects the alkanes’ higher affinity for α-CD. Note that while the cobalt-capped hydrocarbon chain has
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a high symmetry (D∞h) by itself, the overall symmetry of the corresponding rotaxanes are reduced
(Cn) to that of the encircling cyclodextrin, where each end of the dumbbells become differentiated by
their proximity to a different rim of the CD ring.
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Scheme 1. Ogino’s seminal template-directed synthesis of [2]rotaxanes α-R14+ and β-R14+ from
diaminododecane and α-CD or β-CD, respectively.

This mini-review describes how the symmetry-breaking effect of cyclodextrin can be leveraged
to generate mechanomolecules with unique stereochemical and dynamic properties, which may be
useful in the generation of novel syntheses, molecular machines, and advanced materials.

2. The Stereochemistry of CD-Based Mechanomolecules

Since stereochemistry [34] is the branch of chemistry that deals with the three-dimensional
arrangements of atoms in space, mechanostereochemistry is simply defined [35] as the stereochemistry
of molecules with mechanical bonds. Mechanical bonding gives rise to completely new types of
molecular isomerism and dynamics that are not observed in other types of compounds. As stereoisomers
are molecules that have identical constitutions but different arrangements of atoms in space,
mechanostereoisomers [30] are mechanomolecules that have identical co-constitutions, but differences
in the arrangement of their component parts in space. The symmetry-breaking effect of CDs—in
particular their lack of any mirror planes—can give rise to orientational mechanostereoisomers (see
Section 2.1), as well as emergent types of chirality (objects having non-superimposable mirror images),
namely, mechanically planar (see Section 2.2) and topological (see Section 2.3) chirality.

2.1. Orientational Mechanostereoisomers

As the name suggests, orientational mechanostereoisomers arise from having different possible
ring orientations in mechanomolecules. If a ring lacks mirror symmetry across the plane of its cavity,
its rims may be differentiated into a “head” and a “tail”, and it can therefore be threaded onto a
string either head-first or tail-first. In the case of cyclodextrins, we refer to the wider 2,3-rim as the
“head” and narrower 6-rim as the “tail”. If a second component part is mechanically bonded to a
CD, orientational isomerism can arise if it too lacks mirror symmetry across the plane of the CD’s
cavity. Orientational mechanostereoisomerism arising from CDs may be observed in [2]rotaxanes
(see Section 2.1.1), [3]rotaxanes (see Section 2.1.2), and polyrotaxanes (see Section 2.1.3), as well as
[3]catenanes (see Section 2.1.4) and larger [n]catenanes (see Section 2.1.5) in principle. In the case of
[2]catenanes, the conditions for achieving orientational isomerism are also sufficient for topological
chirality, so these compounds are discussed in Section 2.3.

2.1.1. [2]Rotaxane Orientational Isomers

The earliest rotaxanes to exhibit orientational mechanostereoisomerism were based on α-CD.
In 1991, Kaifer [36,37] coupled a carboxylic acid-terminated half-dumbbell with a sulfonated
aminonaphthalene stopper in the presence of α-CD to generate (Scheme 2) a mixture of orientational
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mechanostereoisomers R2a and R2b. In this case, the CD rings had no orientational bias; both isomers
were obtained in equal proportion. When the isomers were separated by thin-layer chromatography
and isolated as pure compounds, they showed a surprising behavior: the CD ring slowly escaped
from the dumbbell in R2a, but not in R2b. This kind of face-selective motion presents a promising
opportunity for the design of molecular machine prototypes (see Section 3.2).
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2.1.2. [3]Rotaxane Orientational Isomers 
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Scheme 2. Kaifer’s seminal synthesis of a mixture of [2]rotaxane orientational isomers.

While it may seem initially that [2]rotaxane orientational isomers cannot interconvert without
the ring either turning inside-out or executing an escape–rotate–rethreading sequence, Kawaguchi
and Harada [38] demonstrated an interesting case (Scheme 3) of orientational isomers that exchange
by a ring-shuttling mechanism. As the α-CD ring of the [2]rotaxane oscillates between two ends of a
symmetrical dumbbell, it alternately exposes its head (R3a6+) and tail (R3b6+) to the bipyridinium
barrier at the center of the dumbbell. Rotating R3b6+ 180◦ such that its stoppers exchange sites can
help one see that it is the orientational isomer of R3a6+, owing to the mirror symmetry of the dumbbell.
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Scheme 3. A molecular shuttle in which the oscillation of a ring between two sites leads to
interconversion between two orientational isomers.

While CD (pseudo)-[2]rotaxanes with desymmetrized dumbbells are often obtained as a mixture
of orientational isomers [39–46], it is also common to obtain one orientational isomer selectively (see
Section 2.2).

2.1.2. [3]Rotaxane Orientational Isomers

When two or more desymmetrized rings are threaded onto a string, they can access different
orientations with respect to one another, so a symmetry-breaking dumbbell is no longer required for
orientational isomerism to occur. Such a scenario is exemplified in Scheme 4.
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Scheme 4. A mixture of three [3]rotaxane orientational isomers is obtained upon dimerization of
salicylaldehyde-terminated α-CD pseudo-[2]rotaxanes around a CoIII metal center [47].

A team led by Anderson [47] isolated, by anion exchange chromatography, all three orientational
isomers—head-to-head R4hh

3− (11%), head-to-tail R4ht
3− (38%), and tail-to-tail R4tt

3− (2%)—of
[3]rotaxane upon conjoining a pair of salicylaldehyde-functionalized pseudorotaxanes around a Co3+

ion to create a symmetrical dumbbell in the presence of α-CD. The unequal distribution of products
indicates a bias, but not complete selectivity, for the head-to-tail orientation. Later, the team prepared [48]
a head-to-tail orientational isomer with high selectively on an oligophenylene(ethynylene) dumbbell
on porous glass solid supports. Selective syntheses of tail-to-tail [49,50] and head-to-head [51–54]
[3]rotaxanes have also been reported (see Section 3.1.2). A [3]rotaxane based on oligothiophene-threaded
β-CD rings has also been synthesized [55] as a mixture of orientational isomers.

2.1.3. [n]Rotaxane Orientational Isomers

There are a few examples of discrete [n>3]rotaxanes [56–59] based on CD templates, but the
ring orientations are not well characterized. In 1992, Harada [60] reported the first synthesis of a CD
polyrotaxane, comprising polyethylene glycol (PEG) threaded by manyα-CD rings. It is believed [60,61]
that α-CD/PEG poly(pseudo)rotaxanes self-assemble with high mechanostereoselectivity into an
arrangement with a repeating sequence of head-to-head/tail-to-tail orientations.

2.1.4. [3]Catenane Orientational Isomers

Although the synthesis of CD-based catenanes was attempted [62] as early as 1958, Stoddart [63]
first reported the synthesis (Scheme 5) of catenated cyclodextrins in 1993.
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Scheme 5. The synthesis of catenated cyclodextrins [63].

Macrocyclizing terephthaloyl chloride with a biphenylene unit bis-functionalized with flexible
amine-terminated tetraethylene glycol linkers in the presence of heptakis (2,6-di-O-methyl)-β-
cyclodextrin (DM-β-CD) afforded a mixture of [1+1] products (macrocycle M1, [2]catenane C1) and
[2+2] products (macrocycle M2, [2]catenane [2]C2, and [3]catenanes [3]C2a-b). The pair of [3]catenanes,
[3]C2a and [3]C2b, were isolated [64] as a 1:1 mixture of head-to-head/tail-to-tail and head-to-tail
orientational isomers, respectively, which may be distinguished by their different time-averaged (D2

and C2) symmetries. A group led by Otto [65] has also observed [3]catenane orientational isomers
within a dynamic combinatorial library of catenated cyclodextrins.

2.1.5. [n]Catenane Orientational Isomers

Radial-type [n]catenanes possess a structure in which multiple small rings interlock a single large
ring. With the exception of their probable formation [66] as a side-product in the photopolymerization
of anthracene-stoppered poly [n]rotaxanes, this type of topology was not realized using CDs until very
recently. Higashi et al. reported [67] a one-pot approach to making radial [n]catenanes with many
(>10) β-CD rings encircling a polymer macrocycle. While the ring orientations were not characterized
(to do so would be very challenging), it is likely that a multitude of different orientations occur,
although polydispersity in chain length and ring-threading ratios preclude the presence of true isomers.
The number of possible isomers —both orientational and topological—increases exponentially as more
and more oriented or cyclodirectional rings are added to either [n]rotaxanes or [n]catenanes.

2.2. Mechanically Planar Chirality

Whereas orientational mechanostereoisomers require rings that are desymmetrized across the
plane of their cavity, mechanically planar enantiomers require rings that lack mirror symmetry across
any plane orthogonal to the ring’s cavity. Such rings are said to be “cyclodirectional”, denoting a
polarity in the sequence of atoms constituting the macrocycle. It is noteworthy that chirality and
cyclodirectionality are not equivalent. Although CDs are chiral, an achiral yet cyclodirectional ring
may combine with an appropriate achiral yet sufficiently desymmetrized dumbbell to produce this
emergent type of chirality.
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The mirror-image enantiomers of cartoonized mechanically planar chiral [2]rotaxanes with
achiral yet directional component parts are illustrated in Figure 2. Employing vocabulary inspired by
Prelog [68], rotaxanes expressing this type of asymmetry have been described [69–74] as “cyclochiral”,
or having “cycloenantiomers” and “cyclodiastereomers”. This language can be misleading because
cycloenantiomers are macrocycles [75], not rotaxanes. After Takata [76] described it as a form of
planar chirality, Goldup [77] proposed the term “mechanically planar” to differentiate this kind of
rotaxane-specific chirality from more classical forms of planar chirality. Left-handed and right-handed
co-configurations of mechanically planar rotaxanes are written as (Rmp) and (Smp), respectively, where
the subscript “mp” denotes mechanically planar. The assignment of absolute co-configuration relies
on Cahn–Ingold–Prelog [78] rules to define the directionality of each component part.
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CD cyclodirectionality is attributable to the polarity of the glycosidic bonds linking glucose subunits.
This cyclodirectionality means that any CD-based [2]rotaxane capable of orientational isomerism
necessarily possesses mechanically planar chirality. A collection of [2]rotaxanes from Anderson [48,79]
(R53−, R11), Zhao [80–82] (R546a-c2−), Tian [83–85] (R73−

, R82−, R93−, R102−), Park [86] (R12+), and
Mezzina and Lucarini [87] (R13) are shown in Figure 3 as examples of [2]rotaxanes that were isolated
as pure orientational isomers (and therefore also as single mechanically planar enantiomers).
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Although flipping the orientation of the CD ring in these rotaxanes would change the mechanically
planar chirality from Rmp to Smp or vice versa, the two orientational isomers are not enantiomers (they
are diastereomers). CD rotaxanes are never obtained as mixtures of mechanically planar enantiomers
because cyclodextrins are homochiral; the mirror-image cyclodextrin of opposite chirality (and opposite
cyclodirectionality) does not exist.

Mechanically planar chirality can arise in [3]rotaxanes even if the dumbbell is not oriented,
depending on the relative orientation of the rings (see Figure 2). If both rings are oriented in the same
direction, an achiral meso structure is obtained, but two rings with opposing cyclodirectionality will give
either of two topological enantiomers. Head-to-head and tail-to-tail orientational isomers of [3]rotaxanes
therefore possess a mechanically planar chiral architecture, regardless of the dumbbell’s constitution.

2.3. Topological Chirality

In catenanes, the conceptual equivalent of mechanically planar chirality is topological chirality.
A groundbreaking 1961 paper by Frisch and Wasserman [88] marked the birth of a new subfield
called “chemical topology”, which applies mathematical topology to molecular structure. Topology
characterizes the attributes of an object that remain invariant throughout continuous deformation,
which allows bonds to compress, stretch, or bend without breaking, intersecting, or crossing,
whereas conventional stereochemistry typically deals only with Euclidean geometry. A number
of reviews [69,88–99] are available on topological stereochemistry.

In mathematics, the topology of a catenane is called a link. A link can be either conditionally
or unconditionally chiral. Conditionally chiral links do not have inherently chiral topologies, as
unconditionally chiral links do. The simplest [2]catenane (known in mathematics as a Hopf link) is
not a chiral topology. In order for a Hopf link to have conditional chirality, therefore, its rings must
be directionally oriented. Interlocking a cyclodirectional CD with a second cyclodirectional ring will
therefore lead to conditional topological chirality.

Most examples [63,64,100–102] of CD [2]catenanes do not possess a second cyclodirectional
ring. However, Kuhnert and Tang [103] have created diastereomeric [2]catenanes (RRRRRR)-C3
and (SSSSSS)-C3 (Figure 4) by [3+3] cyclocondensation of trans-1,2-diaminocyclohexane and
terephthalaldehyde in the presence of β-CD to form the hexaimine macrocycle known [104] as
trianglimine. The corresponding trianglamine catenanes were also obtained and characterized
by reduction of the imine bonds. By using pure (RR)- or (SS)-diaminocyclohexane during
cyclocondensation, it is possible to capture either the all-R or all-S enantiomer, respectively, of
the trianglimine in β-CD. Since β-CD is also a chiral macrocycle, these two catenanes are diastereomers
rather than enantiomers. Although the authors did not comment on the presence of orientational isomers
or their distribution, the cyclodirectionality of the trianglimines should lead to two possible orientational
isomers for each of these catenanes. Since both rings are cyclodirectional, these orientational isomers
are also topological isomers.Symmetry 2019, 11, 1249 9 of 22 
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While linear [3]catenane also represents an achiral topology, [3]catenanes can also display
conditional topological isomerism if at least two rings are oriented [105]. Thus, the seminal
CD [3]catenanes [63,64] (see Section 2.1.4) provide another example of conditional topological
isomers. Compounds [3]C2a and [3]C2b are not only orientational mechanostereoisomers, but
also conditional topological isomers, since their peripheral CD rings are oriented by the polarities of
their glycosidic bonds.

It is worth noting that the Solomon link [106] is a doubly interlocked [2]catenane with an
intrinsically chiral topology. Although Solomon links can be prepared from rings that encapsulate
two guests, and γ-CD is known [107,108] to bind two guests, a CD-based Solomon link has not yet
been reported.

3. Applications of CD Symmetry Breaking in Mechanomolecules

It is clear that the symmetry-breaking effect of the cyclodextrins has interesting
(mechano)stereochemical implications. Here we briefly discuss applications that take advantage
of this effect in stereoselective synthesis (see Section 3.1) and the biased directional motion important
for molecular machine prototypes (see Section 3.2) and advanced materials (see Section 3.3).

3.1. Stereoselectivc Synthesis

A reaction is said to be stereoselective [34] if one stereoisomer is preferentially formed over another.
The symmetry-breaking effect of the cyclodextrins often leads to stereoselective reactions, especially
regioselectivity (see Section 3.1.1) in the modification of the CD ring, and orientational selectivity (see
Section 3.1.2) with respect to the ring direction.

3.1.1. Regioselectivity

Reactions for the selective modification of cyclodextrins almost always occur via the hydroxyl
groups. Regioselective reactions around the cyclodextrin ring are challenging to achieve because the
hydroxyl groups at the 2, 3, and 6 positions of the glucopyranose rings may have similar reactivities.
Nevertheless, researchers have managed to find ways [109] to achieve mono-, di-, tri-, or per-substitution
selectively at either the primary or the secondary face of CDs. These regioselective modifications have
afforded an opportunity to create novel covalently bridged rotaxane architectures and exercise even
greater control over their structures.

The regioselective mono-functionalization of CDs has facilitated the synthesis of [1]rotaxanes,
wherein axles are covalently bonded to the encircling rings. Kaneda [110] and Easton [111] independently
first exploited the regioselective alkylation of α-CD to make [1]rotaxanes in 2003. Tian [112] has also
prepared a β-CD[1]rotaxane. Terao [27,113–122] has developed an extensive family (Figure 5) of oligo-
and poly[1]rotaxanes R14-R26 with fully π-conjugated phenylene–ethynylene backbones. Polyrotaxanes
possessing π-conjugated (semiconducting) backbones are known [123] as insulated molecular wires
(IMWs). An advantageous outcome of using CDs to make [1]rotaxane monomers is that their regioselective
functionalization leads to the formation of mechanostereochemically pure orientational isomers. Fixing
the rings to the backbone allows one to exercise perfect control over the location and orientation of the
insulating CD beads that protect the inner molecular wire. Note that all of these compounds also exhibit
mechanically planar chirality (see Section 2.2).
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Figure 5. The regioselective functionalization of α-CD enables the development of [1]rotaxanes
that engender a high degree of control over the orientation and location of the rings surrounding
phenylene–ethynylene insulated molecular wires (IMWs).

Another group of mechanomolecules enabled by the regioselective functionalization of CD
with CD-binding moieties are known [124,125] as daisy chains (Figure 6), in which two or more
self-complementary ring-axle dyads are cross-threaded into cyclic (denoted [cn]daisy chain) or acyclic
([an]daisy chain) structures. Kaneda [126] and Harada [127] independently and almost simultaneously
introduced the first α-CD daisy chains (Na4R27 and R28) as cyclic dimers and trimers, respectively.
Harada [128] also obtained the [an]daisy chain oligomer R29 from 2-cinnamoyl-α-CD monomers,
possessing up to 10 repeating units. A number of other CD-based daisy chains with these architectures
have followed these seminal works [129–133]. Daisy chains are important compounds in the field of
molecular machines (see Section 3.3).
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Anderson [49] achieved the first mechanostereoselective synthesis of the [3]rotaxane R30 as the tail-
to-tail orientational isomer. Tian [50] has also observed high orientoselectivity in the synthesis of tail-
to-tail α-CD [3]rotaxane Na3R31. In contrast, Anderson’s oligophenylene(ethynylene)/α-CD 
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CD-binding axles.

3.1.2. Orientational Selectivity

Another kind of stereoselectivity is possible in the synthesis of mechanomolecules capable of
displaying orientational isomerism (see Section 2.1). In many cases, the syntheses of CD-based
rotaxanes yield predominantly only one orientational isomer. Note that all of the [2]rotaxanes featured
in Figure 3 were obtained with high orientational stereoselectivity.

A number of [3]rotaxanes (Figure 7) have also been obtained with high orientational selectivity.
Anderson [49] achieved the first mechanostereoselective synthesis of the [3]rotaxane R30 as the
tail-to-tail orientational isomer. Tian [50] has also observed high orientoselectivity in the synthesis
of tail-to-tail α-CD [3]rotaxane Na3R31. In contrast, Anderson’s oligophenylene(ethynylene)/α-CD
[3]rotaxane was obtained [48] solely as the head-to-tail orientational isomer R32 by solid-phase
synthesis. Finally, the head-to-head isomer of R33, as reported by the group of Takata, [51] has been
characterized in the solid state (Figure 7e) by X-ray crystallography.
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3.2. Mechanostereoselectivity—Biased Directional Motion

Mechanostereoselectivity is a term introduced by Stoddart [30,134,135] to describe the biased
directional motion of component parts in mechanomolecules. An intramolecular motion in a catenane
or rotaxane is mechanostereoselective if it happens faster along one pathway than another. The term
“unidirectional” is problematic when describing the kind of biased Brownian motion undergone by
molecular machines, because a net displacement does not imply a linear path. Indeed, the component
parts of a mechanomolecule move incessantly and randomly in many directions at all times. The
minimum requirements for biased Brownian/mechanostereoselective motion are non-equilibrium
conditions and a source of broken symmetry. Thus, the symmetry-breaking effect of cyclodextrin may
lead to mechanostereoselective motion in mechanomolecules if they are made to be stimulus-responsive
for the design of artificial molecular machines.

The mechanostereoselective translation of an α-CD ring along the dumbbell of a [2]rotaxane
was first observed (Scheme 6) by Anderson [136]. The α-CD ring travels only head-first along
the symmetrical isophthalate-stoppered stilbene dumbbell of (E)-R344− upon photoisomerization to
(Z)-R344−.
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When stimulus-responsive features are incorporated into a daisy chain, the mechanostereoselective
motion of each component part can lead to a net contraction or extension in molecular length, serving
as the basis for rotaxane-based artificial molecular muscles [137]. Several examples of daisy chain
molecular muscles based on α-CD are illustrated in Figure 8.
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In Kaneda’s daisy chain (EE)-R35 [131], the self-complementary monomers comprise
permethylated a-CD (PM-a-CD) rings linked directly to trans-azobenzene units. The (EZ)-R35
and (ZZ)-R35 isomers emerge (Figure 8a) in 20% and 5% yields, respectively, upon irradiation at 366
nm, owing to the E→Z photoisomerization of one or two azobenzenes. Easton’s daisy chain (EE)-R36
operates [130] analogously (Figure 8b), but the more stable nature of the photoactive stilbene unit allows
(EE), (EZ), and (ZZ) isomers to be isolated and characterized as pure compounds. The hydrodynamic
radius (RH) in water is shortened from 4.4 nm in Harada’s (EE)-R37 to 3.6 nm in (ZZ)-R37, which is
populated (Figure 8c) with up to 85% efficiency in the photostationary state in MeOH [133]. Harada [132]
also made a solvent-switchable daisy chain R38 in which the α-CD rings encircle cinnamamide units
in CD3SOCD3, but migrate to a peripheral hexamethylene chain upon addition of water, affording a
net contraction (Figure 8d) driven by the hydrophobic effect.

In 2005, Harada’s group [44] noticed that α-CD passes head-first over a 2-methylpyridinium
stopper onto a decamethylene chain much more quickly than it threads tail-first. At lower temperatures,
this rim-selective difference in threading kinetics allows one to obtain only one orientational isomer
of the corresponding pseudo [2]rotaxane (Scheme 7). At elevated temperatures, however, tail-first
threading becomes allowable and the system gradually equilibrates to an equal mixture of orientational
isomers. A similar face-selective translation has been observed in several other pseudorotaxanes with
similar directionally biased barriers [138–140]. The temperature-sensitive process of a ring threading
onto an axle over a size-matched barrier is known [141,142] as “slippage”. The mechanostereoselective
motion can be utilized for stereoselective synthesis (see Section 3.1); for example, an α-CD [3]rotaxane
was obtained [143] as a pure head-to-tail orientational isomer by employing a slippage stopper that
favors only a head-first threading.
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3.3. Networked “Slide-Ring” Materials

A “slide-ring” gel [144–147] is a material comprising polyrotaxanes with crosslinked rings.
Okumura and Ito [148] introduced this concept in 2001 by crosslinking the α-CD rings of a polyrotaxane
with a polyethylene glycol (PEG, MW > 10,000) backbone. While slide-ring materials based on
PEG/α-CD are most common [149–156], other systems based on polymers such as polyisoprene [157]
and polydimethylsiloxane [158] have also been reported. Slide-ring gels exhibit [159–166] remarkable
mechanical properties attributable to the so-called “pulley effect”, [167–169] where the translational
freedom afforded by the mechanically bonded crosslinks equalizes tension throughout the polymer
network. The pulley effect makes slide-ring gels soft and stretchable, yet also tough. The original
slide-ring gel [148] could be stretched to 24 times its length.

Although the symmetry-breaking effect of CDs has not been utilized significantly in slide-ring gels,
there may be ample opportunity for the unusual stereochemical features and mechanostereoselective
motions of CD mechanomolecules to impart these materials with new and unusual properties.
One recent example from the group of Harada [170,171] involved an artificial muscle material R39
comprising polyether networks crosslinked by photoswitchable [c2]daisy chains. These networks,
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both in hydrogel and aerogel states, contract and bend in the direction of the light source that causes
their internal sliding crosslinks to actuate (Figure 9).
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4. Conclusions and Outlook

It is clear that the symmetry-breaking effect of cyclodextrins, arising from their differentiated
faces that lead to orientational isomerism, as well as their cyclodirectional constitutions that lead
to mechanically planar and topological chirality in mechanomolecules, has dramatic implications
not only on regio-, stereo-, and orientationally selective synthesis and stereochemical analysis
of molecular structure, but also on molecular dynamics such as biased (mechanostereoselective)
intramolecular motion.

While the cyclochirality and conical shape of cyclodextrins can be advantageous in
mechanomolecular chemistry, CDs are not the only symmetry-breaking hosts available. We can
consider CD mechanomolecules as a case study and test bed for investigating and leveraging the
effects of symmetry-breaking in other molecular systems as well. Symmetry-breaking hosts have
been developed based on motifs including calix[n]arene [172–182], pillar[n]arene [183–187], cucurbit
[n]uril [188], and cyanostar [189] motifs, and even transmembrane proteins [190]. These materials have
much to contribute to the body of knowledge on symmetry breaking in chemical systems.
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