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Abstract: The progress in the research of various areas of robotics, artificial intelligence, and other
similar scientific disciplines enabled the application of multi-robot systems in different complex
environments and situations. It is necessary to elaborate the strategies regarding the path planning
and paths coordination well in order to efficiently execute a global mission in common environment,
prior to everything. This paper considers the multi-robot system based on the cloud technology
with a high level of autonomy, which is intended for execution of tasks in a complex and crowded
environment. Cloud approach shifts computation load from agents to the cloud and provides
powerful processing capabilities to the multi-robot system. The proposed concept uses a multi-robot
path planning algorithm that can operate in an environment that is unknown in advance. With
the aim of improving the efficiency of path planning, the implementation of Multi-criteria decision
making (MCDM) while using Full consistency method (FUCOM) is proposed. FUCOM guarantees
the consistent determination of the weights of factors affecting the robots motion to be symmetric or
asymmetric, with respect to the mission specificity that requires the management of multiple risks
arising from different sources, optimizing the global cost map in that way.
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1. Introduction

Path planning is of fundamental importance in mobile robotics. Algorithms for path planning are
intendend to generate a collision free path between the start and the goal point within the configuration
space of the robot, satisfying, at the same time, a certain optimization criteria. Configuration space
implies the concept that completely specifies the robot location in its workspace including specification
of all degrees of freedom [1]. Path planning for multi-robot systems is much harder than for a
single robot, since the size of the joint configuration space grows exponentially in the number of
robots [2]. Consequently, algorithms for single robot path planning cannot be directly applied to the
multi-robot systems.

The existing methods for multi-robot path planning, from the aspect of implemented algorithms,
can be divided into two general approaches [3]. The coupled approach regards the group of robots as a
single entity, such that all paths are planned simultaneously in a joint or composite configuration space
and therefore could guarantee completeness, but these solutions do not scale well with large robot
teams and they usually cannot be solved in real-time. The decoupled approach first computes separate
paths for the individual robots and then employs different strategies to resolve possible conflicts. These
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solutions are usually fast enough for real-time applications, but they can not guarantee completeness
and the robots might easily get stuck in common deadlock situations.

Planning the motion of a team of robots that perform tasks in a real environment involves a large
number of challenges. Firstly, the real environment is usually highly dynamic place, so it is difficult to
provide a precise planning map (the current map is out of date for a short period of time). Secondly,
the time that is available to robots for deliberation is usually very limited—they must quickly make
decisions and act according to them.

This paper considers the multi-robot system with a high level of autonomy that is based on
the cloud technology and intended for execution of tasks in a complex and crowded environment.
A common approach for path planning in robotics is to integrate an approximate, but fast global
planner with a precise local planner [4]. This mean that, in a crowded environment, the global planner
usually computes paths that ignore the crowds. Subsequently, the local planner takes into account the
crowds, as well as kinematic and dynamic constraints of the robot and creates feasible local trajectories.
However, if a global planner totaly ignores the costs of navigation through a crowd, such a plan might
prove inefficient [5]. Moreover, complex environments may have, besides crowds and static obstacles,
other characteristics that influence the motion of robots and that are desirable to consider during the
path planning on the global level.

With the aim of taking into consideration the crowds in the initial phase of planning on global
level (to form a global cost map), as well as other conditions of the environment, the implementation
of multi-criteria decision making (MCDM) is presented in this paper. Particular attention is paid to
the problem of determining the criteria weights and, for that purpose, the FUCOM [6] is proposed.
The FUCOM belongs to new methods for the determination of the weight coefficients of criteria in
MCDM. The application of this method is growing due to its advantages that will be described in detail
in this paper. Some implementations of FUCOM can be found in [7–10]. According to our knowledge,
the FUCOM-based approach has not been used so far for path planning in robotics.

The necessary environmental information for MCDM according to this paper is provided from
external datasets in combination with data that were collected with robots onboard sensors. Another
approach is only based on robots online learning of the environment, but this technique will be the
topic of our next research. For global path, a planning graph-based D* Lite algorithm is used [11].
It is adjusted with the aim of application for the multi-robot path planning. Decoupled approach is
implemented with a paths coordination strategy.

The goal of proposed approach is to ensure a global cost map for the computing of initial paths,
which is similar to the real one as much as possible. In this way, we will try to reduce the total cost of
the paths i.e., to manage the risks in path planning in crowded environment, keeping the robots at
a certain safe distance from the crowd, but while taking into consideration, at the same time, other
conditions of the environment. The application of FUCOM method provides an efficient strategy for
solving this problem.

This paper is organized, as follows. Section 2 presents an overview of selected papers that deal
with graph-based search in path planning, crowd-sensitive path planning, as well as using MCDM in
the forming of cost map. Section 3 describes system architecture and its main “components”—D* Lite
algorithm and FUCOM method. Sections 4–6 introduce the model and procedure for the forming of cost
map based on MCDM while using FUCOM, describing the path planning in simulated environment,
and giving discussions of the results. Finally, Section 7 presents conclusions.

2. Related Work

Similar to the path planning problem for single robot, graph search methods that are based on the
A* algorithm are frequently used in path planning for multi-robot systems. In [12], the M* algorithm is
proposed that employs so-called subdimensional expansion to plan in the joint configuration space,
while using A* as the underlying path planning algorithm. It starts by planning in low-dimensional
subspace representing configuration spaces of individual robots and increases the dimensionality
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when the need for coordination is detected. A method for optimizing the priorities for decoupled
and prioritized A*-based path planning algorithm for multi-robot system is presented in [13]. This
method is a randomized approach that repeatedly reorders the agents to find a sequence for which
a solution can be computed and to minimize the overall path lengths. A lattice-based method to
multi-robot path planning for non-holonomic vehicles with implemented A* algorithm is presented
in [14]. This method generates kinematically feasible motions for multi-robot system. In [15], the
A* algorithm in combination with potential field approach is used for path planning of a given set
of mobile robots, while moving and avoiding obstacles in a chained fashion. The [16] focuses on
consideration of path planning and controlling a group of autonomous agents to accomplish multiple
tasks in dynamic environments. It represents the approach in researching that emphasizes the influence
of implemented multi-robot task allocation approach on the efficiency of path planning.

The extension of A*, D* algorithm, is a well-known informed incremental graph search algorithm
for partially-known environment. D* Lite is an alternative to D* that is at least as efficient as D*, but is
algorithmically different and simpler [17]. It is one of most popular path planning algorithms, which is
extensively used for mobile robot navigation in a complex environment [18]. The D*-based global path
planner has been successfully demonstrated in a lot of practical applications [19–21]. Several robots
have used the D* algorithm in combination with the Morphin local planner (which version provides
local navigational autonomy for the NASA Mars Exploration Rovers [22]) to drive autonomously on
rough terrain over long distances [23–25]. The D* algorithm is also successfully used as a planner for
multi-robot systems [26], as well as D* Lite [27,28].

Crowd-sensitive path planning for single robot or multi-robot systems has been a very popular
topic in the robotics community in recent years. In [5] and [29], four A*-based crowd-sensitive path
planners (CSA*, Flow-A*, Risk-A*, and CUSUM-A*) are presented. All of them are intended for global
navigation in a crowded environment, making the assumption that the robot is only limited to onboard
two-dimensional (2D) range sensors. This approach formulates the problem as Bayesian online learning.
Each cell in the crowd density map is modeled as a Poisson distribution with rate λ. A Poisson
distribution is commonly used to model natural discrete events, including crowd counting [30]. Initially,
when the robot has no information regarding the crowd, each of these algorithms generate plans that
are identical to those of A*. However, as the robot travels and observes the crowd, it updates its cost
map. Once enough information is gathered through map updates, the cost maps force the planner to
efficiently avoid crowded areas. CSA* simply avoids crowded areas. On other side, Flow-A* learns
and incorporates the direction of crowd flow in the environment to allow for the robot to follow social
norms (avoid going against the flow of the crowd). However, people usually change their behavior
in the presence of robots. In such scenarios, the learned model should account for such interactions.
Risk-A* uses that approach and improves safety. To detect and adjust for temporal changes in crowd
patterns, a statistical change detection technique can be used. These methods allow for CUSUM-A* to
forget old models and learn new ones that reflect the current state of the environment. CSA*, Flow-A*,
Risk-A*, and CUSUM-A* are intended primarily for indoor crowded environments, but a similar
approach can be applied in the outdoor crowded environment. However, they only take one factor
that influences the motion of robots on the global level into account. In reality, there are usually more
such factors.

Dynamic decision support system (DSS) for mission planning and control of autonomous
underwater vehicles (AUVs) in complex environments with real-world operational constraints is
proposed in [31]. The component of DSS that is intended to reduce the AUV path solution space in
complex environments is based on a MCDM while using the analytic network process (ANP) and
fuzzy logic. The ANP is used to define the importance weight of the path planning decision factors (ten
factors). The ANP is chosen because it is a more general form of the analytic hierarchy process (AHP).
ANP does not require independence and it allows for decision factors to ‘influence’ or ‘be influenced’
by other factors in the model. Although this method is applied to planning and control of underwater
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gliders, it was concluded that the presented approach has much broader applications to unmanned
vehicles in general.

3. System Overview

Some of typical forms of the application of multi-robot systems include the following: transport of
goods and materials into industrial centers and stores, cleaning of closed and open areas, participation in
search and rescue missions, reconnaissance, elimination of the consequences of emergencies, execution
of military missions, etc. Prior to everything it is necessary to elaborate well the strategies regarding
the allocation of tasks among the robots, path planning, and paths coordination in order to efficiently
execute a global mission in any kind of common environment.

With the aim of a wider application of multi-robot systems, agents are supposed to be as simple
as possible, energy efficient, low-cost, but still smart enough to reliably perform an assigned task with
a high level of autonomy. These two goals are contradictory to each other. Cloud computing is a
key enabler for solving these challenges. The idea is to design and create the architecture in which
the multi-robot system uses the benefits of converged infrastructure and the resources of the cloud
(information, memory, communication, and other) [32–36]. In practice, this usually means that on the
cloud level gathering of information and their processing is performed, while the robots, as cloud
service users, obtain only data and commands necessary for a direct execution of the allocated tasks.
The overview of cloud architecture and whole system considered in this paper is presented in Figure 1.
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Figure 1. Block diagram of the system architecture.

The “data base” module provides a map of the environment, as well as information regarding
terrain configuration and crowd density distribution.

“Robots” module simulates the motion of robots in accordance to the given commands and data,
as well as their sensor activities (environment perception). Robots have a mode for an emergency stop
in case of unpredicted situations. The proposed multi-robot system in this project consists of three
robots (homogenous system).

The “system manager” module is a cloud level, i.e., it provides the execution of the most
demanding tasks necessary for functioning of the multi-robot system, such as: creating a cost map
based on MCDM while using FUCOM, robot task planning, path planning/replanning of each robot,
paths coordination, solving the conflict situations, and mapping updating based on data collected with
robots’ sensors.



Symmetry 2019, 11, 1241 5 of 15

Figure 2 provides allocation of the computation time between the modules in one iteration of
randomly chosen scenario.
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Out of the Figure 2, it may be seen that this approach significantly unloads the robots at the
expense of using the cloud resources. The “system manager” executes the most demanding operations
related to creating a global cost map that is based on MCDM using FUCOM, robots task planning,
paths planning and replanning, paths coordination, etc. Only data and commands that are necessary
for a direct execution of given tasks are delivered to the robots as the users of the cloud services.
As a part of sequences that are related to the robots activity, the cumulative time of their motion and
perception with their own sensors is shown.

As the described architecture is of a modular type, it can be expanded in many ways and adjusted
for other scenarios. In that sense, the architecture can be, depending on the actual need, simply adjusted
for the multi-robot system with a larger number of robots of homogenous or heterogenous structure.

3.1. D* Lite Algorithm

The environment may be represented as a 2D traversability grid with uniform resolution, in which
each cell has allocated a real-valued traversal cost larger than zero, reflecting the difficulty of navigation
in the appropriate area in order to plan the robot motion. This traversability grid is usually approximated
as a discrete graph and after that some graph-based search technique can be applied for path planning.
One way to do this is to allocate the node to each cell center, with the edges that connect the node to
each adjacent cell center (node). The cost of each edge is a combination of the traversal costs of the two
cells that it crosses through and the length of the edge [4].

While keeping this in mind, suppose that S is a set of nodes in one such graph. Each node s,
where s ∈ S, represents one cell of the map and it is associated with nodes representing neighboring
fields. The set of successors of node s is denoted by Succ(s), while the set of predecessors of node s
is denoted by Pred(s). For any pair of nodes s, s’ ∈ S, where s’ ∈ Succ(s), we define cost of transition
from s to s’, denoted by c(s, s’), to be positive: 0 < c(s, s’) ≤ ∞. In general case c(s, s’) , c(s’, s). The cost
of transition from node s0 to node sк, where s0, sк ∈ S, is defined as the sum of the sequential cost of
transitions between neighboring nodes (edge costs) in the set of nodes {s0, s1, . . . , sк−1, sк}, i.e., as (c(s0,
s1) + . . . + c(si−1, si) + . . . + c(sk−1, sk)), where c(si−1, si) represents the cost of moving from si−1 to si
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and si ∈ Succ(si−1), 1 ≤ i ≤ k. The least-cost path from s0 to sк is denoted with c*(s0, sк). For s0 = sк, we
define c*(s0, sк) = 0.

The goal of least-cost path search algorithms, such as A*, is to find a path from sstart to sgoal whose
cost is minimal, i.e., equal to c*(sstart, sgoal). D* Lite algorithm, as well as A*, during operation forms
and maintains (updates) the value of four functions that describe cell s:

• g(s)—the minimum cost of moving from sstart to s, i.e., c(sstart, s), found so far;
• h(s) or heuristic value—estimates the minimum cost of moving from s to sgoal. Using heuristic

value ensures that the search tree is directed towards the most optimistic cells in terms of belonging
to the optimal path from start to goal cell. This speeds up the search.

• f (s) = g(s) + h(s)—estimates the minimum cost of moving from sstart via s to sgoal; and,
• parent(s) or parent pointer—points to the predecessor s’ of s from which is derived g(s), s’ is called

the parent of s. The parent pointers are used to extract the path after the search terminates.

Moreover, in addition to the above functions, D* Lite, as well as A*, forms and maintains (updates)
a priority queue or list OPEN. The OPEN list contains all inconsistent cells detected so far during the
search, which are candidates for further processing in terms of the propagation of the inconsistency.
A cell s becomes inconsistent if, during the search, its g(s) is reduced. At each step, the algorithm adds
to the search tree the cell from the OPEN list, which, at that moment, has the smallest key value (for A*
algorithm key(s) = f (s)), until it reaches the goal cell. By processing the cells from the OPEN list in the
order corresponding to the minimum value of the key, the algorithm extends from the start to the goal
cell the path that has the lowest total cost. Therefore, the cells that were taken from the OPEN list and
processed in this way are said to be expanded. The process itself is called the expansion of the cell.

A* algorithm, unlike D* Lite, implies that the search for a solution is always done over the same
graph and with unchanged transition costs between the cells. In the real world, however, there are
usually situations in which at the moment of starting the motion, the environment in which the robot
is sent is only partially known. In addition, dynamic changes of the environment might appear or
occur during the robot motion. In such situations, the path planning process usually starts with the
assumption that all areas that are unknown at the initial moment are free to pass, while the robot
during the motion by its sensors explores the terrain and collects information for map updating. The
changes in the map involve the changing of the graph that the algorithm uses to generate a path.
In such circumstances, it may happen that the solution that is reached by the A* algorithm is not
optimal or even valid. Therefore, A* algorithm in this case calculates the path from scratch (in regard
to the current position of the robot), without using the results from the previous iterations. In these
scenarios, the class of algorithms known as incremental algorithms is efficient, while bearing in mind
that, in the situation when new information occurs, they use the search results from the previous
iterations to the maximum possible extent, in order to correct the current or find a new valid solution.
D* Lite belongs to this class of algorithms. It can be said that D* Lite is extension of A*, which is able to
cope much more efficiently with changes to the graph used for planning.

To be able to do this, in addition to the g value D* Lite forms and maintains (updates) for each cell
one-step lookahead cost rhs, that represents the path cost estimate that is derived from looking at the g
values of its neighbors: rhs(s) = mins’∈Succ(s)(c(s, s’) + g(s’)) or zero if s is the goal cell. In implementation,
each cell maintains a pointer to the cell from which it derives its rhs value, so the robot should follow
the pointers from its current cell to pursue an optimal path to the goal.

A cell is consistent if its g and rhs values are equal, otherwise it is inconsistent (it is called overconsistent
if g > rhs and underconsistent if g < rhs). Overconsistent cells propagate path cost reductions, while
underconsistent cells propagate path cost enlargements through the environment.

Like A*, D* Lite algorithm also uses a heuristic to focus and to speed up the search. D* Lite also
maintains a priority queue or list of inconsistent cells (OPEN) to be expanded in the current search
iteration. The prioritization of cells in the OPEN list during the expansion is also done based on the
assigned key value. However, unlike the A* algorithm, in D* Lite the key value has the form of a row
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vector 1 × 2: key(s) = [k1(s), k2(s)] = [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))]. The key value of the
cell s is less than the key value of the cell s’, denoted key(s) ≤ key(s’), which means that s is a cell with a
higher priority, if k1(s) < k1(s’) or both k1(s) = k1(s’) and k2(s) ≤ k2(s’).

The measure of search efficiency for graph-based algorithms is a number of expanded cells [37,38].
A sloution is reached much more quickly by expanding a fewer cells.

D* Lite generates an initial solution in a similar manner as the backward version of A* algorithm
(i.e., search is performed from sgoal to sstart). If the robot detects changes in the environment during
the motion (i.e., the cost of some edge is altered), D* Lite first updates the rhs values of all of the
cells directly affected by the changed edge cost. After that, priority queue OPEN is updated, i.e., the
algorithm places new inconsistent cells onto the queue. Subsequently, the cells are expanded from the
updated OPEN list according to the prioritization based on the assigned key value. This ensures the
propagation of inconsistency. In this way, D* Lite algorithm checks the validity of the current path and
corrects it if necessary. D* Lite is efficient because it processes only those cells that are directly affected
by the changes. In other words, while using the previously obtained results to calculate the corrected
path, D* Lite does not replan from scratch over the entire graph as A*. As a result, it can be up to two
orders of magnitude more efficient than A*.

Figure 3 presents the pseudocode of basic version of D* lite [39].
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The principle of D* Lite that is presented in Figure 3 can be summarized as follows:
D* Lite performs searches by assigning the current cells of the robot and target to the start and

goal cells of each search, respectively. The initialization process sets both the initial g and rhs values of
all cells except the goal cell to infinity (lines 15–16). The goal cell is inserted into the priority queue
(OPEN) because it is initially inconsistent (line 17). D* Lite then finds a cost-minimal path from the
start cell to the goal cell (line 19). In real implementation line 20 means that the computed path is
being traversed by the robot (the robot makes a steps transition cell by cell along the path i.e., sstart is
changing). As the robot travels, it, at the same time, observes the environment. If changes in edge costs
in some robot step are detected, D* Lite updates the rhs values of each cell immediately affected by the
changed edge costs and places those cells that have been made inconsistent onto the OPEN queue
(lines 21–23). D* Lite then propagates the effects of these rhs values changes to the rest of the cell space
and checks/replans the path through recalling ComputePath() function (line 19) until it terminates
again. Line 18 in real implementation means that the whole process ends when it becomes sstart = sgoal.

As we said earlier, in this paper, the D* Lite algorithm is adjusted with the aim of application for
the multi-robot path planning. The decoupled approach is implemented with the paths coordination
strategy. Robots share the knowledge about the environment through the cloud in order to perform a
mission cooperatively.

3.2. Full Consistency Method (FUCOM)

The FUCOM method is used to define the importance weight of the decision factors. FUCOM
is one of the newer models that is, like Analytical Hierarchy Process (AHP) and Best Worst Method
(BWM), based on the principles of pairwise comparison of criteria and the validation of results through
a deviation from maximum consistency [6]. FUCOM is a model that, to some extent, eliminates the
drawbacks of the BWM and AHP models. Benefits that are determinative for the application of FUCOM
include a small number of pairwise comparison of criteria (only n − 1 comparison, n = number of
criteria), the ability to validate the results by defining the deviation from maximum consistency (OMK)
of comparison, and taking into consideration the transitivity during pairwise comparison. As well as
with other subjective models for determining the weight of the criteria (AHP, BWM, etc), there is a
subjective influence of the decision-maker in the FUCOM model on the final values of the weight of
the criteria. This particularly refers to the first and second steps of FUCOM, in which decision-makers
rank the criteria according to their personal preferences and perform a pairwise comparison of ranked
criteria. However, unlike other subjective models, FUCOM showed minor deviations in the obtained
values of the weight of the criteria from the optimum values [6]. Additionally, the methodological
procedure of FUCOM eliminates the problem of redundancy of pairwise comparison, which is present
in some subjective models for determining the weight of the criteria.

Assume that there are n evaluation criteria in a multi-criteria model that are denoted as wj, j = 1, 2,
. . . , n and that their weight coefficients need to be determined. Subjective models for determining
weights based on pairwise comparison of criteria require the decision-maker to determine the degree
of influence between the criteria. In accordance with the defined settings, the next section presents the
FUCOM algorithm, Figure 4 [6].
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4. Multi-Criteria Decision Making Model and Procedure

We use a grid-based approach for map representation in order to navigate through the environment.
This means that the map of area of interest is converted into 2D uniform grid of squares, referred to as
‘cells’. Each cell is assigned a price that depends on four criteria.

Criteria (factors):

• C1—the convenience of the terrain configuration for robots motion, a 0–10 scaled grading scheme
(0 = ‘favorable terrain’ to 10 = ‘extremely unfavorable terrain’),

• C2—the risk related to the loss of communication with the cloud, a 0–10 scaled grading scheme
(0 = ‘low risk’ to 10 = ‘high risk’),

• C3—the risk related to the human-robot interactions (slows down the robots motion), a 0–10 scaled
grading scheme (0 = ‘low risk’ to 10 = ‘high risk’), and

• C4—the robot safety related to conditions dependent on specific mission (0 = ‘safe conditions’ to
10 = ‘extremely unsafe conditions’).

The team of experts in charge of mission planning is responsible for decision-making. The
assumption is that experts have years of experience in the field of robot path planning, as well as that
they have access to information regarding conditions of the environment in which the robots move.
Defining wij as the weight of factor j defined by expert i (i = 1,2, . . . , I; j = 1,2, . . . , J) and Cm

ij as the
score of jth factor for cell m provided by the ith expert (i = 1,2, . . . , I; j = 1,2, . . . , J; m = 1,2, . . . , M), we
find Cm, the ‘path planning index’ of the mth cell. Here, equation (1) is used to aggregate the score of
jth factor given by I experts for cell m, as well as its total score for all J factors:

Cm
j =

(
Cm

1 jw1 j + . . . + Cm
ij wi j + . . . + Cm

IjwI j

)
/I

Cm =
(
Cm

1 + . . . + Cm
j + . . . + Cm

J

) (1)

The final path planning indices are next converted into a colour-coded system that reflects the
risk level in a cell. In this way, the map is composed of green, yellow, orange, and red risk categories.
Green is the lowest risk level that represents cells with 0 ≤ Cm

≤ 2.5. Yellow marks a moderate risk
level and it represents cells with 2.5 ≤ Cm

≤ 5. Orange indicates a high risk and it represents cells with
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5.0 ≤ Cm
≤ 7.5 and red symbolises severe risk and represents cells with 7.5 ≤ Cm

≤ 10. Each risk level
implies its unique cost of transition through the cell. This approach provides risk-sensitive planning.

Data processing according to the previously mentioned steps can take considerable amount of
computing time. Hence, forming the datasets of traversal costs at the cloud level in the phase of
preprocessing using its resources is proposed.

5. Simulation and Results

Crowds may behave differently in the presence of the robots. Some people make way for the
robots, others hinder their motion. Areas that are attractive to children can be more risky than other
crowded areas. In any case, approaching the robot to a person or vice versa unacceptably close
represents a risky action to a greater or lesser extent.

The global cost map here is represented as a discrete grid with 100 × 100 cells. A complex
environment was simulated to evaluate the performance of the proposed concept. In addition to static
obstacles, the presence of pedestrians in initially free cells in the environment was simulated, with the
probability of occurrence in proportion to the scores of appropriate criteria.

In such generated scenarios, we evaluated the path planning performance under D* Lite without
MCDM and D* Lite with MCDM by total travel distance and total number of risky actions (those that
brought the robot within distance of two cells from a pedestrian). The robot should do so quickly,
travel relatively short distances, avoid collisions, and take relatively few risks. One such scenario is
presented in Figure 5, with specifications as follows.

Start and goal positions of robots:

• start1 (x, y) = (1, 21), goal1 (x, y) = (73, 100)
• start2 (x, y) = (20, 1), goal2 (x, y) = (100, 91)
• start3 (x, y) = (35, 15), goal3 (x, y) = (100, 100).

The first MCDM model—D* Lite with MCDM1
Determining criteria wegihts:

Step 1. The decision-makers performed the ranking of the criteria: C3 ≥ C2 ≥ C1 > C4.
Step 2. The decision-makers performed the pairwise comparison of the ranked criteria from Step 1.

The comparison was made with respect to the first-ranked C3 criterion. The comparison was based on
the scale [1, 9]. Thus, the priorities of the criteria ($C j(k)

) for all of the criteria ranked in Step 1 were
obtained (Table 1).

Table 1. Priorities of criteria.

Criteria C3 C2 C1 C4

$C j(k) 1 1 1 5

Based on the obtained priorities of the criteria, the comparative priorities of the criteria are
calculated: ϕC3/C2 = ϕC2/C1 = 1/1 = 1 and ϕC1/C4 = 5/1 = 5.

Step 3. The final values of weight coefficients should meet the following two conditions: (1) The
first condition: w3

w2
= w2

w1
= 1 and w1

w4
= 5; (2) The second condition: The final values of the weight

coefficients should meet the condition of mathematical transitivity, i.e., that w3
w1

= 1 · 1 = 1 and
w2
w4

= 1 · 5 = 5. The final model for determining the weight coefficients can be defined as:

minχ

s.t.



∣∣∣∣w3
w2
− 1

∣∣∣∣ ≤ χ,
∣∣∣∣w2
w1
− 1

∣∣∣∣ ≤ χ,
∣∣∣∣w1
w4
− 5

∣∣∣∣ ≤ χ,∣∣∣∣w3
w1
− 1

∣∣∣∣ ≤ χ,
∣∣∣∣w2
w4
− 5

∣∣∣∣ ≤ χ,

4∑
j=1

w j = 1, w j ≥ 0,∀ j
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By solving the problem with Lingo 17.0 software (Chicago, IL, USA), the final values of the
weight coefficients (0.313, 0.313, 0.313, 0.063)T and deviation from full consistency (DFC) of the results
χ = 0.00 are obtained.

The second MCDM model—D* Lite with MCDM2
Determining criteria wegihts:

Step 1. Ranking of the criteria: C3 > C2 > C1 ≥ C4.
Step 2. In the second step, the decision-maker performed the pairwise comparison of the ranked

criteria from Step 1. The comparison was made with respect to the first-ranked C3 criterion. The
comparison was based on the scale [1, 9]. Thus, the priorities of the criteria ($C j(k)

) for all of the criteria
ranked in Step 1 were obtained (Table 2).

Table 2. Priorities of criteria.

Criteria C3 C2 C1 C4

$C j(k) 1 4 7 7

Based on the obtained priorities of the criteria, the comparative priorities of the criteria are
calculated: ϕC3/C2 = 4/1 = 4, ϕC2/C1 = 7/4 = 1.75, and ϕC1/C4 = 7/7 = 1.

Step 3. Nonlinear model constraints: (1) The first constraint: w3
w2

= 4, w2
w1

= 1.75, and w1
w4

= 1;
(2) The second constraint: The final values of the weight coefficients should meet the condition of
mathematical transitivity, i.e., that w3

w1
= 4 · 1.75 = 7 and w2

w4
= 1.75 · 1 = 1.75. The final model for

determining the weight coefficients can be defined as:

minχ

s.t.



∣∣∣∣w3
w2
− 4

∣∣∣∣ ≤ χ,
∣∣∣∣w2
w1
− 1.75

∣∣∣∣ ≤ χ,
∣∣∣∣w1
w4
− 1

∣∣∣∣ ≤ χ,∣∣∣∣w3
w1
− 7

∣∣∣∣ ≤ χ,
∣∣∣∣w2
w4
− 1.75

∣∣∣∣ ≤ χ,

4∑
j=1

w j = 1, w j ≥ 0,∀ j

By solving the problem with Lingo 17.0 software, the final values of the weight coefficients
(0.651, 0.163, 0.093, 0.093)T and the DFC of the results χ = 0.00 are obtained.

Table 3 presents the results of the experiment, averaged over 15 trials.

Table 3. D* Lite with MCDM improves navigation performance.

D* Lite without MCDM D* Lite with MCDM1 D* Lite with MCDM2

Risky Actions 887 798 (−10.1%) 719 (−18.9%)

Distance 407.16 425.32 (+4.4%) 435.35 (+6.9%)
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Figure 5. Scenario cost map (left) and path planning results (right): (a) D* Lite without multi-criteria
decision making (MCDM); (b) D* Lite with MCDM1; and, (c) D* Lite with MCDM2.

6. Discussion

Initially, when there is no information about the crowds, plans that are identical to basic version
of D* Lite are generated and they can move robots directly through the crowd, as is shown in
Figure 5a. Crowds can slow, divert, or halt the robot, and thereby increase its travel time and risky
actions. On the other side, forming the global cost maps that were based on the gathered information
about the environment, expert knowledge, and MCDM using FUCOM force the planner to tend to
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avoid crowded areas, but while taking into consideration at the same time other conditions of the
environment—Figure 5b,c.

Experts, according to their personal preferences, determine the values of the criteria for cells
in grid map (by analyzing available information about the environment), as well as the weights of
the criteria (with respect to the particular situation and mission). It is logical that, for maps with
a large number of cells, the value of the criteria will be assigned at the level of the regions, where
the region includes a group of cells with the same or similar value of the considered criterion by the
expert preference.

The application of FUCOM provides an efficient determination the weights of factors that
decisively affect the robots motion to be symmetric or asymmetric, with respect to the particular
environment and having in mind the mission specificity and objectives, optimizing the global cost map
in that way. This refers to the fact that, in most situations, the robots motion in a crowded environment
is subordinated to the pedestrians, while certain missions require emergency response of the robots,
when they are in some way assigned higher priority in movement. This must be taken into account
when defining the global cost map for path planning.

Based on Table 3, it can be concluded that the distance traveled was not statistically significantly
different with any of the tested approaches. The most significant differences are in risky actions: D*
Lite with MCDM2 took fewer risky actions than D* Lite without MCDM for 18.9%, while D* Lite with
MCDM1 took fewer risky actions than D* Lite without MCDM for 10.1%. This is mainly because, in the
case of testing D* Lite with MCDM2, the FUCOM model puts greater weight on the criterion related to
the crowd than in the case of testing D* Lite with MCDM1. In this way, the possibility of managing the
overall risk is provided.

As D* Lite is global planner, the choice of a local collision-avoidance planner directly impacts the
number of risky actions and performance of the proposed approach.

7. Conclusions

This paper considers the multi-robot system with a high level of autonomy, based on the cloud
technology and intended for the execution of tasks in a complex and crowded environment.

The cloud approach shifts the computation load from agents to the cloud and provides powerful
processing capabilities to the multi-robot system. This allows for the onboard systems of the robots
to be greatly reduced, keeping only sensors, communication, actuation, and manipulation modules.
The implemented multi-robot path planning algorithm uses common data base and it can operate in
an environment that is unknown in advance.

Mission control is based on human expert knowledge of robots capabilities, as well as on available
information regarding environmental conditions. The application of MCDM using FUCOM provides
an adaptive approach to path planning, in terms of optimizing the global cost map while taking into
account all of the factors affecting the robots motion in the environment and having in mind a mission
specificity that requires the management of risks that arise from different sources.

We tested a presented approach in simulation on complex scenarios and demonstrated an
improvement of global path planning through the statistically significant reductions in the number
of risky actions. A limitation of this approach is that it needs external information regarding the
environment, not only those gathered with robots’ sensors.
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7. Durmić, E. The evaluation of the criteria for sustainable supplier selection by using the FUCOM method.
Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 91–107. [CrossRef]

8. Badi, I.; Abdulshahed, A. Ranking the Libyan airlines by using Full consistency method (FUCOM) and
Analytical hierarchy process (AHP). Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 1–14. [CrossRef]
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