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Abstract: As a generalization of single value neutrosophic rough sets, the concept of multi-granulation
neutrosophic rough sets was proposed by Bo et al., and some basic properties of the pessimistic
(optimistic) multigranulation neutrosophic rough approximation operators were studied. However,
they did not do a comprehensive study on the algebraic structure of the pessimistic (optimistic)
multigranulation neutrosophic rough approximation operators. In the present paper, we will provide
the lattice structure of the pessimistic multigranulation neutrosophic rough approximation operators.
In particular, in the one-dimensional case, for special neutrosophic relations, the completely lattice
isomorphic relationship between upper neutrosophic rough approximation operators and lower
neutrosophic rough approximation operators is proved.

Keywords: neutrosophic set; neutrosophic rough set; pessimistic (optimistic) multigranulation
neutrosophic approximation operators; complete lattice

1. Introduction

In order to deal with imprecise information and inconsistent knowledge, Smarandache [1,2]
first introduced the notion of neutrosophic set by fusing a tri-component set and the non-standard
analysis. A neutrosophic set consists of three membership functions, where every function value is
a real standard or non-standard subset of the nonstandard unit interval ]0−, 1+[. Since then, many
authors have studied various aspects of neutrosophic sets from different points of view, for example,
in order to apply the neutrosophic idea to logics, Rivieccio [3] proposed neutrosophic logics which is a
generalization of fuzzy logics and studied some basic properties. Guo and Cheng [4] and Guo and
Sengur [5] obtained good applications in cluster analysis and image processing by using neutrosophic
sets. Salama and Broumi [6] and Broumi and Smarandache [7] first introduced the concept of rough
neutrosophic sets, handled incomplete and indeterminate information, and studied some operations
and their properties.

In order to apply neutrosophic sets conveniently, Wang et al. [8] proposed single valued
neutrosophic sets by simplifying neutrosophic sets. Single valued neutrosophic sets can also be
viewed as a generalization of intuitionistic fuzzy sets (Atanassov [9]). Single valued neutrosophic sets
have become a new majorly research issue. Ye [10–12] proposed decision making based on correlation
coefficients and weighted correlation coefficient of single valued neutrosophic sets, and gave an
application of proposed methods. Majumdar and Samant [13] studied similarity, distance and entropy
of single valued neutrosophic sets from a theoretical aspect.

Şahin and Küçük [14] gave a subsethood measure of single valued neutrosophic sets based on
distance and showed its effectiveness through an example. We know that there’s a certain connection
among fuzzy rough approximation operators and fuzzy relations (resp., fuzzy topologies, information

Symmetry 2018, 10, 417; doi:10.3390/sym10090417 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-3094-1210
http://www.mdpi.com/2073-8994/10/9/417?type=check_update&version=1
http://dx.doi.org/10.3390/sym10090417
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 417 2 of 12

systems [15–17]). Hence, Yang et al. [18] firstly proposed neutrosophic relations and studied some
kinds of kernels and closures of neutrosophic relations. Subsequently they proposed single valued
neutrosophic rough sets [19] by fusing single valued neutrosophic sets and rough sets (Pawlak, [20]),
and they studied some properties of single value neutrosophic upper and lower approximation
operators. As a generalization of single value neutrosophic rough sets, Bao and Yang [21] introduced
p-dimension single valued neutrosophic refined rough sets, and they also gave some properties of
p-dimension single valued neutrosophic upper and lower approximation operators.

As another generalization of single value neutrosophic rough sets, Bo et al. [22] proposed the concept
of multi-granulation neutrosophic rough sets and obtained some basic properties of the pessimistic
(optimistic) multigranulation neutrosophic rough approximation operators. However, the lattice structures
of those rough approximation operators in references [19,21,22], were not well studied. Following this
idea, Zhao and Zhang [23] gave the supremum and infimum of the p-dimension neutrosophic upper
and lower approximation operators, but they did not study the relationship between the p-dimension
neutrosophic upper approximation operators and the p-dimension neutrosophic lower approximation
operators, especially in the one-dimensional case. Inspired by paper [23], a natural problem is: Can the
lattice structure of pessimistic (optimistic) multigranulation neutrosophic approximation operators
be given?

In the present paper, we study the algebraic structure of optimistic (pessimistic) multigranulation
single valued neutrosophic approximation operators.

The structure of the paper is organized as follows. The next section reviews some basic definitions of
neutrosophic sets and one-dimensional multi-granulation rough sets. In Section 3, the lattice structure of
the pessimistic multigranulation neutrosophic rough approximation operators are studied. In Section 4,
for special neutrosophic relations, a one-to-one correspondence relationship between neutrosophic
upper approximation operators and lower approximation operators is given. Finally, Section 5
concludes this article and points out the deficiencies of the current research.

2. Preliminaries

In this section, we briefly recall several definitions of neutrosophic set (here “neutrosophic set”
refers exclusively to “single value neutrosophic set”) and one-dimensional multi-granulation rough set.

Definition 1 ([8]). A neutrosophic set B in X is defined as follows: ∀a ∈ X,

B = (TA(a), IA(a), FA(a)),

where TA(a), IA(a), FA(a) ∈ [0, 1], 0 ≤ supTA(a) + supIA(a) + supFA(a) ≤ 3. The set of all neutrosophic
sets on X will be denoted by SVNS(X).

Definition 2 ([11]). Let C and D be two neutrosophic sets in X, if

TC(a) ≤ TD(a), IC(a) ≥ ID(a) and FC(a) ≥ FD(a)

for each a ∈ X, then we called C is contained in D, i.e., C b D. If C b D and D b C, then we called C is equal
to D, denoted by C = D.

Definition 3 ([18]). Let A and B be two neutrosophic sets in X,

(1) The union of A and B is a s neutrosophic set C, denoted by Ad B, where ∀x ∈ X,

TC(a) = max{TA(a), TB(a)}, IC(a) = min{IA(a), IB(a)}, and
FC(a) = min{FA(a), FB(a)}.
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(2) The intersection of A and B is a neutrosophic set D, denoted by Ae B, where ∀x ∈ X,

TD(a) = min{TA(a), TB(a)}, ID(a) = max{IA(a), IB(a)}, and
FD(a) = max{FA(a), FB(a)}.

Definition 4 ([18]). A neutrosophic relation R in X is defined as follows:

R = {< (a, b), TR(a, b), IR(a, b), FR(a, b) >| (a, b) ∈ X× X},

where TR : X× X → [0, 1], IR : X× X → [0, 1], FR : X× X → [0, 1] , and

0 ≤ supTR(a, b) + supIR(a, b) + supFR(a, b) ≤ 3.

The family of all neutrosophic relations in X will be denoted by SVNR(X), and the pair (X, R) is called a
neutrosophic approximation space.

Definition 5 ([19]). Let (X, R) be a neutrosophic approximation space, ∀A ∈ SVNS(X), the lower and upper
approximations of A with respect to (X, R), denoted by R(A) and R(A), are two neutrosophic sets whose
membership functions are defined as: ∀a ∈ X,

TR(A)(a) = ∧
b∈X

[FR(a, b) ∨ TA(b)], IR(A)(a) = ∨
b∈X

[(1− IR(a, b)) ∧ IA(b)],

FR(A)(a) = ∨
b∈X

[TR(a, b) ∧ FA(b)], TR(A)(a) = ∨
b∈X

[TR(a, b) ∧ TA(b)],

IR(A)(a) = ∧
b∈X

[IR(a, b) ∨ IA(b)], FR(A)(a) = ∧
b∈X

[FR(a, b) ∨ FA(b)].

The pair (R(A), R(A)) is called the one-dimensional multi-granulation rough set (also called single value
neutrosophic rough set or one-dimension single valued neutrosophic refined rough set) of A with respect to
(X, R). R and R are referred to as the neutrosophic lower and upper approximation operators,respectively.

Lemma 1 ([19]). Let R1 and R2 be two neutrosophic relations in X, ∀A ∈ SVNS(X), we have

(1) R1 d R2(A) = R1(A)e R2(A);
(2) R1 d R2(A) = R1(A)d R2(A);
(3) R1 e R2(A) c R1(A)d R2(A) c R1(A)e R2(A);
(4) R1 e R2(A) b R1(A)e R2(A).

3. The Lattice Structure of the Pessimistic Multigranulation Neutrosophic Rough
Approximation Operators

In this section, set M = {R1, R2, · · · , Rn} = {Ri}i=1,n is called a multigranulation neutrosophic
relations set on X if each Ri is a neutrosophic relation on X. In this case, the pair (X, M) will be called
an n-dimensional multigranulation neutrosophic apptoximation space.

Definition 6 ([22]). Let (X, M) be an n-dimensional multigranulation neutrosophic apptoximation space. We
define two pairs of approximation operators as follows, for all ∀A ∈ SVNS(X) and a ∈ X,

MO(A) = (MO(A), MO
(A)), MP(A) = (MP(A), MP

(A)),

where

TMO(A)(a) = ∨n
i=1TRi(A)(a), IMO(A)(a) = ∧n

i=1 IRi(A)(a), FMO(A)(a) = ∧n
i=1FRi(A)(a).

T
MO

(A)
(a) = ∧n

i=1TRi(A)(a), I
MO

(A)
(a) = ∨n

i=1 IRi(A)(a), F
MO

(A)
(a) = ∨n

i=1FRi(A)(a).
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TMP(A)(a) = ∧n
i=1TRi(A)(a), IMP(A)(a) = ∨n

i=1 IRi(A)(a), FMP(A)(a) = ∨n
i=1FRi(A)(a).

T
MP

(A)
(a) = ∨n

i=1TRi(A)(a), I
MP

(A)
(a) = ∧n

i=1 IRi(A)(a), F
MP

(A)
(a) = ∧n

i=1FRi(A)(a).

Then the pair MO(A) = (MO(A), MO
(A)) is called an optismistic multigranulation neutrosophic rough

set, and the pair MP(A) = (MP(A), MP
(A)) is called an pessimistic multigranulation neutrosophic rough set

MO and MP are referred to as the optimistic and pessimistic multigranulation neutrosophic upper approximation
operators, respectively. Similarly, MO and MP are referred to as the optimistic and pessimistic multigranulation
neutrosophic lower approximation operators, respectively.

Remark 1. If n = 1, then the multigranulation neutrosophic rough set will degenerated to a one-dimensional
multi-granulation rough set (see Definition 5). In the following, the family of all multigranulation neutrosophic
relations set on X will be denoted by n−SVNR(X). Defined a relationv on n−SVNR(X) as follows: M v N
if and only if Mi b Ni, then (n− SVNR(X),v) is a poset, where M = {Mi}i=1,n and N = {Ni}i=1,n.

∀
{

Mj}
j∈Λ ⊆ n− SVNR(X), where Mj =

{
Mj

i

}
i=1,n

and Λ be a index set, we can define union and

intersection of Mj as follows:

∨
j∈Λ

Mj =
{
dj∈Λ Mj

i

}
i=1,n

, ∧
j∈Λ

Mj =
{
ej∈Λ Mj

i

}
i=1,n

,

where
T
dj∈Λ Mj

i
(a, b) = ∨

j∈Λ
T

Mj
i
(a, b), I

dj∈Λ Mj
i
(a, b) = ∧

j∈Λ
I
Mj

i
(a, b),

F
dj∈Λ Mj

i
(a, b) = ∧

j∈Λ
F

Mj
i
(a, b), T

ej∈Λ Mj
i
(a, b) = ∧

j∈Λ
T

Mj
i
(a, b),

I
ej∈Λ Mj

i
(a, b) = ∨

j∈Λ
I
Mj

i
(a, b), F

ej∈Λ Mj
i
(a, b) = ∨

j∈Λ
F

Mj
i
(a, b).

Then ∨
j∈Λ

Mj and ∧
j∈Λ

Mj are two multigranulation neutrosophic relations on X, and we easily show that

∨
j∈Λ

Mj and ∧
j∈Λ

Mj are infimum and supremum of
{

Mj}
j∈Λ, respectively. Hence we can easily obtain the

following theorem:

Theorem 1. (n − SVNR(X),v,∧,∨) is a complete lattice, X̃n = {Xn, Xn, · · · , Xn︸ ︷︷ ︸
n

} and ∅̃N =

{∅N ,∅N , · · · ,∅N︸ ︷︷ ︸
n

} are its top element and bottom element, respectively, where Xn and ∅N are two

neutrosophic relations in X and defined as follows: ∀(a, b) ∈ X × X, TXN (a, b) = 1, IXN (a, b) = 0,
FXN (a, b) = 0 and T∅N (a, b) = 0, I∅N (a, b) = 1, F∅N (a, b) = 1. In particular, (SVNR(X),b,d,e)
is a complete lattice.

Theorem 2. Let M = {Ri}i=1,n and N = {Qi}i=1,n be two multigranulation neutrosophic relations set on X,
∀A ∈ SVNS(X), we have

(1) M ∨ NO(A) b MO(A)e NO(A), M ∨ NP(A) = MP(A)e NP(A);

(2) M ∨ NO
(A) c MO

(A)d NO
(A), M ∨ NP

(A) = MP
(A)d NP

(A);
(3) M ∧ NO(A) c MO(A) d NO(A) c MO(A) e NO(A), M ∧ NP(A) c MP(A) d NP(A) c

MP(A)e NP(A);

(4) M ∧ NO
(A) b MO

(A)e NO
(A), M ∧ NP

(A) b MP
(A)e NP

(A).
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Proof. We only show that the case of the optimistic multigranulation neutrosophic approximation operators.

(1) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

TM∨NO(A)(a)
= ∨n

i=1TRidQi(A)(a) = ∨n
i=1TRi(A)eQi(A)(a)

= ∨n
i=1

[
TRi(A)(a) ∧ TQi(A)(a)

]
≤
[
∨n

i=1TRi(A)(a)
]
∧
[
∨n

i=1TQi(A)(a)
]

= TMO(A)(a) ∧ TNO(A)(a)
= TMO(A)eNO(A)(a),

IM∨NO(A)(a)
= ∧n

i=1 IRidQi(A)(a) = ∧n
i=1 IRi(A)eQi(A)(a)

= ∧n
i=1

[
IRi(A)(a) ∨ IQi(A)(a)

]
≥
[
∧n

i=1 IRi(A)(a)
]
∨
[
∧n

i=1 IQi(A)(a)
]

= IMO(A)(a) ∨ INO(A)(a)
= IMO(A)eNO(A)(a),

FM∨NO(A)(a)
= ∧n

i=1FRidQi(A)(a) = ∧n
i=1FRi(A)eQi(A)(a)

= ∧n
i=1

[
FRi(A)(a) ∨ FQi(A)(a)

]
≥
[
∧n

i=1FRi(A)(a)
]
∨
[
∧n

i=1FQi(A)(a)
]

= FMO(A)(a) ∨ FNO(A)(a)
= FMO(A)eNO(A)(a).

Hence, M ∨ NO(A) b MO(A)e NO(A).
(2) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

T
M∨NO

(A)
(a)

= ∧n
i=1TRidQi(A)(a) = ∧n

i=1TRi(A)dQi(A)(a)

= ∧n
i=1

[
TRi(A)(a) ∨ TQi(A)(a)

]
≥
[
∧n

i=1TRi(A)(a)
]
∨
[
∧n

i=1TQi(A)(a)
]

= T
MO

(A)
(a) ∨ T

NO
(A)

(a) = T
MO

(A)dNO
(A)

(a),

I
M∨NO

(A)
(a)

= ∨n
i=1 IRidQi(A)(a) = ∨n

i=1 IRi(A)dQi(A)(a)

= ∨n
i=1

[
IRi(A)(a) ∧ IQi(A)(a)

]
≤
[
∨n

i=1 IRi(A)(a)
]
∧
[
∨n

i=1 IQi(A)(a)
]

= I
MO

(A)
(a) ∧ I

NO
(A)

(a) = I
MO

(A)dNO
(A)

(a),

F
M∨NO

(A)
(a)

= ∨n
i=1FRidQi(A)(a) = ∨n

i=1FRi(A)dQi(A)(a)

= ∨n
i=1

[
FRi(A)(a) ∧ FQi(A)(a)

]
≤
[
∨n

i=1FRi(A)(a)
]
∧
[
∨n

i=1FQi(A)(a)
]

= F
MO

(A)
(a) ∧ F

NO
(A)

(a) = F
MO

(A)dNO
(A)

(a).

Hence, M ∨ NO
(A) c MO

(A)d NO
(A).
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(3) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

TM∧NO(A)(a)
= ∨n

i=1TRieQi(A)(a) ≥ ∨n
i=1TRi(A)dQi(A)(a)

= ∨n
i=1

[
TRi(A)(a) ∨ TQi(A)(a)

]
=
[
∨n

i=1TRi(A)(a)
]
∨
[
∨n

i=1TQi(A)(a)
]

= TMO(A)(a) ∨ TNO(A)(a) ≥ TMO(A)(a) ∧ TNO(A)(a),

IM∧NO(A)(a)
= ∧n

i=1 IRieQi(A)(a) ≤ ∧n
i=1 IRi(A)dQi(A)(a)

= ∧n
i=1

[
IRi(A)(a) ∧ IQi(A)(a)

]
=
[
∧n

i=1 IRi(A)(a)
]
∧
[
∧n

i=1 IQi(A)(a)
]

= IMO(A)(a) ∧ INO(A)(a) ≤ IMO(A)(a) ∨ INO(A)(a),

FM∧NO(A)(a)
= ∧n

i=1FRieQi(A)(a) ≤ ∧n
i=1FRi(A)dQi(A)(a)

= ∧n
i=1

[
FRi(A)(a) ∧ FQi(A)(a)

]
=
[
∧n

i=1FRi(A)(a)
]
∧
[
∧n

i=1FQi(A)(a)
]

= FMO(A)(a) ∧ FNO(A)(a) ≤ FMO(A)(a) ∨ FNO(A)(a).

Hence, M ∧ No(A) c Mo(A)d No(A) c Mo(A)e No(A).
(4) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

T
M∧NO

(A)
(a)

= ∧n
i=1TRieQi(A)(a) ≤ ∧n

i=1TRi(A)eQi(A)(a)

= ∧n
i=1

[
TRi(A)(a) ∧ TQi(A)(a)

]
=
[
∧n

i=1TRi(A)(a)
]
∧
[
∧n

i=1TQi(A)(a)
]

= T
MO

(A)
(a) ∧ T

NO
(A)

(a) = T
MO

(A)eNO
(A)

(a),

I
M∧NO

(A)
(a)

= ∨n
i=1 IRieQi(A)(a) ≥ ∨n

i=1 IRi(A)eQi(A)(a)

= ∨n
i=1

[
IRi(A)(a) ∨ IQi(A)(a)

]
=
[
∨n

i=1 IRi(A)(a)
]
∨
[
∨n

i=1 IQi(A)(a)
]

= I
MO

(A)
(a) ∨ T

NO
(A)

(a) = I
MO

(A)eNO
(A)

(a),

F
M∧NO

(A)
(a)

= ∨n
i=1FRieQi(A)(a) ≥ ∨n

i=1FRi(A)eQi(A)(a)

= ∨n
i=1

[
FRi(A)(a) ∨ FQi(A)(a)

]
=
[
∨n

i=1FRi(A)(a)
]
∨
[
∨n

i=1FQi(A)(a)
]

= F
MO

(A)
(a) ∨ F

NO
(A)

(a) = F
MO

(A)eNO
(A)

(a).

Hence, M ∧ NO
(A) b MO

(A)e NO
(A). �

From Theorem 2, we can easily obtain the following corollary:
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Corollary 1. Let M = {Ri}i=1,n and N = {Qi}i=1,n be two multigranulation neutrosophic relations set on
X. If M v N, then ∀A ∈ SVNS(X),

NO(A) b MO(A), NP(A) b MP(A)), MO
(A) b NO

(A), MP
(A) b NP

(A).

Let HP
n =

{
MP | M ∈ n− SVNR(X)

}
and LP

n =
{

MP | M ∈ n− SVNR(X)
}

be the set of
pessimistic multigranulation neutrosophic upper and lower approximation operators in X, respectively.

• Defined a relation ≤̂ on HP
n as follows: MP≤̂NP if and only if MP

(A) b NP
(A) for each

A ∈ SVNS(X). Then (HP
n , ≤̂) is a poset.

• Defined a relation ≤̂ on LP
n as follows: MP≤̂NP if and only if NP(A) b MP(A) for each A ∈

SVNS(X). Then (LP
n , ≤̂) is a poset.

Let HO
n =

{
MO | M ∈ n− SVNR(X)

}
and LO

n =
{

MO | M ∈ n− SVNR(X)
}

be the set of optimistic
multigranulation neutrosophic upper and lower approximation operators in X, respectively.

• Defined a relation ≤̂ on HO
n as follows: MO≤̂NO if and only if MO

(A) b NO
(A) for each

A ∈ SVNS(X). Then (HO
n , ≤̂) is a poset.

• Defined a relation ≤̂ on LO
n as follows: MO≤̂NO if and only if NO(A)) b MO(A) for each

A ∈ SVNS(X). Then (LO
n , ≤̂) is a poset.

Theorem 3. (1) ∀
{

MP
i

}
i∈I
⊆(HP

n , ≤̂) and I be a index set, we can define union and intersection of MP
i

as follows:

∨̂
i∈I

MP
i = ∨

i∈I
Mi

P , ∧̂
i∈I

MP
i = [ ∧

i∈I
Mi]

P
,

where [ ∧
i∈I

Mi] = ∨
{

M ∈ n− SVNR(X) | ∀A ∈ SVNS(X), MP
(A) b ei∈I MP

i (A)
}

. Then ∨̂
i∈I

MP
i and

∧̂
i∈I

MP
i are supremum and infimum of

{
MP

i

}
i∈I

, respectively.

(2) ∀
{

MP
i

}
i∈I
⊆(LP

n , ≤̂) and I be a index set, we can define union and intersection of MP
i as follows:

∨̂
i∈I

MP
i = ∨

i∈I
Mi

P, ∧̂
i∈I

MP
i = [ ∨

i∈I
Mi]

P,

where [ ∨
i∈I

Mi] = ∨
{

M ∈ n− SVNR(X) | ∀A ∈ SVNS(X),di∈I MP
i (A) b MP(A)

}
. Then ∨̂

i∈I
MP

i and

∧̂
i∈I

MP
i are supremum and infimum of

{
MP

i

}
i∈I

, respectively.

Proof. We only show (1).
Let M = ∨

i∈I
Mi, then Mi v M for each i ∈ I. By Corollary 1, we have Mi

P
(A) b MP

(A) for

any A ∈ SVNS(X). Thus Mi
P ≤̂MP. If M? is a multigranulation neutrosophic relations set such that

Mi
P≤̂M?P for each i ∈ I, then A ∈ SVNS(X), Mi

P
(A) b M?P

(A). Hence,

MP
(A) = ∨

i∈I
Mi

P
(A) = di∈I Mi

P
(A) b M?P

(A).

Thus MP≤̂M?P. So ∨̂
i∈I

MP
i = ∨

i∈I
Mi

P is the supremum of
{

MP
i

}
i∈I

.

Let Q = [ ∧
i∈I

Mi], then ∀B ∈ SVNS(X), we have

QP
(B) = [ ∧

i∈I
Mi]

P
(B) b ei∈I MP

i (B) b MP
i (B).
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Thus QP≤̂MP
i for each i ∈ I. If M∗ is a multigranulation neutrosophic relations set such that

M∗P≤̂MP
i for each i ∈ I, then

M∗P
(A) b ei∈I MP

i (A).

By the construction of [ ∧
i∈I

Mi], we can easily obtain M∗ v [ ∧
i∈I

Mi] = Q. Hence,

M∗P≤̂ [ ∧
i∈I

Mi]
P
= QP,

So ∧̂
i∈I

MP
i = [ ∧

i∈I
Mi]

P
is the infimum of

{
MP

i

}
i∈I

. �

Remark 2. (1) ∀A ∈ SVNS(X), ∀a ∈ X, we can calculate that the following formula holds.

T
∅̃N

P
(A)

(a) = 0, I
∅̃N

P
(A)

(a) = 1, F
∅̃N

P
(A)

(a) = 1,

T∅̃N
P
(A)

(a) = 1, I∅̃N
P
(A)

(a) = 0, F∅̃N
P
(A)

(a) = 0.

Hence, ∀M ∈ n− SVNR(X), ∅̃N
P
(A) b MP

(A) and MP(A) b ∅̃N
P
(A). It shows that ∅̃N

P
≤̂MP

and ∅̃N
P≤̂MP, i.e., ∅̃N

P
is the bottom element of (HP

n , ≤̂) and ∅̃N
P is the bottom element of (LP

n , ≤̂). By
Theorem 3, we have the following result: Both (HP

n , ≤̂, ∧̂, ∨̂) and (LP
n , ≤̂, ∧̂, ∨̂) are complete lattices.

(2) Similarly, we can prove that both (HO
n , ≤̂, ∧̂, ∨̂) and (LO

n , ≤̂, ∧̂, ∨̂) are complete lattices if we can use
the generalization formula of

M ∨ NO
(A) b MO

(A)d NO
(A) and M ∨ NO(A) c MO(A)e NO(A),

However, by Theorem 2, we known that

M ∨ NO
(A) c MO

(A)d NO
(A) and M ∨ NO(A) b MO(A)e NO(A).

So, naturally, there is the following problem:
How to give the supremum and infimum of the optimistic multigranulation neutrosophic rough

approximation operators?

In the one-dimensional case, for convenience, we will use H =
{

R | R ∈ SVNR(X)
}

and
L = {R | R ∈ SVNR(X)} to denote the set of neutrosophic upper and lower approximation operators
in X, respectively. According to Lemma 1, Remark 2 and Theorem 3, we have the following result: both
(H,≤,∧,∨) and (L,≤,∧,∨) are complete lattices (it is also the one-dimensional case of Reference [23]).

4. The Relationship between Complete Lattices (H,≤,∧,∨) and (L,≤,∧,∨)

In this section, we will study the relationship between complete lattices (H,≤,∧,∨) and
(L,≤,∧,∨). Set

A =
{

SVNR(X) | ∀R1, R2 ∈ SVNR(X), R1 ≤ R2 ⇔ R1 b R2 ⇔ R1 ≤ R2
}

.

Firstly, we will give an example to illustrate thatA is not an empty family.

Example 1. Let X = {a} be a single point set, R1 and R2 are two single valued neutrosophic relations in X.

(1) If R1 ≤ R2, then R1 b R2. In fact, if R1 ≤ R2, then R1(A) b R2(A) for each A ∈ SVNS({a}).
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Thus, ∀a ∈ X,

TR1(A)(a) ≤ TR2(A)(a), IR1(A)(a) ≥ IR2(A)(a), and FR1(A)(a) ≥ FR2(A)(a).

Moreover, TR1(a, a) ∧ TA(a) ≤ TR2(a, a) ∧ TA(a), IR1(a, a) ∨ IA(a) ≥ IR2(a, a) ∨ IA(a),
and FR1(a, a) ∨ FA(a) ≥ FR2(a, a) ∨ FA(a). Considering the arbitrariness of A, in particular, take
A = {< a, (1, 0, 0) >}, we have TR1(a, a) ≤ TR2(a, a), IR1(a, a) ≥ IR2(a, a) and FR1(a, a) ≥ FR2(a, a).

Hence, R1 b R2.

Similarly, we also can show that the following result:
(2) If R1 ≤ R2, then R1 b R2. So, by (1), (2) and Corollary 1, we have SVNR({a}) ∈ A, i.e., A is not an

empty family.

Now, we will give the relationship between complete lattices (H,≤,∧,∨) and (L,≤,∧,∨).

Proposition 1. If SVNR(X) ∈ A, then [ei∈I Ri] = ei∈I Ri = [di∈I Ri], where I is a index set, and Ri ∈
SVNR(X) for each i ∈ I.

Proof. We first show that [ei∈I Ri] = ei∈I Ri. Let R be a neutrosophic relation in X such that
ei∈I Ri(A) c R(A) for each A ∈ SVNS(X), then Ri ≥ R, this is equivalent to Ri c R since SVNR(X) ∈
A. Thus ei∈I Ri c R. Moreover, by the construction of [ei∈I Ri], we have ei∈I Ri c [ei∈I Ri]. On the
other hand, we can show that ei∈I Ri(A) c ei∈I Ri(A) for each A ∈ SVNS(X). So

[ei∈I Ri] = d
{

R ∈ SVNR(X) | ∀A ∈ SVNS(X),ei∈I Ri(A) c R(A)
}
c ei∈I Ri.

Hence [ei∈I Ri] = ei∈I Ri.
Now, we show that ei∈I Ri = [di∈I Ri]. Let R be a single valued neutrosophic relation in such

that di∈I Ri(A) b R(A) for each A ∈ SVNS(X), then Ri ≥ R, this is equivalent to Ri c R since
SVNR(X) ∈ A. Thus ei∈I Ri c R. Moreover, by the construction of [di∈I Ri]. We have ei∈I Ri c
[di∈I Ri].

On the other hand, we can show that di∈I Ri(A) b ei∈I Ri(A) for each A ∈ SVNS(X). So

[di∈I Ri] = d{R ∈ SVNR(X) | ∀A ∈ SVNS(X),di∈I Ri(A) b R(A)} c ei∈I Ri.

Hence, [di∈I Ri] = ei∈I Ri.
From above proved, we know that [ei∈I Ri] = ei∈I Ri = [dj∈J Rj]. �

Theorem 4. If SVNR(X) ∈ A, then (SVNR(X),b,d,e) and (H,≤,∧,∨) are complete lattice isomorphism.

Proof. Define a mapping φ12 : SVNR(X)→ H as follows: ∀R ∈ SVNR(X), φ12(R) = R. Obviously,
φ12 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ12 is one-one.
∀{Ri}i∈I ⊆ SVNR(X) and I be a index set. By Theorem 3 and Proposition 1, we have

φ12(di∈I Ri) = di∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ12(Ri),

and
φ12(ei∈I Ri) = ei∈I Ri = [ei∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ12(Ri).

Hence, φ12 preserves arbitrary union and arbitrary intersection. �

From above proved, we know that (SVNR(X),b,d,e) and (H,≤,∧,∨) are complete
lattice isomorphism.
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Theorem 5. If SVNR(X) ∈ A, then (SVNR(X),b,d,e) and (L,≤,∧,∨) are complete lattice isomorphism.

Proof. Define a mapping φ13 : SVNR(X)→ L as follows:∀R ∈ SVNR(X), φ12(R) = R. Obviously,
φ13 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ13 is one-one.
∀{Ri}i∈I ⊆ SVNR(X) and I be an index set. By Theorem 3 and Proposition 1, we have

φ13(di∈I Ri) = di∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ13(Ri),

and
φ13(ei∈I Ri) = ei∈I Ri = [di∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ13(Ri).

Hence, φ13 preserves arbitrary union and arbitrary intersection. �

From the above proof, we know that (SVNR(X),b,d,e) and (L,≤,∧,∨) are complete
lattice isomorphism.

Theorem 6. If SVNR(X) ∈ A, then (H,≤,∧,∨) and (L,≤,∧,∨) are complete lattice isomorphism.

Proof. Through Theorems 4 and 5, we immediately know that the conclusion holds. We can also prove
it by the following way:

Define a mapping φ23 : H → L as follows: ∀R ∈ H, φ23(R) = R. Through Theorems 4 and 5,
there must be one and only one R ∈ SVNR(X) such that φ23(R) = R for each R ∈ L. This shows
φ23 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ23 is one-one.
∀
{

Ri
}

i∈I ⊆ H and I be a index set. Through Theorem 3 and Proposition 1, we have

φ23( ∨
i∈I

Ri) = φ23(di∈I Ri) = di∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ13(Ri),

and
φ13( ∧

i∈I
Ri) = φ13([ei∈I Ri]) = [ei∈I Ri] = [di∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ23(Ri).

Hence, φ23 preserves arbitrary union and arbitrary intersection. So, (H,≤,∧,∨) and (L,≤,∧,∨)
are complete lattice isomorphism. �

Remark 3. Through Theorems 4–6, we can ascertain that φ12,φ13 and φ23 are isomorphic mappings among
complete lattices. Moreover, the following diagram can commute, i.e., φ23 ◦ φ12 = φ13 (see Figure 1).Symmetry 2018, 10, x FOR PEER REVIEW  13 of 14 
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5. Conclusions

Following the idea of multigranulation neutrosophic rough sets on a single domain as introduced
by Bo et al. (2018), we gave the lattice structure of the pessimistic multigranulation neutrosophic
rough approximation operators. In the one-dimensional case, for each special SVNR(X), we gave a
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one-to-one correspondence relationship between complete lattices (H,≤) and (L,≤). Unfortunately,
at the moment, we haven’t solved the following problems:

(1) Can the supremum and infimum of the optimistic multigranulation neutrosophic rough
approximation operators be given?

(2) For any set , are (H,≤) and (L,≤) isomorphic between complete lattices?
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