
symmetryS S

Article

A New Pairwise NPN Boolean Matching Algorithm
Based on Structural Difference Signature

Juling Zhang 1,2, Guowu Yang 2,3,* , William N. N. Hung 4, Jinzhao Wu 3,5,* and Yixin Zhu 1,6

1 The School of Computer Science and Engineering, University of Xinjiang Finance and Economics,
Urumqi 830012, China; zjlgj@163.com (J.Z.); xjzhuyixin@163.com (Y.Z.)

2 The Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu 611731, China

3 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for
Nationalities, Nanning 530006, China

4 Synopsys Inc., Mountain View, CA 94043, USA; William.Hung@synopsys.com
5 The School of Computer and Electronic Information, Guangxi University, Nanning 530004, China
6 Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and

Technology of China, Chengdu 611731, China
* Correspondence: ygwuestc@163.com (G.Y.); gxmdwjzh@aliyun.com (J.W.);

Tel.: +86-180-3047-0403 (G.Y.); +86-151-9917-6691 (J.W.)

Received: 21 September 2018; Accepted: 21 December 2018; Published: 29 December 2018 ����������
�������

Abstract: In this paper, we address an NPN Boolean matching algorithm. The proposed structural
difference signature (SDS) of a Boolean function significantly reduces the search space in the Boolean
matching process. The paper analyses the size of the search space from three perspectives: the total
number of possible transformations, the number of candidate transformations and the number of
decompositions. We test the search space and run time on a large number of randomly generated
circuits and Microelectronics Center of North Carolina (MCNC) benchmark circuits with 7–22 inputs.
The experimental results show that the search space of Boolean matching is greatly reduced and the
matching speed is obviously accelerated.

Keywords: NPN Boolean matching; structural difference signature vector; independent variable;
variable symmetry

1. Introduction

Boolean equivalence classification and matching constitute a long-standing and open problem.
The authors of [1,2] applied a group algebraic approach to NP and NPN Boolean equivalence
classification. Reference [2] computed the classification results for 10 inputs. Affine equivalence
classification is also an important field of study with applications in logic synthesis and
cryptography [3]. All Boolean functions in an equivalence class are equivalent to each other.
NPN Boolean matching determines whether two Boolean functions are equivalent under input
negation and/or permutation and/or output negation. This paper studies NPN Boolean matching for
single-output completely specified Boolean functions.

NPN Boolean matching is an important research topic that can be applied to a number of
applications in integrated circuit design, such as technology mapping, cell library binding and logic
verification [4]. When a Boolean circuit is functionally NPN-equivalent to another Boolean circuit,
one of these circuits can be realized by means of the other. There are n!2n+1 NPN transformations for a
n-variable Boolean function. If Boolean function f is NPN-equivalent to Boolean function g, there must
be a NPN transformation that can transform f to g. On the contrary, no NPN transformation can
transform f to g. The purpose of our proposed algorithm is to find the NPN transformation that can

Symmetry 2019, 11, 27; doi:10.3390/sym11010027 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5133-0320
http://www.mdpi.com/2073-8994/11/1/27?type=check_update&version=1
http://dx.doi.org/10.3390/sym11010027
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 27 2 of 16

transform Boolean function f to g as early as possible. Based on the structural signature (SS) vector in
our previous study [5], we proposes a new combined signature vector, i.e., SDS vector. In this paper,
Boolean difference sigture is introduced into SS vector to form SDS vector. The new signature vector
SDS is better able to distinguish variables and reduce the research space for NPN Boolean matching.
Experimental results show that the search space is reduced by more than 48% compared with [5] and
that the run time of our algorithm is reduced by 42% and 80% compared with [5,6], respectively.

In the following, Section 2 introduces relevant works on NPN-equivalence matching. Section 3
introduces some terminology and notation. Section 4 describes the proposed algorithm in detail.
In Section 5, we present experimental results to demonstrate the effectiveness of our algorithm.
Section 6 concludes the paper.

2. Related Works

Many methods can be exploited to solve the problem of NPN Boolean matching. The main results
of such research are focused on four methods: (1) algorithms on canonical forms; (2) pairwise matching
algorithms using signatures; (3) algorithms based on satisfiability (SAT) and (4) algorithms based on
spectral analysis.

Each method has its own advantages. In canonical-form-based matching algorithms, the canonical
form of each Boolean circuit of cell library is stored in advance. When cell-library binding is
implemented, the canonical form of each Boolean circuit to be matched is computed and compared with
the canonical forms of each Boolean circuits in the cell library via a hash table. All Boolean functions in
an equivalence class have the same canonical form. The canonical form of each equivalence class has
a special value. References [6–12] studied Boolean matching based on canonical forms and attained
significant achievements.

Reference [12] reported P-equivalence matching for 20-input Boolean functions. The canonical
forms considered in reference [12] was the binary strings with the maximal scores in lexicographic
comparison. Reference [7] devised a procedure to canonicalize a threshold logic function and judged
equivalence of two threshold logic functions by their canonicalized linear inequalities. Based on the
canonical form of Boolean function, the reference [8] reduced the number of configuration bits in an
FPGA architecture. The authors of [10,11] proposed fast Boolean matching based on NPN Boolean
classification; their canonical form has the maximal truth table. The authors of [6] proposed new
canonical forms based on signatures.

A pairwise matching algorithm searches the NPN transformations between two Boolean functions
using signatures, which is a semi-exhaustive search algorithm. The merit of this method is that once it
finds a transformation that can prove the equivalence of two Boolean functions, other transformations
will not be checked. The authors of [4,5,13,14] proposed Boolean matching algorithms based on
pairwise matching and used binary decision diagrams (BDDs) to represent Boolean functions.
The authors of [5] proposed a structural signature vector to search the transformations between
two Boolean functions and implemented NPN Boolean matching for 22 inputs. In pairwise matching
algorithms, signatures are usually used as a necessary condition for judging whether two Boolean
functions are equivalent, and variable symmetry is commonly utilized to reduce the search space.
Symmetric attributes are used in many fields. Reference [15] studied the symmetries of the unitary Lie
group. The variable symmetric attributes of Boolean function are widely used in NPN Boolean
equivalence matching. In reference [5], the search space was reduced and the matching speed
was improved by means of structural signatures, variable symmetry, phase collision check and
variable grouping.

Since a SAT solver can help solve the problem of NPN Boolean matching and because many
quick SAT solvers can be utilized, many Boolean matching algorithms based on SAT have emerged
in recent years. The authors of [16–20] studied SAT-based Boolean matching. Based on graphs,
simulation and SAT, Matsunaga [16] achieved PP-equivalence Boolean matching with larger inputs
and outputs. The authors of [17,18] studied Boolean matching for FPGAs utilizing SAT technology.

Symmetry 2019, 11, 27 3 of 16

Cong et al. [19] used the implicant table to derive the SAT formulation and achieved significant
improvements. The authors of [20] combined simulation and SAT to perform P-equivalent Boolean
matching for large Boolean functions. Compared with studies based on the previous three methods,
studies on Boolean matching that use spectral techniques are fewer in number. Moore et al. [21]
presented an NPN Boolean matching algorithm using Walsh spectra. The authors of [22] utilized Haar
spectra to check the equivalence of two logic circuits.

Regardless of which method is used, the key to Boolean matching is to reduce the search space.
It is universally known that the search space for exhaustive NPN Boolean matching is O(n!2n+1).
In the methods discussed above, many strategies are used to reduce the search space. The authors
of [6] used general signatures and symmetry to reduce the search space.

Based on our previous study [5], we propose a new combined signature, i.e., the structural
difference signature. We present a new pairwise algorithm based on the following conditions: (1) two
NP-equivalent Boolean functions have the same SDS vectors; (2) two variables of a variable mapping
have the same SDS values; and (3) two groups of Boolean functions Shannon decomposed with
splitting variables are NP-equivalent.

3. Terminology and Notation

Let f (x0, x1, · · · , xn−1) and g(x0, x1, · · · , xn−1) be two single-output completely specified Boolean
functions. The problem to be solved in this paper is to determine whether f is NPN-equivalent to g.
Some related terminology has been introduced in [5,6].

An NP transformation T is composed of input negations and/or permutations. It can also be
expressed as a group of variable mappings. In reference [5], the mapping from the variable xi of f
to the variable xj of g, ϕi, can be classified into two cases: (1) xi maps to xj with the same phase,
in which case the mapping is xi → xj or xi → xj; or (2) xi maps to xj with the opposite phase, in which
case the mapping is xi → xj or xi → xj. A same-phase relation indicates no input negation, whereas
an opposite-phase relation indicates input negation. A same-phase variable mapping between the
variables xi and xj is abbreviated as i→ j− 0, and an opposite-phase variable mapping between the
variables xi and xj is abbreviated as i → j− 1. For two NPN-equivalent Boolean functions f and g,
there may be an output negation when | f | = |g|.

Definition 1. (NPN equivalence) Two Boolean functions f and g are NPN equivalent, f ∼= g, if and only if
there exists an NP transformation T that satisfies f (TX) = g(X) or f (TX) = g(X).

As a general signature, the cofactor signature is widely applied in NPN Boolean matching.
The cofactor signature of f (X) with respect to xi (xi) is | fxi | (

∣∣ fxi

∣∣) [5].
Reference [5] proposed SS vector. The SS value of f with respect to xi, Vi, is (| fxi | ,

∣∣ fxi

∣∣ , |Ci| , Ci, Gi).
(| fxi | ,

∣∣ fxi

∣∣) is the 1st signature of the variable xi, and Ci and |Ci| are the symmetry mark, and Gi
is group mark. According to their symmetry properties, the variables of a Boolean function are
classified as either asymmetric and symmetric. An asymmetric variable may have a single-mapping
set or a multiple-mapping set. The variable mapping set of the asymmetric variable xi is denoted
by χi. Similarly, a symmetric variable may have a single symmetry-mapping set or a multiple
symmetry-mapping set. The symmetry-mapping set of the symmetry class Ci is denoted by Si, and the
symmetry mapping between Ci and Cj is denoted by Ci → Cj. The literal ψi represents a group of two
or more variable mappings generated by Ci → Cj.

A P transformation does not change the cofactor signature of a variable. However, an N
transformation changes the order of the positive and negative cofactor signatures without changing
their numerical values. Therefore, we do not consider the order of the positive and negative cofactor
signatures when comparing the 1st signature values of two variables. A variable xi may be transformed
into an arbitrary variable xj, 0 ≤ j ≤ n− 1; therefore, we also do not consider the order of the variables
when we compare two SS vectors.

Symmetry 2019, 11, 27 4 of 16

Given two NP-equivalent Boolean functions f and g with a variable mapping xi → xj between
them, we have the following four facts: (1) Vf = Vg and Vi = Vj; (2) The Boolean functions decomposed
with xi and xj using the Shannon expansion must be NP equivalent. Specifically, xi fxi is NP equivalent
to xjgxj , and xi fxi is NP equivalent to xjgxj ; (3) xi and xj are either both asymmetric variables or both
symmetric variables; (4) If there is a variable mapping between xl of f and xh of g, then the SS values
of xl must be the same as those of xh no matter how many times the Boolean functions f and g are
decomposed [5].

Two Boolean functions f and g may undergo one or more transformations in the process of
matching. A transformation consists of n variable mappings. The algorithm of [5] and the algorithm
presented in this paper detect all possible transformations between f and g according to their SS and
SDS vectors, respectively.

4. The Proposed Algorithm

The goal of the proposed algorithm is to reduce the size of the search space as much as possible,
thereby improving the speed of NPN Boolean matching.

4.1. Boolean Difference

For n inputs, there are 22n
different Boolean functions. Many Boolean functions have one or more

independent variables. Whether a variable xi of f is independent can be determined using cofactors.
The Boolean difference of a Boolean function f with respect to xi, f ′xi

, is the Boolean function
fxi ⊕ fxi , where fxi = f [xi ← 1] and fxi = f [xi ← 0] [23].

Definition 2. (Boolean difference signature) The Boolean difference signature of a Boolean function f with
respect to xi, | f ′xi

|, is the number of minterms of f ′xi
.

When a variable xi of f is NP transformed into xj (xj), its Boolean difference signature does not
change. Thus, Boolean difference signature, like cofactor signature, can be used to distinguish variables.

Example 1. Consider an 5-input Boolean function f (X) = x0x2x3 + x0x1x2x3 + x0x1x3x4 + x0x1x3x4 +

x0x1x3x4 + x0x2x3x4 + x0x1x2x3 + x0x2x3x4 + x0x1x2x3 + x0x2x3x4. Let us compute the 1st signature and
the Boolean difference signature of each variable.

The 1st signatures of x0, x1, x2, x3 and x4 are (9, 7), (8, 8), (8, 8), (8, 8) and (8, 8), respectively.
The variable x1 is symmetric to x4. The Boolean difference signatures of the variables are 32, 12, 20, 28
and 12, respectively. From the 1st signatures and a symmetry check, we can distinguish variables x0,
x1 and x4. Variables x2 and x3 are both asymmetric variables and have the same 1st signature values.
If we only utilize on their 1st signatures, the variables x2 and x3 cannot be distinguished. However,
these two variables have different Boolean difference signatures. Thus, the variables x2 and x3 are
actually different and can be distinguished.

Definition 3. (Independent variable) A variable xi of a Boolean function f is an independent variable if it
satisfies | f ′xi

| = 0.

NP transformations do not change the independence of a variable. Thus, an independent variable
is still an independent variable after NP transformation.

Definition 4. (Independent-variable set) The independent-variable set of a Boolean function f , D f , is a set that
consists of all independent variables of f .

Lemma 1. Two NPN-equivalent Boolean functions f and g have the same number of independent variables.

Symmetry 2019, 11, 27 5 of 16

Proof. If the Boolean function f is NPN-equivalent to g, then f and g are in the same NPN equivalence
class. There must exist an NP transformation T that can transform f into g or g. After NP
transformation, an independent variable is still an independent variable. Therefore, it can be deduced
that f and g have the same number of independent variables.

Property 1. The cofactor signature of a Boolean function f with respect to its variable xi is | fxi | =
∣∣ fxi

∣∣ = 1
2 | f |

when the variable xi is an independent variable.

Proof. Since f ′xi
= fxi ⊕ fxi and | f ′xi

| = 0 and | fxi |+ | fxi | = | f |, it holds that | fxi | =
∣∣ fxi

∣∣ = 1
2 | f |.

Because the positive cofactor signature is the same as the negative cofactor signature for an
independent variable, the phases of independent variables cannot determined by using the phase
assignment method presented in [5,6]. However, independent variables have no influence on a Boolean
function. Thus, the proposed algorithm assigns a positive phase to all independent variables.

Example 2. Consider two 6-input Boolean functions f (X) = x0x1x2 + x0x1x2x3 + x0x1x2 + x0x1x2x3

and g(X) = x0x1x3x4 + x0x1x3x4 + x0x1x3 + x0x1x3. Let us compute the SS vectors, Boolean difference
signatures and independent-variable sets.

The SS vectors of f and g are as follows:
Vf = {(12, 12, 2, 0, 1), (12, 12, 2, 0, 1), (8, 16, 2, 2, 0), (16, 8, 2, 2, 0), (12, 12, 2, 4, 1), (12, 12, 2, 4, 1)},
Vg = {(16, 8, 2, 0, 0), (12, 12, 2, 1, 1), (12, 12, 2, 2, 1), (12, 12, 2, 1, 1), (16, 8, 2, 0, 0), (12, 12, 2, 2, 1)}.
The Boolean difference signatures of the variables of f are 48, 48, 16, 16, 0 and 0. The Boolean

difference signatures of the variables of g are 16, 48, 0, 48, 16 and 0. The independent-variable sets of f
and g are D f = {x4, x5} and Dg = {x2, x5}.

Definition 5. (Independent mapping set) The independent mapping set between Boolean functions f and g is
D = {ϕi : xi → xj|xi ∈ D f , xj ∈ Dg}.

Consider two NP-equivalent Boolean functions f and g with independent-variable sets of D f =

{xi1 , xi2 , · · · xik} and Dg = {xj1 , xj2 , · · · xjk}, respectively. If we do not consider the symmetry and
independence of variables, then there are 2kk! groups of different variable mappings between D f
and Dg according to their 1st signatures. However, according to the properties of independent
variables, we need to consider only the positive phase and create one independent-mapping set
{xi1 → xj1 , xi2 → xj2 , · · · xik → xjk}. Therefore, the search space is reduced significantly if there are
independent variables in the Boolean functions.

In Example 2, the Boolean function f has the three symmetry classes C0 = {x0, x1}, C2 = {x2, x3}
and C4 = {x4, x5}, and the Boolean function g has the three symmetry classes C0 = {x0, x4}, C1 =

{x1, x3} and C2 = {x2, x5} if we do not consider the Boolean difference signatures. The symmetry class
C0 of f can be mapped to the symmetry classes C1 and C2 of g using the method of reference [5]. In other
words, the symmetry classes C0 and C4 of Boolean function f cannot be distinguished. However,
the variables in C0 and C4 of Boolean function f have different Boolean difference signatures. Thus,
if we consider the Boolean difference signatures when searching the variable mappings, the symmetry
class C0 of f can be mapped only to the symmetry class C1 of g, and the symmetry class C4 of
f can be mapped only to the symmetry class C2 of g. There exists an independent-mapping set
{x4 → x2, x5 → x5}.

Definition 6. (Structural difference signature vector) An n-input Boolean function f has a structural difference
signature (SDS) vector Vf = {V0, V1, · · · , Vn−1}, where Vi = (| fxi | ,

∣∣ fxi

∣∣ , |Ci| , Ci, Gi, | f ′xi
|).

Symmetry 2019, 11, 27 6 of 16

The algorithm presented in [5] groups variables by their 1st signature values. The algorithm
proposed in this paper groups variables by their 1st signature values and Boolean difference signatures.
We define the ’<’ relation between xi and xj as follows.

Definition 7. (<) The variables xi and xj have the relation xi < xj if one of the following two cases is satisfied:

(1) (| fxi | ,
∣∣ fxi

∣∣) < (
∣∣∣ fxj

∣∣∣ ,
∣∣∣ fxj

∣∣∣) or (2) (| fxi | ,
∣∣ fxi

∣∣) = (
∣∣∣ fxj

∣∣∣ ,
∣∣∣ fxj

∣∣∣) ∧ ∣∣∣ f
′
xi

∣∣∣ < ∣∣∣ f
′
xi

∣∣∣.
The group numbers of the variables are generated with the above ’<’ relation. The SDS vectors of

f and g in example 2 are as follows: Vf = {(12, 12, 2, 0, 1, 48), (12, 12, 2, 0, 1, 48), (8, 16, 2, 2, 0, 16),
(16, 8, 2, 2, 0, 16), (12, 12, 2, 4, 2, 0), (12, 12, 2, 4, 2, 0)} and Vg = {(16, 8, 2, 0, 0, 16), (12, 12, 2, 1, 1, 48),
(12, 12, 2, 2, 2, 0), (12, 12, 2, 1, 1, 48), (16, 8, 2, 0, 0, 16), (12, 12, 2, 2, 2, 0)}. In the process of grouping
variables of Boolean function f , we first compare their 1st signature and do not consider the order
of positive and negative cofactor signature. Therefore, variables x2 and x3 are grouped into group 0.
The varibales in symmetry class C0 and C4 have the same 1st signature, so we compare their Boolean
difference signature. Because the Boolean difference signature of variables in C0 is greater than that of
variables in symmetry class C4, the group number of variables x0 and x1 are 1 and the group number
of variables x4 and x5 are 2.

The SDS vector is a new signature vector that consists of the SS vector plus a Boolean difference
mark. The variable mapping search and the transformation detection of our algorithm are based on
two facts: (1) two NP-equivalent Boolean functions have the same SDS vectors; and (2) there exists a
possible variable mapping between the variables xi and xj if they have the same SDS values.

4.2. SDS-Based Boolean Matching Algorithm

NPN Boolean matching is defined as follows:
Given two Boolean functions f and g, if there exists an NP transformation T that satisfies f (TX) =

g(X) or f (TX) = g(X), then f is NPN-equivalent to g.
Before searching the variable mappings, the proposed algorithm first determines whether there

is an output negation for Boolean function f . If there is, then our algorithm will match f and g.
The method of identifying the presence of an output negation is the same as that in reference [5].
If | f | = |g| ∧ | f | 6= |g|, then there is no output negation. There is an output negation if | f | 6= |g| ∧ | f | =
|g|. There is a tie if | f | = |g| ∧ | f | = |g|. Our algorithm handles first the condition without output
negation and then the condition with output negation if f is not NP equivalent to g.

The algorithm will terminate when it finds a transformation T that satisfies f (TX) = g(X) (g(X))

or when all candidate transformations have been checked and found not to satisfy f (TX) = g(X)

(g(X)). The algorithm will attempt all possible variable mappings, and thus, it will certainly find an
NP transformation T between two NP-equivalent Boolean functions f and g (g).

The pseudo-code for NPN Boolean matching is given in Procedure 1.
In Procedure 1, trans_list is a tree that stores the NP transformations generated in the process

of transformation detection. A candidate transformation is an unabridged branch in trans_list. sp_ f
and sp_g are the decomposition expressions for f and g, respectively. After the existence of an output
negation has been determined, Procedure 1 calls Handle_SDS() to detect the NP transformations
between f and g (g) and judge the NP equivalence of f and g (g).

Any one NP transformation between the Boolean functions f and g (g) is composed of n
variable mappings. Thus, the proposed algorithm searches variable mappings and generates NP
transformations. In this paper, the necessary condition for two Boolean functions to be judged NP
equivalent is that they must have the same SDS vector. For a variable mapping to be established
between xi and xj, these two variables must satisfy the following conditions:

(1) xi and xj have the same 1st signature values, i.e., (| fxi |, | fxi |) = (| fxj |, | fxj |) ∨ (| fxi |, | fxi |) =
(| fxj |, | fxj |).

(2) xi and xj have the same Boolean difference signature, i.e., | f ′xi
| = | f ′xj

|.

Symmetry 2019, 11, 27 7 of 16

(3) xi and xj have the same symmetry class cardinality, i.e., |Ci| = |Cj|.
(4) xi and xj have the same group number, i.e., Gi = Gj.

Procedure 1 NPN Boolean Matching.

Input: f and g
Output: 0 or 1

function MATCHING(f , g)
Create BDD of f and g
sp_ f = bddtrue, sp_g = bddtrue, trans_list = NULL
Compute | f | and |g|
if | f | = |g| then

if | f | 6= |g| then
Return Handle_SDS(f , g)

else
if Handle_SDS(f , g)=1 then

Return 1
else

Return Handle_SDS(f ,g)
end if

end if
else

if | f | = |g| then
Return Handle_SDS(f ,g)

else
Return 0

end if
end if

end function

In the process of the variable mapping search, Handle_SDS() searches the variable mappings
for each variable that has not been identified. A variable is identified when its phase and variable
mappings are determined in a transformation. After searching all variable mapping sets, Handle_SDS()
selects the minimal variable mapping set to handle. The minimal variable mapping set is the one with
the lowest cardinality. There are eight possible cases for the variable mapping set of the variable xi of
f , as follows.

(1) The variable xi is an asymmetric variable. The phase of xi is determined, and there is only
one variable xj of g that has the same SDS values as those of xi. The variable mapping set of xi is a
single-mapping set. χi = {i→ j− k}, k ∈ {0, 1}, and |χi| = 1.

(2) The variable xi is an asymmetric variable. There exist multiple variables xj1 , xj2 , · · · , xjm of
g, where m ≥ 2, that have the same SDS values as those of xi, and their phases are determined. The
variable mapping set of xi is a multiple-mapping set. χi = {i→ j1 − k1, i→ j2 − k2, · · · , i→ jm − km},
where k1, k2, · · · , km ∈ {0, 1}, and |χi| = m.

(3) The variable xi is an asymmetric variable. There exist one or more variables xj1 , xj2 , · · · , xjm of
g, where m ≥ 1, that have the same SDS values as those of xi, and their phases are not determined.
The variable mapping set of xi is a multiple-mapping set. χi = {i→ j1 − 0, i→ j1 − 1, i→ j2 − 0, i→
j2 − 1, · · · , i→ jm − 0, i→ jm − 1}, and |χi| = 2m.

(4) The variable xi is a symmetric variable, and its symmetry class is Ci = {xi, xi1 , xi2 , · · · , xim−1}.
There exists only one symmetry class Cj = {xj, xj1 , xj2 , · · · , xjm−1} of g whose variables have the same
SDS values as those of the variables in Ci, where |Ci| = |Cj|, and the phase of xi is determined.
The variable mapping set of xi, Si, is a single symmetry-mapping set, i.e., |Si| = 1. There exists one
group of variable mappings {i → j− k, i1 → j1 − k1, i2 → j2 − k2, · · · , im−1 → jm−1 − km−1}, where
k, k1, k2, · · · , km−1 ∈ {0, 1}, between Ci and Cj.

(5) The variable xi is a symmetric variable, and its symmetry class is Ci = {xi, xi1 , xi2 , · · · , xim−1}.
There is only one symmetry class Cj = {xj, xj1 , xj2 , · · · , xjm−1} of g whose variables have the same
SDS values as those of the variables in Ci, where |Ci| = |Cj|, and the phase of xi is not determined.
The variable mapping set of xi, Si, is a multiple symmetry-mapping set: |Si| = 2. There are two
groups of variable mappings, {i→ j− 0, i1 → j1 − k1, i2 → j2 − k2, · · · , im−1 → jm−1 − km−1}, where

Symmetry 2019, 11, 27 8 of 16

k1, k2, · · · , km−1 ∈ {0, 1}, and {i→ j− 1, i1 → j1 − p1, i2 → j2 − p2, · · · , im−1 → jm−1 − pm−1}, where
p1, p2, · · · , pm−1 ∈ {0, 1}, between Ci and Cj.

When the variable symmetry is checked, the phase relation between two symmetric variables is
known. The variable mapping relations between Ci and Cj can be generated in the following way.

We first consider the case in which xi and xj have the same phase, i.e., there exists a variable
mapping i → j− 0. A variable mapping i1 → j1 − 0 exists in two cases: (1) xi is symmetric to xi1
and xj is symmetric to xj1 or (2) xi is symmetric to xi1 and xj is symmetric to xj1 . A variable mapping
i1 → j1− 1 exists in two cases: (1) xi is symmetric to xi1 and xj is symmetric to xj1 or (2) xi is symmetric
to xi1 and xj is symmetric to xj1 . Then, we consider the case in which xi and xj have the opposite phase,
i.e., there exists a variable mapping i → j− 1. A variable mapping i1 → j1 − 1 exists in two cases:
(1) xi is symmetric to xi1 and xj is symmetric to xj1 or (2) xi is symmetric to xi1 and xj is symmetric to
xj1 . A variable mapping exists i1 → j1 − 0 in two cases: (1) xi is symmetric to xi1 and xj is symmetric
to xj1 or (2) xi is symmetric to xi1 and xj is symmetric to xj1 . Thus, two groups of variable mappings
between Ci and Cj will be generated via this method.

(6) The variable xi is a symmetric variable, and its symmetry class is Ci. There exist multiple

symmetry classes Cj1 , Cj2 , · · · , Cjm , where 2 ≤ m ≤
⌊

n
2

⌋
, whose variables have the same SDS values

as the variables in Ci, where |Ci| = |Cj1 | = |Cj2 | = · · · = |Cjm |, and the phase of xi is determined.
The variable mapping set of xi, Si, is a multiple symmetry-mapping set: |Si| = m. There exists one
group of variable mappings between Ci and each Cjp , where p ∈ {1, 2, · · · , m}.

(7) The variable xi is a symmetric variable, and its symmetry class is Ci. There exist one or more

symmetry classes Cj1 , Cj2 , · · · , Cjm , where 1 ≤ m ≤
⌊

n
2

⌋
, whose variables have the same SDS values

as those of the variables of Ci, where |Ci| = |Cj1 | = |Cj2 | = · · · = |Cjk |, and the phase of xi is not
determined. The variable mapping set of xi, Si, is a multiple symmetry-mapping set: |Si| = 2m. There
exist two groups of variable mappings between Ci and each Cjp , where p ∈ {1, 2, · · · , m}.

(8) The variable xi is an independent variable. The variable mapping set of xi is an independent
mapping set.

All possible variable mapping sets are listed above. To generate an NP transformation, n variable
mappings are needed for x1, x2, · · · , xn. Each node in the NP transformation tree, trans_list, represents
a variable mapping, and all nodes in a given layer belong to the same variable mapping set.
The methods for handling the variable mapping sets are as follows.

(1) If it is the first computation of SDS vectors, a check for independent variables is performed.
If there are one or more independent variables, an independent-mapping set is created and added to
trans_list, and the minimal variable mapping set is then sought among the remaining variables. If there
are no independent variables, Handle_SDS() searches the variable mapping sets for all variables.

(2) If the current variable mapping set of xi is a single-mapping set, our algorithm adds the
variable mapping in χi to trans_list. The variable xi is identified.

(3) If the current variable mapping set of xi is a single symmetry-mapping set and xi belongs
to Ci, where |Ci| = m, then the group ψi of variable mappings of Si is added to trans_list. To the
NP transformation tree, m layers are added, where each layer contains a variable mapping node.
The variables in the symmetry class Ci are all identified.

(4) If the current variable mapping set of xi is a multiple-mapping set or a multiple
symmetry-mapping set, then the cardinalities of the variable mapping sets are computed, and the
minimal variable mapping set is recorded.

After searching all variable mapping sets, as in reference [5], our algorithm updates the
two decomposition expressions sp_ f and sp_g in the case of a single-mapping set or a single
symmetry-mapping set. Otherwise, our algorithm handles the minimal variable mapping set. If the
cardinality m of the minimal variable mapping set satisfies m ≥ 2, then m branches will be generated
in trans_list. Each branch is handled in order.

Symmetry 2019, 11, 27 9 of 16

The purpose of Procedure 2 is to search the variable mappings for all possible NP transformations.
In the process of recursive_search, Procedure 2 uses the same methods applied in [5] to find and prune
error NP transformation branches. That is, the current branch will be pruned if the two SDS vectors
are not the same or if the current variable mapping has a phase collision.

The pseudo-code for Procedure 2 is as follows.

Procedure 2 recursive_search.
Input: f , g, sp_ f , sp_g, and trans_list
Output: 0 or 1

function HANDLE_SDS(f , g, sp_ f , sp_g, trans_list)
if D1 then

return VERIFY(f , g, T)
end if
UPDATE(f , g, sp_ f , sp_g)
if Vf 6= Vg then

return 0
end if
if D2 then

Compute D f and Dg
if NotEmpty(D f) then

Add independent mappings to trans_list
end if

end if
min_number=32768
for all xi ∈ f (x) do

if D3 then
Continue

end if
for all xj ∈ g(x) do

Search variable mappings
end for
Compute χi(Si)
if D4 then

for all ϕj(ψj) ∈ χi(Si) do
if D5 then

return 0
else

Add ϕj(ψj) to trans_list
end if

end for
min_number = 1

else
if |χi|(|Si|) < min_number then

min = i
end if

end if
end for
if D6 then

Update sp_ f and sp_g
Return Handle_SDS(f , g, sp_ f , sp_g, trans_list)

else
for all ϕj(ψj) ∈ χmin(Smin) do

if D5 then
continue

else
Add ϕj(ψj) to trans_list
Update sp_ f and sp_g
Return Handle_SDS(f , g, sp_ f , sp_g, trans_list)

end if
end for
Return 0

end if
end function

The meanings of conditions D1, D2, D3, D4, D5 and D6 and the operations that need to be
performed when these conditions are satisfied are defined as follows:

D1: When D1 is true, a candidate transformation is generated. Procedure 2 checks whether the
current NP transformation T can transform f into g (g).

Symmetry 2019, 11, 27 10 of 16

D2: When D2 is true, the transformation tree is NULL, and this is the first time that the SDS
vectors have been computed. Procedure 2 checks and handles the independent-mapping set between
f and g (g).

D3: When D3 is true, the current variable xi has already been identified, and Procedure 2 fetches
the next xi to handle.

D4: When D4 is true, the variable-mapping set of xi is a single-mapping set or a single
symmetry-mapping set.

D5: When D5 is true, there is a phase collision.
D6: When D6 is true, the cardinality of the minimal variable mapping set is 1.
In the process of transformation detection, Procedure 2 attempts each variable mapping in each

multiple-mapping set or each group of variable mappings in each multiple symmetry-mapping set. For
two NP-equivalent Boolean functions f and g (g), Procedure 2 must find a candidate transformation
that satisfies f (TX) = g(X) (g(X)). The purpose of VERIFY() is to check whether f (TX) = g(X)

(g(X)).
UPDATE() serves the following functions:
(1) Updates the SDS vector Vf of f and the SDS vector Vg of g by means of Shannon decomposition

and the decomposition expressions sp_ f and sp_g.
(2) Updates the phases of the variables in f and g.
(3) Checks the variable symmetry when the SDS vectors are computed for the first time.
(4) Groups the variables of f and g by their 1st signature values and Boolean difference signatures.
In Example 2, if we use the SS values to search the variable mappings, then there are one single

symmetry-mapping set S2 = {C2 → C0} and two multiple symmetry-mapping sets S0 = {C0 →
C1, C0 → C2} and S4 = {C4 → C1, C4 → C2}, where |S0| = |S4| = 4. Procedure 2 handles the
single symmetry-mapping set S2, and the variable mappings x2 → x0 and x3 → x4 are added to
trans_list. sp_ f and sp_g are updated to x2 and x0. After the SS vectors are updated, the 1st signatures
of the remaining variables of f and g are all (8, 8). Therefore, the remaining four variables still
cannot be distinguished, and there are two multiple symmetry-mapping sets, S0 and S4. The first
symmetry-mapping set S0 is selected to be handled. The transformation tree for Example 2 using SS
vectors is shown in Figure 1.

root

2→0-1

3→4-0

0→1-0

1→3-0

0→1-1

1→3-1

0→2-0

1→5-0

0→2-1

1→5-1

4→2-0

5→5-0

4→2-1

5→5-1

4→2-0

5→5-0

4→2-1

5→5-1

4→1-0

5→3-0

4→1-1

5→3-1

4→1-0

5→3-0

4→1-1

5→3-1

Figure 1. The transformation search tree for example 2 using SS vectors.

If we use the SDS values to search the variable mappings, then there are one independent-mapping
set, one single symmetry-mapping set and one multiple symmetry-mapping set according to the first
computed SDS vectors. Procedure 2 first adds the variable mappings x4 → x2 and x5 → x5 to
the transformation tree. Then, the two variable mappings x2 → x0 and x3 → x4 of the symmetry
mapping C2 → C0 are added to the transformation tree. The catch is that the independent variable is
not a splitting variable because the decomposition results obtained via Shannon expansion with the
independent variable are unchanged. Thus, the decomposition expressions sp_ f and sp_g are updated

Symmetry 2019, 11, 27 11 of 16

to x2 and x0. UPDATE() is called to compute new SDS vectors, and the SDS vectors are updated in
accordance with sp_ f and sp_g.

In this way, Procedure 2 determines 4 variable mappings, namely, x4 → x2, x5 → x5, x2 → x0

and x3 → x4, after the first variable mapping search for example 2. In the next variable mapping
search, there is one multiple symmetry-mapping set, S0 = {{x0 → x1, x1 → x3}, {x0 → x1, x1 → x3}}.
The transformation tree for Example 2 using SDS vectors is shown in Figure 2.

root

2→0-1

3→4-0

4→2-0

5→5-0

0→1-0

1→3-0

0→1-1

1→3-1

Figure 2. The transformation search tree for example 2 using SDS vectors.

From Example 2, we can see that the number of candidate transformations decreases from 8 to 2.
The use of Boolean difference signatures helps to distinguish symmetry classes C1 and C5, and we need
to consider only the positive phase for independent variables. Thus, Boolean difference signatures are
very beneficial for distinguishing variables.

In cell library binding, a benchmark Boolean circuit is found to realize another NPN equivalent
Boolean function. Example 3 demonstrates the process of NPN equivalent matching by SS and SDS
vectors respectively, and illustrates the validity of the SDS vectors proposed in this paper.

Example 3. Consider two 6-input Boolean functions f (X) and g(X):
f (X) = x0x1(x3x5 + x4x5) + x0x1(x4x5 + x2x3x4x5) + x1x3x4x5 + x1x2x4x5 + x0x1(x4x5 +

x2x3x4x5) + x1x3x4x5 + x0x1(x2x3x4 + x2x3x4 + x3x4x5 + x2x4x5 + x2x4x5) + x1x2x3x4x5,
g(X) = x0x1x2x3 + x0x1x2x3 + x0x1x2x3 + x0x1x2x5 + x0x1x3x4x5 + x0x1x2x5 + x0x1x2x5 +

x0x1x2x3x4 + x0x1x2x3x5 + x0x1x2x4x5 + x0x1x2x4x5 + x0x1x2x3x4x5 + x0x1x2x3x4x5 + x0x1x2x3x4x5.

The transformation detection process using SS vectors is as follows:
(1) Compute the SS vectors of f and g. The results are:
Vf = {(16, 16,−1,−1, 1), (19, 13,−1,−1, 0), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1)},
Vg = {(13, 19,−1,−1, 1), (16, 16,−1,−1, 0), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1), (16, 16,−1,−1, 1)}.
From the above results, we can draw three conclusions: (1) these two SS vectors are the same;

(2) the phases of the variable x1 of f and the variable x0 of g are determined; and (3) there is only
one variable x0 of g with the same SS values as those of the variable x1 of f . Therefore, there is a
single-mapping set {x1 → x0}. Concerning the splitting variables, the new splitting expressions are
sp_ f = x1 and sp_g = x0.

(2) The algorithm enters the next iteration and computes the new SS vectors. The new SS
vectors are:

Vf = {(9, 10,−1,−1, 1), (0, 0,−1,−1, 0), (9, 10,−1,−1, 1), (10, 9,−1,−1, 1), (10, 9,−1,−1, 1), (9, 10,−1,−1, 1)},
Vg = {(0, 0,−1,−1, 1), (9, 10,−1,−1, 0), (10, 9,−1,−1, 1), (10, 9,−1,−1, 1), (10, 9,−1,−1, 1), (10, 9,−1,−1, 1)}.
The results show the following: (1) the two new SS vectors are the same; (2) the phases of all

variables are determined; and (3) the next variable-mapping set to be handled is χ0 = {x0 → x1, x0 →
x2, x0 → x3, x0 → x4, x0 → x5}. Procedure 2 adds 5 nodes to the second layer of the transformation

Symmetry 2019, 11, 27 12 of 16

tree. Procedure 2 handles the first variable mapping in the order of the variable mappings in the set
and updates sp_ f = x1x0 and sp_g = x0x1.

In the subsequent variable mapping search, the x0 → x1 branch is pruned by a phase collision.
The x0 → x2, x0 → x3 and x0 → x4 branches are pruned by having different SS vectors.

(3) Then, Procedure 2 handles the variable mapping x0 → x5 and detects a candidate
transformation T = {x1 → x0, x0 → x5, x4 → x1, x5 → x2, x2 → x4, x3 → x3}. After verification, this
transformation is found to satisfy f (TX) = g(X). Therefore, f is NPN-equivalent to g.

The transformation tree for Example 3 using SS vectors is shown in Figure 3.

root

1→0-1

0→1-0 0→2-1 0→3-1 0→4-1 0→5-1

4→5-0

5→2-0

4→1-1

5→2-1

2→3-1 2→4-1

3→4-1 3→3-0

Phase Collision

Phase Collision

Vf≠Vg Vf≠Vg Vf≠Vg

Success

Figure 3. The transformation search tree for example 3 using SS vectorss.

Figure 3 shows that this transformation tree for Example 3 has 6 branches and that the two
Boolean functions are decomposed 4 times. Let us examine the detection process using SDS vectors.

(1) The SDS vectors of f and g are as follows:
Vf = {(16, 16,−1,−1, 3, 28), (19, 13,−1,−1, 0, 64), (16, 16,−1,−1, 5, 12), (16, 16,−1,−1, 4, 20),

(16, 16,−1,−1, 2, 36), (16, 16,−1,−1, 1, 52)},
Vg = {(13, 19,−1,−1, 0, 64), (16, 16,−1,−1, 2, 36), (16, 16,−1,−1, 1, 52), (16, 16,−1,−1, 4, 20),

(16, 16,−1,−1, 5, 12), (16, 16,−1,−1, 3, 28)}.
From these results, we can draw the following conclusions: (1) these two SDS vectors are the

same; (2) the phases of the variable x1 of f and the variable x0 of g are determined,; and (3) there is one
single-mapping set {x1 → x0} to be used in the search. In Procedure 2, the splitting variables x1 and
x0 are used to decompose f and g, respectively.

(2) The new SDS vectors are as follows:
Vf = {(9, 10,−1,−1, 3, 14), (0, 0,−1,−1, 0, 64), (9, 10,−1,−1, 5, 6), (10, 9,−1,−1, 4, 10),

(10, 9,−1,−1, 2, 18), (9, 10,−1,−1, 1, 26)},
Vg = {(0, 0,−1,−1, 0, 64), (9, 10,−1,−1, 2, 18), (10, 9,−1,−1, 1, 26), (10, 9,−1,−1, 4, 10),

(10, 9,−1,−1, 5, 6), (10, 9,−1,−1, 3, 14)}.
From these two new SDS vectors, the following can be seen: (1) the phases of all variables

are determined; and (2) all unidentified variables can be identified from their Boolean differences.
A candidate transformation T = {x1 → x0, x0 → x5, x2 → x4, x3 → x3, x4 → x1, x5 → x2} is generated,
and this T is verified to be correct.

When SDS vectors are used to perform Boolean matching, the transformation tree for Example 3
contains only one candidate transformation. In the transformation detection process, the search
space comprises all branches of the transformation tree, including unabridged and abridged branches.
The unabridged branches are the candidate transformations, and the abridged branches are the pruned
transformations. When the transformation tree possesses fewer branches, the algorithm considers
a smaller search space. The purpose of decomposing the Boolean functions is to update the SDS
vectors to search the new variable mappings. When the algorithm requires fewer decompositions,

Symmetry 2019, 11, 27 13 of 16

more variables are identified in each iteration. These three indicators can be used to measure how
much of the search space our algorithm searches.

In the best case, the variable mapping set of every variable is a single-mapping set, and there is
only one candidate transformation. In this case, the spatial complexity is O(1), and the time complexity
is O(n2). In the worst case, there are no symmetric variables, every variable has the same SDS value,
and the phases of all variables cannot be determined in each SDS update. There are 2n+1n! candidate
transformations that need to be verified. The spatial complexity is O(2nn!), and the time complexity
is O(n3).

5. Experimental Results

To demonstrate the effectiveness of the proposed method, we re-implemented the algorithm
of [6] and tested the algorithm presented in this paper, the algorithm of [5] and the algorithm of [6]
on both a randomly generated circuit set and an MCNC benchmark circuit set. In the random circuit
set, there were 1200 circuits in each input circuit set. Every circuit in the random circuit set contained
at least two candidate transformations. In the test, we recorded the three indicators concerning the
search space and the run time. The proposed algorithm was implemented in C with buddy package.
The following experimental results were obtained in a hardware environment with a 3.3-GHz Intel
Xeon processor and 4 GB of memory.

In the following tables, the first column shows the number of input variables (#I), and the
following four columns show the experimental results for our algorithm. The next four columns show
the corresponding experimental results of [5], and the last column shows the average run time of the
algorithm of [6].

Tables 1 and 2 show the average number of branches (#B.N.), the average number of candidate
transformations (#C.N.), the average number of decompositions (#D.N.) and the average run time
(#R.T.) of our algorithm and of the algorithm of [5] on the random circuit set and on the MCNC
benchmark circuit set, respectively.

Table 1. Boolean matching results on random circuits.

#I #B.N. #C.N. #D.N. #R.T. #B.N. of [5] #C.N. of [5] #D.N. of [5] #R.T. of [5] #R.T. of [6]

7 2.2 2.1 3.2 0.00024 4.6 2.8 4.1 0.00024 0.00067
8 2.1 1.9 3.4 0.00022 9.2 3.7 4.9 0.00030 0.00091
9 3.7 2.2 3.6 0.00034 11.5 7.1 5.0 0.00047 0.00099

10 1.9 1.8 3.5 0.00027 15.0 14.1 5.3 0.00074 0.00123
11 7.8 7.7 3.3 0.00059 19.4 19.2 4.2 0.00053 0.00228
12 2.1 2.1 3.2 0.00032 6.7 6.6 3.8 0.00146 0.00585
13 3.3 3.2 3.2 0.00061 16.9 16.4 4.3 0.00127 0.00638
14 2.1 2.0 3.3 0.00063 8.7 7.3 4.6 0.00217 0.02743
15 1.8 1.7 3.2 0.00079 8.2 6.9 4.6 0.00262 0.02998
16 2.5 2.4 3.5 0.00155 10.1 8.6 4.5 0.00426 0.04310
17 2.9 2.8 3.7 0.00308 9.3 8.4 4.8 0.00784 0.05044
18 2.3 2.2 3.2 0.00445 7.0 6.1 4.6 0.02274 0.07177
19 2.4 2.3 3.1 0.00870 7.7 6.6 4.2 0.03285 0.08870
20 3.0 2.9 3.6 0.02069 7.5 6.4 4.9 0.04337 0.13250
21 2.1 2.1 3.2 0.02879 9.6 8.6 4.3 0.11471 0.17362
22 3.8 3.8 3.6 0.10301 8.7 7.7 5.1 0.20554 0.30469

From Table 1, we can see that the run time of our algorithm is improved by 54% relative to that
of [5] and by 84% relative to that of [6]. From the comparison of the three indicators for the search
space, we can see that the number of branches in the transformation tree is reduced by 70%, the number
of candidate transformations is reduced by 65%, and the number of decompositions is reduced by 27%.
Because the Boolean difference facilitates the identification of the variables, the proposed algorithm
reduces the search space and speeds up the matching process. Figure 4 presents the diagram of the
search space comparison results for our algorithm and that of reference [5] tested on the random
circuit set.

Symmetry 2019, 11, 27 14 of 16

Table 2. Boolean matching results on MCNC benchmark circuitsd.

#I #B.N. #C.N. #D.N. #R.T. #B.N. of [5] #C.N. of [5] #D.N. of [5] #R.T. of [5] #R.T. of [6]

7 1.0 1.0 1.5 0.00014 1.3 1.0 1.8 0.00012 0.00121
8 1.1 1.1 3.2 0.00042 1.2 1.2 3.5 0.00035 0.00146
9 1.2 1.2 1.8 0.00034 1.6 1.5 2.4 0.00051 0.00186

10 1.1 1.1 1.3 0.00060 3.4 1.5 1.5 0.00063 0.00193
11 1.0 1.0 1.3 0.00074 1.4 1.4 2.6 0.00078 0.00243
12 1.0 1.0 1.3 0.00080 1.3 1.2 1.7 0.00091 0.00255
13 1.1 1.0 2.5 0.00467 1.3 1.1 3.8 0.00447 0.00535
14 1.1 1.1 1.4 0.00401 1.2 1.1 2.0 0.00368 0.01245
15 1.4 1.3 2.0 0.00569 1.7 1.5 3.1 0.00475 0.04077
16 1.2 1.2 1.9 0.01346 2.0 1.6 3.2 0.00151 0.04849
17 1.1 1.1 1.5 0.10502 1.2 1.2 2.2 0.11518 0.31644
18 1.1 1.0 1.5 0.10944 1.5 1.5 2.5 0.23394 0.64273
19 1.8 1.8 2.6 0.80747 5.5 5.3 4.4 0.89123 1.62971
20 1.3 1.3 2.1 1.00309 2.9 2.8 2.7 1.28156 2.13035
21 1.3 1.3 1.5 3.73072 1.7 1.5 2.7 3.71382 10.2122
22 1.6 1.6 1.7 6.50130 2.8 2.7 3.1 6.24368 11.2760

6 8 10 12 14 16 18 20 22

Input Number

0

5

10

15

20

B
.N

Our Algorithm reference[5]

6 8 10 12 14 16 18 20 22

Input Number

0

5

10

15

20

C
.N

Our Algorithm reference[5]

6 8 10 12 14 16 18 20 22

Input Number

3

3.5

4

4.5

5

5.5

6

D
.N

Our Algorithm reference[5]

Figure 4. The search space comparison results for testing on random circuits.

Figure 5 presents the diagram of the speed comparison results for our algorithm, that of
reference [6] and that of reference [5] tested on the random circuit set.

Table 2 shows the experimental results obtained during testing on the MCNC benchmark
circuit set.

Table 2 shows that with the proposed algorithm, the values of the three indicators for the search
space are decreased, and the run time is also slightly reduced. When there are 22 inputs, however,
the average run time of our algorithm is higher than that of [5]. This is because the variables of this
group circuit are easy to identify and because the search space of our algorithm is almost the same as
that of [5]. In this case, our algorithm spends additional time in computing the Boolean differences
compared with the algorithm of [5].

From Tables 1 and 2, we can see that the matching speed on the MCNC benchmark circuits is
slower than that on random circuits, although the search space for the MCNC benchmark circuits is less
than that for the random circuits. In this paper, we use BDDs to represent Boolean functions. The BDD
structure of a Boolean function is closely related to the speed of operations on the BDD. Because the
BDD operation speed on the MCNC benchmark circuits is slower than that on the random circuits, the
matching speed on the MCNC benchmark circuits is also slower than that on the random circuits .

Symmetry 2019, 11, 27 15 of 16

6 8 10 12 14 16 18 20 22

Input Number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
ve

ra
ge

 M
at

ch
in

g
T

im
e

(s
)

Our Algorithm reference[5] reference[6]

Figure 5. The matching speed comparison results for testing on random circuits.

6. Conclusions

The major contribution of this paper is the raise of SDS vector. The paper demonstrates how SDS
vectors can be used to effectively search variable mappings and reduce the search space. The algorithm
of this paper take advantage of cofactor, symmetry and Boolean different when search the variable
mappings between two Boolean functions. Therefore, the search space and match speed of ours
algorithm is better than the competitors. Compared with the algorithm of [5], the search space is cut in
48%, and the run time is reduced by 42% and 80% compared with [5,6], respectively. The experimental
results prove that the algorithm proposed in this paper is more effective than competing algorithms on
general circuits. In future work, we will extend our algorithm to multiple-output Boolean matching
and Boolean matching with don’t care sets.

Author Contributions: J.Z. proposed and implemented the algorithm. G.Y. was the research advisor and provided
suggestions. W.N.N.H. provided guidance for this paper and contributed to the revisions and gave advice on
optimization issues. J.W. and Y.Z. completed the generation of data and test.

Funding: This research was funded by the National Natural Science Foundation of China Grant (Nos. 61572109,
11371003 and 61751110), the Special Fund for Bagui Scholars of Guangxi (Grant No. 113000200230010), Network
and Data Security Key Laboratory of Sichuan Province Open Project (NDSMS201603).

Acknowledgments: We would like to thank the above funds for their technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Slepian, D. On the number of symmetry types of Boolean functions of n variables. Can. J. Math. 1955, 2,
185–193. [CrossRef]

2. Zhang, J.; Yang, G.; Hung, W.N.N.; Liu, T.; Song, X.; Perkowski, M.A. A group algebraic approach to NPN
classification of Boolean functions. Theory Comput. Syst. 2018. [CrossRef]

3. Zhang, Y.; Yang, G.; Hung, W.N.N.; Zhang, J. Computing affine equivalence classes of Boolean functions by
group isomorphism. IEEE Trans. Comput. 2016, 12, 3606–3616. [CrossRef]

4. Lai, Y.-T.; Sastry, S.; Pedram, M. Boolean matching using binary decision diagrams with applications to logic
synthesis and verification. In Proceedings of the 1992 IEEE International Conference on Computer Design:
VLSI in Computers and Processors, Cambridge, MA, USA, 11–14 October 1992. [CrossRef]

5. Zhang, J.; Yang, G.; Hung, W.N.N.; Zhang, Y.; Wu, J. An efficient NPN Boolean matching algorithm based on
structural signature and Shannon expansion. Cluster Comput. 2018, 6, 1–16. [CrossRef]

6. Adbollahi, A.; Pedram, M. Symmetry detection and Boolean matching utilizing a signature-based canonical
form of Boolean functions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2008, 6, 1128–1137. [CrossRef]

http://dx.doi.org/10.4153/CJM-1953-020-x
http://dx.doi.org/10.1007/s00224-018-9903-0
http://dx.doi.org/10.1109/TC.2016.2557329
http://dx.doi.org/10.1109/ICCD.1992.276313
http://dx.doi.org/10.1007/s10586-018-1787-x
http://dx.doi.org/10.1109/TCAD.2008.923256

Symmetry 2019, 11, 27 16 of 16

7. Lee, S.Y.; Lee, N.Z.; Jiang, J.H.R. Canonicalization of threshold logic representation and its applications.
In Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA,
5–8 November 2018; p. 85.

8. Asghar, A.; Iqbal, M.M.; Ahmed, W.; Ali, M.; Parvez, H.; Rashid, M. Logic algebra for exploiting shared
SRAM-table based FPGAs for large LUT inputs. In Proceedings of the Electrical Engineering and Computing
Technologies, Karachi, Pakistan, 15–16 November 2017; pp. 1–4. [CrossRef]

9. Soeken, M.; Mishchenko, A.; Petkovska, A.; Sterin, B.; Ienne, P.; Brayton, R.K.; De Micheli, G. Heuristic NPN
classification for large functions using AIGs and LEXSAT. In Proceedings of the International Conference on
Theory and Applications of Satisfiability Testing, Bordeaux, France, 5–8 July 2016; pp. 212–227.

10. Huang, Z.; Wang, L.; Nasikovskiy, Y.; Mishchenko, A. Fast Boolean matching based on NPN classification.
In Proceedings of the International Conference on Field-Programmable Technology, Kyoto, Japan,
9–11 December 2013; pp. 310–313. [CrossRef]

11. Petkovska, A.; Soeken, M.; Micheli, G.D.; Ienne, P.; Mishchenko, A. Fast hierarchical NPN classification.
In Proceedings of the International Conference on Field Programmable Logic and Applications, Lausanne,
Switzerland, 29 August–2 September 2016; pp. 1–4. [CrossRef]

12. Agosta, G.; Bruschi, F.; Pelosi, G.; Sciuto, D. A transform-parametric approach to Boolean matching.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2009, 6, 805–817. [CrossRef]

13. Chen, K.C.; Yang, C.Y. Boolean matching algorithms. In Proceedings of the International Symposium on
VLSI Technology, Systems, and Applications, Taipei, Taiwan, 12–14 May 1993; pp. 44–48.

14. Kapoor, B. Improved technology mapping using a new approach to Boolean matching. In Proceedings of the
European Design and Test Conference, Paris, France, 6–9 March 1995; pp. 86–90. [CrossRef]

15. Vos, A.D.; Baerdemacker, S.D. Symmetry groups for the decomposition of reversible computers, quantum
computers, and computers in between. Symmetry 2011, 2, 305–324. [CrossRef]

16. Katebi, H.; Igor, I.L. Large-scale Boolean matching. In Proceedings of the Conference on Design, Automation
and Test in Europe, Dresden, Germany, 8–12 March 2010; pp. 771–776. [CrossRef]

17. Matsunaga, Y. Accelerating SAT-based Boolean matching for heterogeneous FPGAs using one-hot encoding
and CEGAR technique. In Proceedings of the Design Automation Conference of 20th Asia and South Pacifics,
Chiba, Japan, 19–22 January 2015; pp. 255–260. [CrossRef]

18. Ghaderi, Z.; Bagherzadeh, N.; Albaqsami, A. STABLE: Stress-Aware Boolean Matching to Mitigate
BTI-Induced SNM Reduction in SRAM-Based FPGAs. IEEE Trans. Comput. 2018, 99, 1. [CrossRef]

19. Cong, J.; Minkovich, K. Improved SAT-based Boolean matching using implicants for LUT-based FPGAs.
In Proceedings of the ACM/sigda International Symposium on Field Programmable Gate Arrays, Monterey,
CA, USA, 18–20 February 2007; pp. 139–147.

20. Wang, K.H.; Chan, C.M.; Liu, J.C. Simulation and SAT-based Boolean matching for large Boolean networks.
In Proceedings of the Design Automation Conference, San Francisco, CA, USA, 26–31 July 2009; pp. 396–401.

21. Moore, J.; Fazel, K.; Thornton, M.A.; Miller, D.M. Boolean function matching using Walsh Spectral decision
diagrams. In Proceedings of the Design, Applications, Integration and Software, Richardson, TX, USA,
29–30 October 2006; pp. 127–130. [CrossRef]

22. Thornton, M.A.; Drechsler, R.; Gunther, W. Logic circuit equivalence checking using Haar Spectral coefficients
and partial BDDs. VLSI Des. 2014, 1, 53–64. [CrossRef]

23. Zhang, J.S.; Chrzanowska-Jeske, M.; Mishchenko, A.; Burch, J.R. Linear cofactor relationships in Boolean
functions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 6, 1011–1023. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/INTELLECT.2017.8277632
http://dx.doi.org/10.1109/FPT.2013.6718374
http://dx.doi.org/10.1109/FPL.2016.7577306
http://dx.doi.org/10.1109/TCAD.2009.2016547
http://dx.doi.org/10.1109/EDTC.1995.470415
http://dx.doi.org/10.3390/sym3020305
http://dx.doi.org/10.1109/DATE.2010.5456949
http://dx.doi.org/10.1109/ASPDAC.2015.7059014
http://dx.doi.org/10.1109/TC.2017.2725952
http://dx.doi.org/10.1109/DCAS.2006.321050
http://dx.doi.org/10.1080/10655140290009800
http://dx.doi.org/10.1109/TCAD.2005.855951
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Terminology and Notation
	The Proposed Algorithm
	Boolean Difference
	SDS-Based Boolean Matching Algorithm

	Experimental Results
	Conclusions
	References

