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Abstract: Chronic liver disease (CLD), which indicates the inflammatory condition of the liver, leads
to cirrhosis or even partial or total liver dysfunction when left untreated. A non-invasive approach
for evaluating CLD with computed tomography (CT) images is proposed using an ensemble of
classifiers. To accurately classify CLD, the hybrid whale optimization algorithm with simulated
annealing (WOA-SA) is used in selecting an optimal set of features. The proposed method employs
seven sets of features with a total of 73–3D (three-dimensional) texture features. A hybrid ensemble
classifier with support vector machine (SVM), k—Nearest Neighbor (k-NN), and random forest
(RF) classifiers are used to classify liver diseases. Experimental analysis is performed on clinical CT
images datasets, which include normal liver, fatty liver, metastasis, cirrhosis, and cancerous samples.
The optimal features selected using the WOA-SA improve the accuracy of CLD classification for the
five classes of diseases mentioned above. The accuracy of the liver classification using ensemble
classifier yields approximately 98% with a 95% confidence interval (CI) of (0.7789, 1.0000) and an error
rate of 1.9%. The performance of the proposed method is compared with two existing algorithms and
the sensitivity and specificity yield an overall average of 96% and 93%, with 95% confidence interval
of (0.7513, 1.0000) and (0.7126, 1.0000), respectively. Classification of CLD based on ensemble classifier
illustrates the effectiveness of the proposed method and the comparison analysis demonstrates the
superiority of the methodology.

Keywords: liver disease; 3D computed tomography liver images; feature extraction; whale
optimization algorithm; ensemble of classifiers

1. Introduction

The human liver is the largest internal organ of the body and liver disease is among the critical
diseases that affect the normal, healthy stature of a human due to various reasons [1]. There are various
types of liver disease, namely fatty liver, cirrhosis, hepatitis, chronic liver disease, liver cancer and liver
tumor, etc. [2]. Excess triglyceride fat accumulation leads to fatty liver [3]. Hepatitis virus infection
in the liver is developed due to excessive consumption of alcohol, detrimental food habits, etc. [3].
Hepatitis [4] can result in acute and chronic infection. Cirrhosis [5] is fibrous tissue that replaces the
dead liver cells with fibroid. Metastatic tumors are cancerous tumors in the liver that spread from
cancer affected in other organs [6,7]. Chronic liver disease (CLD) is estimated worldwide with figures
up to 844 million people and has a mortality rate of about two million per year. The World Health
Organization (WHO) [8] states that death tolls worldwide rose to 50 million per year over two decades
due to cirrhosis and liver cancer. In 2015, deaths caused by liver diseases due to alcohol were reported
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to be an age-standardized rate of 14.2 deaths per 100,000 population by the global studies made in
the United Kingdom [9]. The diagnosis of liver diseases can be analyzed using ultrasonography,
magnetic resonance imaging (MRI), computed tomography (CT) [10], etc. However, the advanced
level of curing can be obtained only by liver transplantation [11]. The ultrasound-based procedures
are constrained by high technical failure rates. They are both machine and operator dependent with
low accuracy in morbidly obese persons and do not produce reproducible, continuous ranges of
quantitative information [2,12]. The CT and MRI [13] are the two broadly utilized imaging tests for
diagnosing various problems in human anatomy, including abdominal infections. MRI provides
improved results with soft tissues when the scanning process involves contrast enhanced liver specific
agents [14], as it will be visibly annotated for its boundary with abdominal CT images. Moreover,
MRI scans are costlier [15] than CT image scans. The CT based methods [16] have high resolution
with challenging visualization, efficient data transfer, and are well-suited for solid organs in human
anatomy [17], whereas MRI [18] suffers spatial distortion of tissue intensity caused by main magnetic
field inhomogenity. The benefits of using ionizing imaging modality are faster scan times, improved
spatial resolution, and advanced multi-planar reconstruction techniques. All of these have increased the
utilization of CT for every anatomic abnormality over non-ionizing imaging modalities. The ionizing
radiation dose received during a CT scan depends on the protocol, such as the radiographic factors and
the number of series obtained. Generally, a CT scan of the abdomen exposes the patient to about 20 mSv
of IR depending on the protocol, but on average, it increases the risk of fatal cancer by about one in 1000.
The quick and precise forecast of liver disease permits early detection and viable medications and is
important on the grounds that it spares patients from advanced sicknesses [19]. For this early detection,
liver biopsy is the gold standard [20] invasive approach for CLD. However, it has life threatening
complications due to transient pain, anxiety, and discomfort [21]. The optical biopsy of liver tissue [22]
using optic fiber had been marked with quantitative interpretations of the measurements. Non-invasive
methods for CLD diagnosis using computer-aided diagnosis (CAD) yield similar accuracy like liver
biopsy and [23,24] have proposed the same. Two crucial steps play vital roles in the non-invasive
methods of CLD classification, namely feature extraction and classification. Image-based features using
textures is an active research area in CLD classification. Machine learning algorithms (MLA) such as
neural networks [25], support vector machine (SVM) [26], ensemble classifier [27], etc., are used for
texture-based CLD classification in the current scenario. Many scientific articles that report different
approaches for feature extraction and classification exist.

One effective tool to characterize normal and diseased livers is by means of texture analysis, as it
describes the local spatial variations in the image. This texture feature is the mathematical parameter
computed from the two-dimensional (2D)/three-dimensional (3D) space of the pixels/voxels. Among
the various texture feature extraction algorithms, the co-occurrence matrix (CM) based Haralick
method [28] is widely used. In medical imaging, statistical texture features proved to have higher
recognition. These features have been used in various applications such as fetal lung maturity [29],
liver tissue characterization [30], prostate cancer recognition [31], etc. In the proposed method, different
texture features are constructed from the identified regions of interest using second and higher order
statistical features [32].

Similarly, for efficient CLD classification, researchers preferred MLA such as SVM, random forests
(RF), artificial neural network (ANN), etc., [33,34]. However, RF, which is a prominent classifier, may be
prompted to vulnerabilities [35]. ANN, on the other hand, classifies liver diseases effectively, but it
requires higher computational cost and is prone to overfitting [36]. SVM is robust to noise and leads to
efficient classification results [37].

To recognize the fatty liver disease (FLD), Acharya et al. [38] proposed the texture feature
based FLD classification and discussed various diagnostic techniques. The authors adopted the
cutting edge ultrasound-based CAD techniques that use a scope of image texture based features like
entropy, local binary pattern (LBP), Haralick textures, and run-length matrix in a few computerized
decision-making algorithms. In their approach, the results were accurate, which helps in early
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diagnosis. To classify ten various types of focal and diffused liver disorders, Raghesh Krishnan and
Radhakrishnan [39] implemented a hybrid approach to classifying focal and diffused liver disorders.
Initially, the disease region was separated from the ultrasound image by applying the active contour
segmentation technique. The segmented region was again transformed into horizontal, vertical,
and diagonal segment images by applying bi-orthogonal wavelet transform. After that, the gray
level run-length matrix features were separated and classified utilizing RF by applying a tenfold
cross-validation system, yielding an accuracy of 91%. Zhou et al. [40] researched 225 liver capacity test
records (each record incorporates 14 highlights), which were a subset from 1000 patients’ liver capacity
test records that incorporate the records of 25 patients with liver disease from a group of hospitals.
The authors joined support vector data description (SVDD) with data visualization procedures and the
glowworm swarm optimization (GSO) algorithm to enhance diagnostic accuracy with 96% sensitivity,
86.28% specificity, and 84.28% accuracy.

Chang et al. [41] developed a CAD framework to diagnose liver cancer utilizing the features of
tumors extracted from multiphase CT images. Liang and Peng [42] exploited the immune system’s
attributes of learning and memory for liver disease diagnosis. A combination of two strategies for
artificial immune and a genetic algorithm was used to diagnose liver diseases. The system architecture
depended upon the artificial immune system and the learning procedure utilized a genetic algorithm to
infer the evolution of the antibody population. These results suggested that the developed system may
be a useful automatic diagnosis tool for liver disease. Mala et al. [43] presented the texture analysis of
CT images and the development of a probabilistic neural network (PNN), linear vector quantization
(LVQ) neural network, and back propagation neural network (BPN) for classification of fatty and
cirrhosis liver from CT abdominal images. Neural networks are supported by more conventional
image processing operations in order to achieve the objective set.

From the above discussion, it is clear that enormous research has been carried out for CLD using
texture features and various classifiers. The classification of most of the classifiers is restricted with two
or three classes of CLD, and feature selection for the classification needs more investigation. This is
because feature selection is crucial in most classification problems, which is defined by obtaining a
subset of prominent features from the original feature vector of higher dimensions. Also, feature
selection decreases the cost of feature extraction as well as enhances the performance of the classifier.
Therefore, a new technique for developing image-based classification models of liver diseases in
segmented 3D CT liver images is necessary. With such a motivation, a novel methodology for CLD
classification is proposed, using the WOA-SA algorithm to select prominent features from the features
extracted from CT images.

2. Materials and Methods

2.1. Data Acquisition

The data used in this work were collected from Arthi Scans, Tirunelveli during the month of
January 2018. The area of interest of the CT abdominal images was captured by GE Systems Light
Speed VCT 16 slices CT Scanner Machine. Plain spiral CT scanning of livers was scanned from the
right dome of the diaphragm to just below the inferior border of the liver using the image slices that
possess 512 × 512 pixels as spatial resolution. The pixel spacing varied from 0.55 to 0.9 mm with the
inter-slice distance of range 0.5 to 5 mm with 110 kVP. Each subject/patient consisted of 250 to 300
slices (from the initial upper part until the final, lower part of visibility of liver).

The proposed work considered 73–3D texture features in seven groups. They are given as 58–3D
texture features in four groups [44] and 15–3D texture features in three groups. For training purposes,
51 data were used, which included 30 normal liver samples, 8 fatty liver samples, 7 metastasis samples,
4 cirrhosis samples, and 2 cancer samples. The testing process contained 21 samples, which included
10 normal liver samples, 4 fatty liver samples, 3 metastasis samples, 2 cirrhosis samples, and 2 cancer
samples. The data in the dataset were randomly selected as 70:30 split, i.e., 70% of the data were used
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for training purposes while 30% of the data were used for testing purposes, which included all five
classes of liver diseases.

2.2. Overview of the Proposed Method

A novel methodology for developing the image-based classification model of liver disease
classification in segmented 3D CT liver images is presented. The general proposed strategy is
delineated in Figure 1 as a block diagram. After the data acquisition process, the region of the
liver was separated from the non-liver regions in the clinical CT slices of images in each dataset of the
subjects by utilizing the preprocessing approach. The preprocessing technique was utilized to remove
the non-liver tissues from the CT image. In the next step, 3D features were extracted from the intensity
map and the higher order derivative map, and 73–3D texture features were extracted, which included
26 gray level co-occurrence matrix (GLCM) texture features, 13 gray level gradient co-occurrence matrix
(GLGCM) texture features, 13 gray level curvature co-occurrence matrix (GLCCM) texture features,
six Tamura features, and 15–3D texture features of the neighborhood gray-tone difference matrix
(NGTDM), the neighborhood gray-tone gradient difference matrix (NGTGDM), and the neighborhood
gray-tone curvature difference matrix (NGTCDM). These high dimensional features affected the
classification performance. Thus, this work adopted a hybrid WOA-SA algorithm for the optimal
feature selection process.
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Figure 1. Block diagram of the proposed liver disease classification.

In the next stage of the diagnosis process, the ensemble classification approach was implemented
to enhance the detection accuracy of the liver disease diagnostics process. Finally, the diagnosed
images were subjected to a tumor burden computation process for computing the severity of the
disease from the diagnosed images. The wholesome set of texture features were used in this work.
With the extracted features in the liver segmented 3D, the feature selection (using WOA-SA and
the ensemble classifier for classification) worked as the newly applied approach in the volume of
interest (VOI).

2.2.1. Volume Extraction of Liver

For CLD classification, segmentation of the liver from other organs was essential for further
processing. Thus, the preprocessing technique was utilized to remove the non-liver tissues from
the CT image. Liver segmentation is challenging in CT images as there is a high similarity
between liver tissues and adjacent organs. There are various approaches available for liver
segmentation. Among the commonly used approaches are segmentation based on statistical
shape models (SSMs) [45], probabilistic atlases [46,47], deformable models and graph-cuts [48],
region growing [49,50], threshold-based methods and rule-based methods [51], learning-based
methods [52,53], etc. The classification of CLD is done using the extracted features from the liver tissue
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regions of CT images. This requires the segmentation of the liver tissues region from the non-liver
tissues region in a CT slice. The same was evaluated using the metrics given in the Medical Image
Computing and Computer -Assisted Intervention (MICCAI) 2007 grand challenge [54].

In the proposed method, region growing based segmentation using Levelset [55] based
segmentation was used to obtain the liver regions of each image slice. The set of segmented liver image
slices were arranged in stratification to emerge the 3D visualization of the liver as VOI. In Figure 2,
a slice of the liver being segmented by machine and manual experts is shown from (a) to (c) and (g)
to (i) for two patients. Also, the three different views of the 3D visualization of the liver of those two
patients are shown from (d) to (f), and (j)–(l) depicts a simple sample of volume extraction of the liver
in different views of bottom, straight, and top views, respectively. Yet, this preface is beyond the
discussion of this research, as the prioritized motive is the classification of CLD.
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2.2.2. Feature Extraction

In the feature extraction stage, the 3D texture features were extracted from the intensity and
the higher-order features after the VOI selected using segmentation of the liver image. In this work,
there were 73–3D texture features extracted from seven groups. At first, 58–3D features of the initial
four groups were the combination of the intensity-gradient and the intensity-curvature. These were
named as GLCM, GLGCM, GLCCM, and Tamura, and they were used to evaluate the 3D Haralick
features and the 3D co-occurrence matrices; 15–3D texture features of the three groups obtained from
the higher-order features (named as NGTDM), the group of features extracted from the gradient
map (named as NGTGDM), and the group of features extracted from the curvature map (named as
NGTCDM) were used.

Texture Features of Four Groups: GLCM, GLGCM, GLCCM, and Tamura

In the 3D GLCM [44] feature extraction, there were 13–3D GLCM matrices extracted from the
VOI. After the 3D GLCM feature extraction, some features had spatial variations. To accurately project
that variation, the Haralick features were computed for every GLCM and the mean and the range was
estimated for all of the GLCM. In the GLCM feature extraction, the mean µ f and the range Rµ f of 13
directions were estimated for the entire Haralick feature f , which is illustrated in Table 1.

Table 1. Texture features of GLCM, GLGCM, GLCCM, and Tamura.

Feature Groups Extracted Features Description

GLCM

f1 Angular second moment
f2 Contrast
f3 Correlation
f4 Inverse Different Moment
f5 Homogeneity
f6 Sum Average
f7 Sum Variance
f8 Sum entropy
f9 Entropy
f10 Difference variance
f11 Difference Entropy
f12 The information measure I of correlation
f13 Information measure II of correlation

R f1–R f13 The range of the Features f1– f13

GLGCM G f1–G f13 13 Haralick features of GLGCM

GLCCM C f1–C f13 13 Haralick features of GLCCM

Tamura

Tx1 Coarseness
Tx2 Contrast
Tx3 Directionality
Tx4 Line-likeness
Tx5 Regularity
Tx6 Roughness

The GLGCM estimation was the rescaling of the intensity map Mint and its respective gradient
map Mgrd, to the same gray-level, and these were computed from the region of interest of the liver.
The GLGCM matrix can be calculated as in Equation (1), where image size is x× y× z.

PGLGCM(i, j) =
x

∑
a=1

y

∑
b=1

z

∑
c=1
×
{

1 i f (a, b, c) ∈ size (Mint), Mint(a, b, c) = i, Mgrd(a, b, c) = j
0 otherwise

(1)
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There were 13 Haralick features extracted from the GLGCM. The GLCCM estimation was the
rescaling of the intensity map Mint and its respective curvature map Mcur and the GLCCM matrix is
given as:

PGLCCM(i, j) =
x

∑
a=1

y

∑
b=1

z

∑
c=1
×
{

1 i f (a, b, c) ∈ size (Mint), Mint(a, b, c) = i, Mcur(a, b, c) = j
0 otherwise

(2)

The fourth group was the Tamura, which was utilized to reflect the visual perceptive pattern of
the liver disease. In this work, six Tamura 3D texture features [56] were extracted from the intensity
map of VOI. From the intensity map, six features—coarseness, contrast, directionality, line-likeness,
regularity, and roughness—were extracted. In the final stage of the feature extraction process, 58–3D
texture features were extracted, which included 26 GLCM features, 13 of which represented the mean
value ( f1– f13), and the remaining 13 features represented the range values (R f 1–R f 13), 13 GLGCM
features (G f 1–G f 13), 13 GLCCM features (C f 1–C f 13) and six Tamura features (T f 1–T f 13).

In this stage of feature extraction, the above-discussed features were extracted VOI and the
features extracted are illustrated in Table 1 [43–45,57].

Texture Features of Three Groups: NGTDM, NGTGDM, and NGTCDM

In this category, there were 15–3D features that included three groups, which were named as
NGTDM, NGTGDM, and NGTCDM, as given in Table 2. The visual properties of the images were
described by the NGTDM features originally proposed by Amadasm and King [58]. NGTDM was
used to calculate the higher-order features for square ROIs, and [32] is the modified version to apply
for irregular shaped multiple slice ROIs as VOIs, given by:

δi = ∑ i− Ai, f or i ∈ Ni 6= 0
0, i f Ni = 0,

(3)

where Ai and {Ni} are the average of the neighborhood of a voxel and a set of all voxels having grey
tone in the VOI R, respectively.

Table 2. Texture features of NGTDM, NGTGDM, and NGTCDM.

Feature Group Extracted Features Description

NGTDM

N f1 Coarseness
N f2 Contrast
N f3 Busyness
N f4 Complexity
N f5 Texture strength

NGTGDM

N f1 Coarseness
N f2 Contrast
N f3 Busyness
N f4 Complexity
N f5 Texture strength

NGTCDM

N f1 Coarseness
N f2 Contrast
N f3 Busyness
N f4 Complexity
N f5 Texture strength

Ai = Ai(k, l, s) =
1

w− 1
×
[

d

∑
m=−d

d

∑
n=−d

f (k + m, l + n, s)

]
(4)
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where i is the grey level of a voxel k, l, s ∈ R, m 6= 0; n 6= 0, (k + m, l + n, s) ∈ R. Here,
each group generated the higher-order features as five features, named as coarseness, contrast,
busyness, complexity, and texture strength.

2.2.3. Feature Selection

The extracted features incorporated 73–3D texture features of the liver images. These high
dimensional features impacted the performance of the classification. Thus, the feature selection
technique was utilized to select a subset of ‘d’ features from a total of ‘D’ features in view of a given
optimization rule, which enhanced the classification performance. The benefits of using feature
selection in classification are manifold; it reduces the chance of over-fitting, lowers computational cost,
improves classification accuracy, and enhances comprehensibility. Feature selection, for n-dimensional
feature vectors that need to evaluate 2n feature subsets, is an nondeterministic polynomial, NP-hard
problem. The feature selection algorithms can typically be classified as wrapper or filter methods.
In a filter algorithm, features are selected based on some feature evaluation functions and statistical
criteria, such as measure distance, information, dependency, and consistency. In wrapper methods, the
performance of the classifier is evaluated to select features. Wrapper methods are generally slower
than filter methods but they have better results. In order to avoid this problem, this work is intended
to employ a powerful Memetic Wrapper approach, where the Memetic Wrapper is the combination of
the WOA with SA, named as WOA-SA.

2.2.4. Hybrid WOA-SA

Mirjalili and Lewis [59] proposed the WOA, which uses a blind operator to play the role of
exploitation regardless of the fitness value of the current solution and the operated one. This blind
operator was replaced with a local search as an initial state solution by Mafaraja [60] to replace the
original with an enhanced version. It uses simulated annealing (SA) as the local search component in
the WOA algorithm, which searches in the population. It is used to search the neighborhood of the
best search agent thus far to ensure that it is the local optima. This hybrid of WOA-SA enhances the
final solution obtained by the selection of the best feature solution among the features extracted.

Hybrid WOA-SA for Optimal Feature Selection

In this methodology, seven sets of features–GLCM, GLGCM, GLCCM, Tamura, NGTDM,
NGTCDM, and NGTGDM—with total of 73–3D features were used. Table 3 shows the different
feature group descriptions with the entropic base [61]. The optimized features using the proposed
method yielded different random combinations. Among them, the top four different combinations
were considered. One set attained the maximum accuracy, which was noted as the proposed set
of optimal features when compared with the other random combinations, mentioned as Random
Combination 1, Random Combination 2, and Random Combination 3, as shown in Table 4.

2.2.5. Class Prediction Based on Ensemble Classifier with WMV: SVM, k-NN, RF

The selected features were evaluated using the classifier. An ensemble classifier, which is a
combination of two or more classifiers, avoids the drawbacks of individual classifiers to achieve high
accuracy. To classify liver disease in a liver image, a hybrid ensemble classification model was used.
Features selected for each slice of the liver image by WOA-SA were used as inputs of this ensemble
model. This research included a total of three classification models—SVM, k-NN, and RF—based on
texture information.
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Table 3. Feature groups range with description.

Feature Groups Range of Features Description

GLCM
1 to 13

Angular second moment, Contrast, Correlation, Inverse Different Moment,
Homogeneity, Sum Average, Sum Variance, Sum entropy, Entropy, Difference
variance, Difference Entropy, Information measure of correlation 1, Information
measure of correlation 2.

14 to 26 Range of corresponding GLCM features from 1 to 13 (listed above)

GLGCM 27 to 39
Autocorrelation, Contrast, Energy, Entropy, Homogeneity, Maximum-probability,
sum-average, Sum-variance, Sum-entropy, Difference-variance, Difference-entropy,
Information measure of correlation 1, Information measure of correlation 2

GLCCM 40 to 52
Autocorrelation, Contrast, Energy, Entropy, Homogeneity, Maximum-probability,
sum-average, Sum-variance, Sum-entropy, Difference-variance, Difference-entropy,
Information measure of correlation 1, Information measure of correlation 2

NGTDM 53 to 57 Coarseness, contrast, busyness, complexity, strength

NGTCDM 58 to 62 Coarseness, contrast, busyness, complexity, strength

NGTGDM 63 to 67 Coarseness, contrast, busyness, complexity, strength

Tamura 68 to 73 Coarseness, Contrast, Directionality, Line likeness, Regularity, Roughness

Table 4. Selection of optimal texture features using WOA-SA method.

Sl. No
Feature Combinations

Proposed Rand_Comb1 Rand_Comb2 Rand_Comb3

1 47 37 38 5
2 31 63 29 68
3 6 51 24 16
4 59 67 33 6
5 24 6 67 72
6 22 41 45 36
7 63 55 4 13
8 57 5 63 4
9 44 20 72 53

10 19 15 56 26
11 3 28 48 58
12 51 8 27 32
13 29 13 73 52
14 16 34 30 14
15 32 45 41 69
16 10 12 70 30
17 5 3 15 25
18 12 58 65 49
19 38 64 55 23
20 53 46 6 60
21 30 25 25 8
22 42 21 9 15
23 25 61 35 66
24 41 2 57 45
25 2 31 7 11

Ensemble Approach

In this section, the proposed method utilized SVM, k-NN, RF and an ensemble of the classifiers
for the classification based on the selected feature set. The ensemble of the classifiers [62] was the
combination of the multiclass SVM, k-NN, and RF classifiers. In SVM [63], it constructed many binary
classifiers for all possible pairs of liver disease classes. Therefore, it needed the construct k(k − 1)/2
support vector machines for a k-classification problem. A max-wins voting scheme determined its
instance classification. In the k-NN classifier, the Euclidean distance was evaluated from the training
samples of images of the liver and the point with the lowest distance was called the nearest neighbor.
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Therefore, a new solution was obtained by the K-NN classifier and these new solutions were classified
based on the majority votes obtained for the K-nearest points in the training data. The value of k was
considered as 1 in this work. The similarity between the two vectors is measured by:

E2
d
(

xi, xj
)
= ‖xi − xj‖2 =

d

∑
k=1

(
xik − xjk

)2
, (5)

where ‖xi− xj‖ is the similarity between the two feature vectors of the liver. Two parameters were used
in RF, namely (1) the number of trees in the forest, which represented the number of feature vectors
of each slice of the liver image, and (2) the number of leaves per tree, which represented the number
of attributes of the feature vectors. It constructed a multitude of decision trees for the feature vectors
of the training samples. The count of trees used in this work was 300. Each tree gave a classification
and the tree “voted” for that class. The forest, having the most votes, chose the classification [64].
Here, RF estimated the recognition co-efficient for each feature vector of the training samples and it is
given as:

yi = γi + ηiχtrain,ij + µ, (6)

where ηi is the estimated recognition co-efficient. For the weighted majority voting (WMV) [65],
computation in the ensemble classifier needed the five binary classifiers for this technique. The WMV
system is a basic and natural strategy and it takes the votes with consideration to the conclusions of the
experts. The official choice is acknowledged in light of opinions with the most votes. In the proposed
method, the opinion of the base experts in an ensemble was related to the voting system. Every last
expert was viewed as a weight computed from the expert’s accuracy in the classifying validation test.
Further, the voting strategy was figured for every last perception and it is given as follows:

y = sgn

(
j=n

∑
i=1

wj·yj

)
(7)

The weight value of each feature of the liver sample image is represented as w. If the value of
y is a positive value, the output is one (majority voting) and the value is negative when the output
is −1. The performance of these classifiers was validated individually to classify the liver into its
five categories (normal, fatty liver, cancer, metastasis, and cirrhosis) based on the selected optimal
feature set.

2.2.6. Tumor Burden

After the liver disease classification process, the tumor burden was computed from the classified
liver and tumors. The aggregate sum of tumors or tumor cells in the liver is known as tumor
burden [66]. A grand challenge was experimented upon with liver tumor segmentation-MICCAI
2008 [67]. The treatment protocols are generally developed in light of the measure of tumor burden.
An exact evaluation of tumor burden enables the physicians and patients to settle on better and more
helpful prior decisions. For the computation of the tumor burden rate in this approach, the VOI-based
measurement technique was employed. Here, the entire tumor region was identified and traced on all
segmented slices throughout the tumor. Initially, a 3D VOI-based tumor volume was calculated by the
summation of all tumor areas in each slice and the multiplication by the slice profile (slice thickness
(Ts) and the gap between slices (Gs). The same process was repeated for the original segmented liver
slices to obtain the total volume of the segmented liver.

The final tumor burden was calculated using the following formula:

VT =
N

∑
j=1

ATj × TTs × GTs

[
mm3

]
(8)
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VL =
N

∑
j=1

ALj × TLs × GLs

[
mm3

]
(9)

Tumor Burden
TB[%] =

VT
VL
× 100 (10)

where,
VT and VL = Volume of segmented tumor and liver
ATj and ALj = Area of segmented tumor and liver in each slice j
GTs and GLs = Gap between slices in segmented tumor and liver
N = Number of Slices
For any patient, the advancement of the infection with hepatic cancer, cirrhosis, and metastasis

was observed in light of the tumor burden rate. The tumor burden rate obtained is delineated in the
Section 4.

2.3. Performance Analysis

The proposed liver disease classification method contains true identification and false
identification. The true prediction includes the true positive or true negative and false prediction
includes false positive or false negative. The affected region of the liver is correctly classified by the
four classes. The present execution of liver classification is assessed by utilizing the parameters [68] of
accuracy, specificity, and sensitivity.

The number of all incorrect predictions divided by the total number of the dataset is defined as
the error rate. The calculation of the error rate of the proposed classifier is compared with the existing
individual classifiers, SVM, k-NN, and RF.

3. Results and Discussions

In this section, the effectiveness and performance of the liver disease classification method
are described based on the preprocessing, feature extraction, feature selection, and classification.
The performance of the proposed experiment was tested in Matlab by utilizing the medical images.
The medical images incorporated standard CT images of the liver and various diseased liver images,
which significantly aided in clinical diagnosis.

3.1. Performance Comparison of Selected Feature Sets in Different Classification Methodologies

In order to justify optimization, the proposed method optimally selected 25 features—47, 31, 6, 59,
24, 22, 63, 57, 44, 19, 3, 51, 29, 16, 32, 10, 5, 12, 38, 53, 30, 42, 25, 41 and 2—from the feature group list,
as in Table 4. The accuracy, sensitivity, and specificity of these optimally selected features, along with
seven other randomly selected feature combinations, were evaluated. Table 5 shows the evaluation of
the accuracy, sensitivity, and specificity of eight feature sets using the WOA-SA methodology. Also, to
support the results in Table 5, the 95% confidence interval (CI) on accuracy, sensitivity, and specificity
over the classifiers (SVM, k-NN, and RF) is given. The feature-set combination 1 is the proposed
feature-set obtained using WOA-SA.

Figure 3 substantiates that the accuracy of ensemble classifiers outperforms the accuracy
obtained from other classifiers individually. The measurement in the X-axis shows the eight random
combinations of features obtained by WOA-SA methodology, which chooses the best optimal feature
set. Figures 4 and 5 show the sensitivity and specificity comparison of different classifiers with various
feature-set combinations. The sensitivity and specificity of the ensemble classifier are higher when
compared with SVM, k-NN, and RF.
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Table 5. 95% confidence interval (CI) of accuracy, sensitivity, and specificity over classifiers using features.

Feature
Combinations

95% Confidence Interval—Performance Metrics

Accuracy Sensitivity Specificity

SVM k-NN RF Proposed SVM k-NN RF Proposed SVM k-NN RF Proposed

1 (0.50, 0.90) (0.66, 0.99) (0.66, 0.99) (0.78, 1.00) (0.21, 0.63) (0.41, 0.83) (0.41, 0.83) (0.68, 1.00) (0.61, 0.97) (0.70, 1.00) (0.69, 1.00) (0.79, 1.00)

2 (0.50, 0.90) (0.70, 1.00) (0.64, 0.98) (0.75, 1.00) (0.07, 0.42) (0.53, 0.92) (0.39, 0.82) (0.60, 0.96) (0.59, 0.96) (0.73, 1.00) (0.69, 1.00) (0.76, 1.00)

3 (0.50, 0.90) (0.68, 1.00) (0.70, 1.00) (0.75, 1.00) (0.10, 0.48) (0.43, 0.85) (0.53, 0.92) (0.60, 0.96) (0.61, 0.97) (0.71, 1.00) (0.72, 1.00) (0.76, 1.00)

4 (0.50, 0.90) (0.68, 1.00) (0.66, 0.99) (0.78, 1.00) (0.17, 0.59) (0.43, 0.85) (0.41, 0.83) (0.68, 1.00) (0.61, 0.97) (0.72, 1.00) (0.69, 1.00) (0.79, 1.00)

5 (0.42, 0.84) (0.68, 1.00) (0.70, 1.00) (0.75, 1.00) (0.05, 0.39) (0.43, 0.85) (0.45, 0.86) (0.60, 0.96) (0.54, 0.93) (0.71, 1.00) (0.72, 1.00) (0.76, 1.00)

6 (0.46, 0.87) (0.70, 1.00) (0.70, 1.00) (0.75, 1.00) (0.07, 0.43) (0.45, 0.86) (0.45, 0.86) (0.60, 0.96) (0.58, 0.95) (0.71, 1.00) (0.74, 1.00) (0.77, 1.00)

7 (0.59, 0.96) (0.68, 1.00) (0.66, 0.99) (0.75, 1.00) (0.36, 0.79) (0.51, 0.91) (0.41, 0.83) (0.60, 0.96) (0.67, 1.00) (0.70, 1.00) (0.69, 1.00) (0.76, 1.00)

8 (0.46, 0.87) (0.66, 0.99) (0.68, 1.00) (0.75, 1.00) (0.07, 0.43) (0.41, 0.83) (0.43, 0.85) (0.60, 0.96) (0.57, 0.94) (0.69, 1.00) (0.70, 1.00) (0.76, 1.00)
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The box plot illustration is shown in Figure 6, which depicts the performance metrics for CLD
classification using the ensemble classifier for accuracy, sensitivity, and specificity.
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Figure 6. Box plot of performance metrics for CLD classification in terms of accuracy, sensitivity,
and specificity.

The tumor burden rate is a metric computed as the percentage of total tumor in the liver. It is
helpful in monitoring the evolution of diseases in patients affected by liver disease. It is calculated
using the Equation (10) and is illustrated in Table 6. This table includes various kinds of liver diseases,
such as fatty liver disease, metastasis, cancer, and cirrhosis. The tumor burden ratio of the various
diseases is estimated based on the burden level. It is found that the burden level rate is very high in
liver cancer when compared with other liver diseases.

Table 6. Tumor burden rate of the diseased liver.

Liver Diseases Tumor Burden Rate (%)

Fatty 14.87
Metastasis 11.23

Cancer 29.43
Cirrhosis 17.05

The confusion matrix of the proposed method is shown in Figure 7. From the confusion matrix,
an apparent increase can be seen in the classification rate for normal liver, fatty liver, metastasis, cancer,
and cirrhosis using the WOA-SA and the ensemble of classifiers over GLCM and NGTDM features
extracted from the original segmented images. The overall accuracy is predicted with actual grouping
as 95.2%.

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 21 

 

 

Figure 7. Confusion matrix of liver classification. 

3.2. Classification Error Percentage 

The classification error rate is computed based on the ratio between the total number of 
classified samples of liver diseases and the incorrectly classified samples. The error rate of the 
various classification approaches is shown in Table 7. The proposed ensemble classification 
approach was compared with the existing liver disease classification approaches, such as SVM, 
k-NN, and RF. In the proposed method, the error rate of these three approaches was re-evaluated by 
utilizing Matlab, The Math Works, Inc., MA, USA, for the results comparison. The proposed 
ensemble classification approach had only 1.90% of error in liver disease classification because of the 
combination of multiclass SVM, k-NN, and RF. The three classifiers’ combinations yielded better 
results in the medical diagnostics and provided good accuracy. Thus, the proposed approach 
generates less error in liver disease classification, which plays a significant role in clinical 
radiological diagnosis.  

Table 7. Classification error percentage. 

Methods Error Rate (%) 
SVM 17.14 ± 0.1321 
k-NN 7.62 ± 0.0621 

RF 11.43 ± 0.0522 
Proposed Method 1.90 ± 0.0522 

3.3. Comparison of Classification Performance 

The 95% CI with the comparison of performance evaluation for classification is shown in Table 
8. For liver disease classification, Mala et al. [43] worked with three classifiers, namely the 
probabilistic neural network (PNN), the learning vector quantization (LVQ) neural network, and the 
back propagation neural network (BPN), and Gunasundari et al. [69] worked with the PNN and the 
SVM classifiers. 
  

Figure 7. Confusion matrix of liver classification.



Symmetry 2019, 11, 33 15 of 21

3.2. Classification Error Percentage

The classification error rate is computed based on the ratio between the total number of classified
samples of liver diseases and the incorrectly classified samples. The error rate of the various
classification approaches is shown in Table 7. The proposed ensemble classification approach was
compared with the existing liver disease classification approaches, such as SVM, k-NN, and RF.
In the proposed method, the error rate of these three approaches was re-evaluated by utilizing
Matlab, The Math Works, Inc., Natick, MA, USA, for the results comparison. The proposed ensemble
classification approach had only 1.90% of error in liver disease classification because of the combination
of multiclass SVM, k-NN, and RF. The three classifiers’ combinations yielded better results in the
medical diagnostics and provided good accuracy. Thus, the proposed approach generates less error in
liver disease classification, which plays a significant role in clinical radiological diagnosis.

Table 7. Classification error percentage.

Methods Error Rate (%)

SVM 17.14 ± 0.1321
k-NN 7.62 ± 0.0621

RF 11.43 ± 0.0522
Proposed Method 1.90 ± 0.0522

3.3. Comparison of Classification Performance

The 95% CI with the comparison of performance evaluation for classification is shown in
Table 8. For liver disease classification, Mala et al. [43] worked with three classifiers, namely the
probabilistic neural network (PNN), the learning vector quantization (LVQ) neural network, and the
back propagation neural network (BPN), and Gunasundari et al. [69] worked with the PNN and the
SVM classifiers.
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Table 8. Comparison of classification performance evaluation with 95% CI.

Test Class
Labels

Performance
Metrics

Comparative Methods

Existing Method [43] Existing Method [69] Proposed Method

PNN LVQ BPN PNN SVM Ensemble

Fatty
Accuracy 0.76 (0.5226, 0.9170) 0.80 (0.5641, 0.9431) 0.80 (0.5641, 0.9431) 0.61 (0.3787, 0.8073) 0.85 (0.6184, 0.9733) 0.90 (0.6760, 1.0000)
Sensitivity 0.79 (0.5536, 0.9367) 0.61 (0.3787, 0.8073) 0.65 (0.4151, 0.8382) 0.81 (0.5747, 0.9494) 0.76 (0.5226, 0.9170) 1.00 (0.8076, 1.0000)
Specificity 0.84 (0.6073, 0.9675) 0.81 (0.5747, 0.9494) 0.81 (0.5747, 0.9494) 0.81 (0.5747, 0.9494) 0.94 (0.7253, 1.0000) 0.88 (0.6525, 0.9899)

Metastasis
Accuracy 0.95 (0.7382, 1.0000) 0.14 (0.0362, 0.3551) 0.85 (0.6184, 0.9733) 0.95 (0.7382, 1.0000) 0.95 (0.7382, 1.0000) 0.95 (0.7382, 1.0000)
Sensitivity 0.80 (0.5641, 0.9431) 0.63 (0.3969, 0.8229) 0.67 (0.4342, 0.8532) 0.81 (0.5747, 0.9494) 0.81 (0.5747, 0.9494) 0.66 (0.4248, 0.8457)
Specificity 0.78 (0.5431, 0.9303) 0.81 (0.5747, 0.9494) 0.81 (0.5747, 0.9494) 0.81 (0.5747, 0.9494) 0.91 (0.6880, 1.0000) 1.00 (0.8076, 1.0000)

Cancer
Accuracy 0.95 (0.7382, 1.0000) 0.90 (0.6760, 1.0000) 0.90 (0.6760, 1.0000) 0.95 (0.7382, 1.0000) 0.95 (0.7382, 1.0000) 0.95 (0.7382, 1.0000)
Sensitivity 0.72 (0.4825, 0.8895) 0.64 (0.4061, 0.8306) 0.68 (0.4437, 0.8606) 0.83 (0.5963, 0.9616) 0.78 (0.5431, 0.9303) 0.50 (0.2834, 0.7166)
Specificity 0.89 (0.6642, 0.9952) 0.81 (0.5747, 0.9494) 0.83 (0.5963, 0.9616) 0.83 (0.5963, 0.9616) 0.88 (0.6525, 0.9899) 1.00 (0.8076, 1.0000)

Cirrhosis
Accuracy 1.00 (0.8076, 1.0000) 0.90 (0.6760, 1.0000) 0.90 (0.6760, 1.0000) 0.95 (0.7382, 1.0000) 0.95 (0.7382, 1.0000) 1.00 (0.8076, 1.0000)
Sensitivity 0.78 (0.5431, 0.9303) 0.61 (0.3787, 0.8073) 0.66 (0.4248, 0.8457) 0.85 (0.6184, 0.9733) 0.75 (0.5124, 0.9103) 1.00 (0.8076, 1.0000)
Specificity 0.91 (0.6880, 1.0000) 0.79 (0.5536, 0.9367) 0.85 (0.6184, 0.9733) 0.85 (0.6184, 0.9733) 0.90 (0.6760, 1.0000) 1.00 (0.8076, 1.0000)

Normal
Accuracy 0.85 (0.6184, 0.9733) 0.52 (0.3002, 0.7337) 0.47 (0.2589, 0.6904) 0.76 (0.5226, 0.9170) 0.90 (0.6760, 1.0000) 1.00 (0.8076, 1.0000)
Sensitivity 0.75 (0.5124, 0.9103) 0.64 (0.4061, 0.8306) 0.67 (0.4342, 0.8532) 0.85 (0.6184, 0.9733) 0.82 (0.5855, 0.9555) 1.00 (0.8076, 1.0000)
Specificity 0.85 (0.6184, 0.9733) 0.79 (0.5536, 0.9367) 0.85 (0.6184, 0.9733) 0.85 (0.6184, 0.9733) 0.92 (0.7002, 1.000) 1.00 (0.8076, 1.0000)
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The same set of images used in the proposed methods was also used in the different existing
methods and was taken for comparison. Table 8 shows the comparison of performance metrics with
the proposed and existing methods [43,69]. From the table, it is clear that the proposed methodology
excels other existing methods in terms of accuracy, but it marginally lags in sensitivity for metastasis
and cancer because of the limited number of data available to train the proposed model. Similarly,
the specificity of fatty liver class marginally lags when compared with that of existing algorithms
given in [69]. Table 9 shows the averaged values of accuracy, sensitivity, and specificity, along with its
95% CI, across five different classes for the proposed method. This was compared with the existing
methods in [43,69].

Table 9. Average performance metrics of classification performance evaluation with 95% CI.

Parameter
Solution Methods

Existing Method [43] Existing Method [69] Proposed Method
PNN LVQ BPN PNN SVM

Accuracy 0.90 (0.6760,
1.0000)

0.65 (0.4154,
0.8382)

0.79 (0.4154,
0.8382)

0.84 (0.6073,
0.9675)

0.92 (0.7002,
1.000) 0.98 (0.7786, 1.0000)

Sensitivity 0.77 (0.5328,
0.9237)

0.65 (0.4154,
0.8382)

0.69 (0.4154,
0.8382)

0.77 (0.5328,
0.9237)

0.87 (0.6410,
0.9845) 0.96 (0.7513, 1.0000)

Specificity 0.88 (0.6525,
0.9899)

0.82 (0.5855,
0.9555)

0.85 (0.6184,
0.9733)

0.83 (0.5963,
0.9616)

0.91 (0.6880,
1.0000) 0.93 (0.7126, 1.0000)

It is inferred from the table that the proposed methodology for CLD classification yields the best
result in terms of accuracy, sensitivity, and specificity, with 95% confidence interval of (0.7786, 1.0000),
(0.7513, 1.0000), and (0.7126, 1.0000), respectively.

3.4. Clinical Feasibility

With the reduction of the query computation time and as a second opinion for diagnosis,
the proposed framework presents the clinical feasibility of a 3D feature based CLD classification
system. However, as the data in the dataset are restricted for certain diseases, the classification results
are biased towards a single class. Thus, if the dataset contains an equal number of data for each class,
this would be a better diagnostic tool in radiological practices.

4. Conclusions

The CLD classification using hybrid WOA-SA and ensemble classifiers is proposed. The results
experimented on 3D VOIs from clinical CT image datasets suggest the usefulness of employing
WOA-SA to optimally select features for the ensemble classifier. The results show that the proposed
method excelled the two discussed state-of-the-art methods by ~20% and ~10% for accuracy, ~26%
and ~14% for sensitivity, and ~8% and ~6% for specificity, respectively. Another interesting result
of the proposed method was the error rate, which was 1.90%, a very small number when compared
to the existing methods of SVM, k-NN, and RF, which produce 17.14%, 7.62%, and 11.43% error
rates, respectively.

In the future, the datasets will be expanded so as to obtain a more or less equal number of samples
in each class and to develop a diagnostic system for other CLDs (apart from the four liver diseases
dealt with in this paper). Also, by designing a query processing system with more pathological cases,
this system can be integrated as a diagnostic assistant to the radiological practices. Moreover, although
there are many types of liver disease, this conceptual classification applies to only the five chosen
categories of CLD—normal liver, fatty liver, cirrhosis, metastasis, and cancerous liver. This can be
expanded to apply for other CLDs in the future.
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