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Abstract: This paper investigates the boundary value in the heat conduction problem by a variational
iteration method. Applying the iteration method, a sequence of convergent functions is constructed,
the limit approximates the exact solution of the heat conduction equation in a few iterations
using only the initial condition. This method does not require discretization of the variables.
Numerical results show that this method is quite simple and straightforward for models that are
currently under research.
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1. Introduction

The problem of heat conduction with unknown boundary condition is a kind of inverse problem.
The inverse problem of the heat conduction equation (IPHCE) arises in some important fields of
engineering and science. For instance, because of the space program, starting about 1956, some
researchers in References [1–3] researched the applications of IPHCE which were related to rocket
nozzles, to nose cones of missiles and probes, and other devices; in References [4,5], the researchers
researched the solutions of IPHCE for testing of nuclear reactor components; Howse in Reference [6]
researched the solidification of glass by the IPHCE; the problem of periodic heating in combustion
chambers of internal combustion engines was solved by the IPHCE in Reference [7]. For other
applications of the IPHCE the reader is referred to References [8,9].

In order to briefly introduce the IPHCE, consider the following one-dimensional
heat conduction equation:

vt = a1vxx + a2vx + a3v + F(x, t), 0 < x < 1, t > 0, (1)

with the initial condition:

v(x, 0) = f (x), 0 < x < 1, (2)

and the Dirichlet or Neumann boundary conditions:

v(0, t) = g1(t), v(1, t) = g2(t), t > 0, (3)

or

vx(0, t) = h1(t), vx(1, t) = h1(t), t > 0. (4)
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Here, t denotes time variable, x denotes space variable, v = v(x, t) represents the temperature

distribution function, vt =
∂v(x, t)

∂t
, vx =

∂v(x, t)
∂x

, vxx =
∂2v(x, t)

∂x2 , F(x, t) represents heat source (sink),

a1 = a1(x, t) represents thermal conductivity, a2 = a2(x, t) represents fluid velocity, and a3 = a3(x, t)
represents absorbtion (perfusion) coefficient.

There are four main types of IPHCEs, as follows:

• The reversed-time problem (RTP): v(x, 0) is unknown;
• the inverse boundary problem (IBP): the Dirichlet or Neumann condition is unknown;
• the inverse coefficient problem (ICP): a1, a2, or a3 is unknown; and
• the inverse heat source (sink) problem (IHSP): F(x, t) is unknown.

Many authors have studied the IPHCE, and some types of IPHCE have been solved by numerical
methods. For instance, the authors in Reference [10] applied a numerical method to solve an IBP;
in Reference [11], the boundary integral method was applied to solve an IBP; and in Reference [12,13],
the authors applied the method of finite volume or boundary element to an IBP. For other methods,
the reader is referred to References [14,15]. For this article, we use the variational iteration method
(VIM) to investigate an IBP.

The structure of this article is as follows. We describe this inverse problem mathematically
in Section 2. In Section 3, we briefly introduce the VIM and apply the method to IBP. Illustrative
examples are presented in Section 4, and the conclusions are given in Section 5.

2. Problem Statement

We consider the following two IBPs in this Section.
Firstly, we consider the Equations (1)–(3) with a1 = 1, a2 = a3 = F(x, t) = 0 as follows:

vt = vxx, 0 < x < 1, t > 0, (5)

v(x, 0) = f (x), 0 < x < 1, (6)

v(0, t) = g1(t), t > 0, (7)

v(1, t) = g2(t), t > 0, (8)

with the overdetermined condition:

v(x∗, t) = H(t), t > 0. (9)

Here, x∗ ∈ (0, 1) is an observation point; f (x) and H(t) are given, continuous functions; and
g2(t) is a known infinitely differentiable function. The unknown functions v(x, t) and g1(t) will be
determined. When v(x, 0), v(0, t), and v(1, t) are all given functions which satisfy certain conditions,
then the problem in Equations (5)–(8) is a forward problem. According to the existence and uniqueness
theorem (see Reference [16]), only one bounded solution of the problem in Equations (5)–(8) exists.

Secondly, we take the Equation (1) with a1 = 1, a2 = a3 = 0, Equations (2) and (4) as follows:

vt = vxx + F(x, t), 0 < x < 1, t > 0, (10)

v(x, 0) = f (x), 0 < x < 1, (11)
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vx(0, t) = h1(t), t > 0, (12)

vx(1, t) = h2(t), t > 0, (13)

with the overdetermined condition:

v(x∗, t) = H(t), t > 0. (14)

Here, x∗ ∈ (0, 1) is a fixed observation point; F(x, t), v(x, 0), vx(1, t), and H(t) are all given
functions; and we will determine the unknown functions v(x, t) and h1(t). When F(x, t), v(x, 0), vx(0, t)
and vx(1, t) are all given functions which satisfy certain conditions, then the problem in
Equations (10)–(13) is a straightforward problem. According to the existence and uniqueness
theorem (See Reference [17]), under those conditions only one bounded solution of the problem
in Equations (10)–(13) exists.

3. Analysis of VIM

In [18], VIM was proposed. Using the iteration method, a sequence of convergent functions
is constructed, the limit approximates the exact solution of the heat conduction equation in a
few iterations by using only the initial condition. This method has been successfully applied to
integro-differential equations, Bratu-like equation, and in other fields [19–22]. In Reference [23],
researchers studied the convergence of the VIM via Banach’s fixed point theorem.

For a brief introduction to the basic theory and the main steps of VIM, consider the following
differential equation:

Lv + Nv = f (x). (15)

Here, L and N respectively represent linear and nonlinear operators, and f (x) represents an
inhomogeneous term.

If vn−1(n ≥ 1) is an approximate solution of Equation (15), it follows that:

Lvn−1 + Nvn−1 − f (x) 6= 0.

In order to improve its accuracy, a correction term can be added, which is written as:

vn(x) = vn−1(x) +
∫ x

0
λ(ξ)[Lvn−1(ξ) + Nṽn−1(ξ)− f (ξ)]dξ. (16)

Here, the subscript n represents the n-th approximation of v, and λ(ξ) represents a generalized
Lagrange multiplier [18], which can be optimally identified in as simple form as possible using
variational theory, the non-linear part must be considered as a restricted variation term ṽn−1 [18], then
the variation of the nonlinear part is zero (i.e., δṽn−1 = 0). The stationary condition of Equation (16)
requires that:

δvn = δvn−1 + δ
∫ x

0
λ(ξ)[Lvn−1(ξ) + Nṽn−1(ξ)− f (ξ)]dξ = 0, (17)

for arbitrary δvn−1.
Considering VIM, we can construct the correct functional for the solution in the −t direction for

for Equations (5) and (10) as follows:

vn(x, t) = vn−1(x, t) +
∫ t

0
λ(t, τ)

[
∂vn−1(x, τ)

∂τ
− ∂2ṽn−1(x, τ)

∂x2

]
dτ, (18)
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and:

vn(x, t) = vn−1(x, t) +
∫ t

0
λ(t, τ)

[
∂vn−1(x, τ)

∂τ
− ∂2ṽn−1(x, τ)

∂x2 − F(x, τ)

]
dτ, (19)

respectively. Determining λ via variational theory and taking the stationarity condition for
Equation (19), we have:

δvn(x, t) = δvn−1(x, t) + δ
∫ t

0
λ(t, τ)

[
∂vn−1(x, τ)

∂τ
− ∂2ṽn−1(x, τ)

∂x2 − F(x, τ)

]
dτ = 0. (20)

With integration by parts, we have:

δvn(x, t) = δvn−1(x, t)(1 + λ(t, t))−
∫ t

0
λτ(t, τ)δvn−1(x, τ)dτ = 0. (21)

For arbitrary δvn−1, this yields the following stationary conditions:

1 + λ(t, τ)|τ=t = 0,

λτ(t, τ) = 0.

Hence, we find:

λ(t, τ) = −1. (22)

Then the iterative formulas for Equations (5) and (10) reduce to:

vn(x, t) = vn−1(x, t)−
∫ t

0

[
∂vn−1(x, τ)

∂τ
− ∂2vn−1(x, τ)

∂x2

]
dτ, (23)

and:

vn(x, t) = vn−1(x, t)−
∫ t

0

[
∂vn−1(x, τ)

∂τ
− ∂2vn−1(x, τ)

∂x2 − F(x, τ)

]
dτ, (24)

respectively.
By using Equation (23), a sequence of convergent of solutions vn for Equation (5) is found by

selecting the appropriate v0(x, t), which limit the exact solution v. Then, we obtain the boundary
condition in Equation (7). Using a similar procedure, a sequence of convergent solutions vn

for Equation (10) are found from Equation (24) and then, we obtain the boundary condition in
Equation (12).

4. Illustrative Examples

In this section, we give two examples of IBP with known exact solution to illustrate the efficiency
and validity of VIM.

4.1. Example 1

Consider the IBP in Equations (5)–(9) with the following known functions:

f (x) = sin(x),

g2(t) = exp(−t) sin(1),

H(t) = exp(−t) sin(
1
2
),
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with x∗ = 1
2 . This problem has an exact solution as follows:

v = exp(−t) sin(x), g1(t) = 0.

We choose v0 = f (x) = sin(x). Using Equation (23), we have:

v1 = sin(x)− t sin(x) = sin(x)(1− t),

v2 = sin(x)− t sin(x) +
t2

2
sin(x) = sin(x)(1− t +

t2

2!
),

v3 = sin(x)− t sin(x) +
t2

2
sin(x)− t3

6
sin(x) = sin(x)(1− t +

t2

2!
− t3

3!
),

. . . . . . . . . . . .

vn =
n

∑
k=0

(−t)k

k!
sin(x), n = 0, 1, . . . .

Thus, the problem in Equations (5)–(9) has the solution v = exp(−t) sin(x) when n→ +∞, which
satisfies the given differential equation. Then, the boundary condition g1(t) = 0 is obtained. Hence,
our iterative approach recovers the exact solution.

4.2. Example 2

Consider the IBP in Equations (10)–(14) with the following known functions:

F(x, t) = −π2x exp(−π2t),

f (x) = x + sin(πx),

h2(t) = (1− π) exp(−π2t),

and:
H(t) = (x∗ + sin(πx∗)) exp(−π2t),

with x∗ = 1
2 . This problem has an exact solution as follows:

v = (x + sin(πx)) exp(−π2t), h1(t) = (1 + π) exp(−π2t).

In the iterative method, we choose v0 = f (x) = x + sin(πx). Using Equation (24), we obtain:

v1 = x exp(−π2t) + sin(πx)− π2t sin(πx) = x exp(−π2t) + sin(πx)(1− π2t),

v2 = x exp(−π2t)+ sin(πx)−π2t sin(πx)+
π4t2

2
sin(πx) = x exp(−π2t)+ sin(πx)(1−π2t+

π4t2

2!
),

v3 = x exp(−π2t) + sin(πx)(1− π2t +
π4t2

2!
− π6t3

3!
),

. . . . . . . . . . . .

vn = x exp(−π2t) +
n

∑
k=0

(−π2t)k

k!
sin(πx), n = 1, 2, . . . .

Thus, the problem in Equations (10)–(14) has the solution v = (x + sin(πx)) exp(−π2t) when
n→ +∞. Then the boundary condition h1(t) = (1 + π) exp(−π2t) is obtained. Again, our iterative
approach recovers the exact solution.

In References [10–13], similar IBPs have been solved by other numerical methods. Here, the
advantage of the VIM is that it does not need to discretize the variables, so it is not subject to
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computational error and has no need to face computing time and large computer memory. Additionally,
the VIM solves this problem using only the initial condition, and therefore is very practical and effective
for the currently researched models.

5. Conclusions

In this work, we successfully utilized VIM in a heat conduction problem with unknown boundary
conditions. All the calculations could be made with simple manipulations. The method provides the
solution with high precision and high efficiency in the form of a rapidly converging series by using only
the initial condition. The solutions obtained through VIM recover the exact solutions as the number of
iterations becomes infinite. VIM solves the IBP easily, while it does not need to discretize the variables.
For this reason, it is not subject to computational error and requires neither substantial computing
time nor large amounts of computer memory. The results of the preceding examples illustrate that this
method is easy to operate and that it is a practical, reliable, and effective iterative technique for the IBP.
Thus, we can say that the VIM is very practical and effective for models currently under study.
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IPHCE Inverse Problem of Heat Conduction Equation
IBP inverse boundary problem
ICP inverse coefficient problem
IHSP inverse heat source (sink) problem
RTP reversed-time problem
VIM variational iteration method
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