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Abstract: Type-2 intuitionistic fuzzy set (T2IFS) is a powerful and important extension of the classical
fuzzy set, intuitionistic fuzzy set to measure the vagueness and uncertainty. In a practical
decision-making process, there always occurs an inter-relationship among the multi-input arguments.
To deal with this point, the motivation of the present paper is to develop some new interval type-2 (IT2)
intuitionistic fuzzy aggregation operators which can consider the multi interaction between the input
argument. To achieve it, we define a symmetric triangular interval T2IFS (TIT2IFS), its operations,
Hamy mean (HM) operator to aggregate the preference of the symmetric TIT2IFS and then shows
its applicability through a multi-criteria decision making (MCDM). Several enviable properties and
particular cases together with following different parameter values of this operator are calculated
in detail. At last a numerical illustration is to given to exemplify the practicability of the proposed
technique and a comparative analysis is analyzed in detail.

Keywords: type-2 fuzzy set; multi criteria decision-making; triangular interval type-2 intuitionistic
fuzzy set; Hamy mean; aggregation operator

1. Introduction

Multiple criteria decision making (MCDM) is a hot research topic in the modern decision-making
process to find the most suitable alternative(s) from the available ones. In this process,
all the alternatives are to be evaluated under several attributes by both qualitatively and
quantitatively [1,2]. Traditionally, the researchers offer his/her preference information towards
the alternatives by using the crisp real numbers only. However, due to lack of knowledge,
a time pressure, and other unavoidable factors, it is very difficult if not impossible to express
the information precisely. Therefore, to handle the incomplete or incorrect information, the theory
of fuzzy set (FS) also called as a type-1 fuzzy set (T1FS) [3] and its extensions as an intuitionistic
FS (IFS) [4], type-2 FS (T2FS) [5] are widely used. Under these environments, authors have put
forth the different techniques to solve the MCDM problems. For instance, geometric aggregation
operators (AOs) for different intuitionistic fuzzy numbers (IFNs) are developed by Xu and Yager [6].
Garg [7,8] presented some Einstein norm based AOs for IFNs. Zhao et al. [9] presented
some generalized AOs. Kaur and Garg [10] presented some generalized AOs using t-norm
operations for cubic IFS information. However, apart from these, a comprehensive overview of
the different approaches for solving the decision making (DM) problems by using aggregation
operator (AOs) [11–21], information measures (IMs) [22–24] are summarized in these papers and
their references.

In these existing works, authors have investigated the problem by taking quantitative environment
to access the alternatives. However, not all the alternatives are accessed in terms of quantitative.
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For this, there exists the concept of qualitative assessment in terms of linguistic variables/terms
(LVs/LTs) [25,26]. By taking the advantages of LTs, Zhang [27] presented the linguistic IF (LIF) AOs to
aggregate the LIF numbers. Chen et al. [28] presented an approach to solving the MCDM problem
under LIFS environment. Garg and Kumar [29] presented AOs for LIF numbers (LIFNs) by using set
pair analysis theory. Garg and Kumar [30] presented new possibility degree measure for LIFNs and an
AO to aggregate the different LIFNs to solve MCDM problems. In many practical problems, it is not
easy for any decision maker (DM) to discover an exact membership function of an FS corresponding to
its element. To overthrow this limitation, type-2 fuzzy set (T2FS), an extension of T1FS, is applied to
the model and is characterized by two functions: primary membership functions (PMF) and secondary
membership function (SMF). Unfortunately, T2FSs are highly complex, it is troublesome for the DMs to
implement it in the real situation; hence, their use is not yet widespread. To reduce the computational
complexity, Interval type-2 fuzzy (IT2F) sets (IT2FSs) [31] is the most widely used in T2FSs. In past
decades, many methods have been developed to extend the theory of MCDM under IT2FS environment.
Chen et al. [32] built up an expanded QUALIFLEX strategy for taking care of DM issues
in view of IT2FSs and gave a contextual analysis of medicinal basic leadership. Chen [33]
built up an ELECTRE-base outranking strategy for decision-making problems using IT2FSs.
Wu and Mendel [34] proposed a linguistic weighted average AOs to deal with analytical hierarchical
process (AHP) process under IT2F environment. Qin and Liu [35] investigated a family of type-2 fuzzy
AOs in light of Frank triangular norm and built up another way to deal with MCDM problems under
the IT2FSs setting. Gong et al. [36] extended the generalized Bonferroni mean (GBM) operator to
the trapezoidal IT2F environment. Apart from these, some other studies under T2FS environment are
conducted which are summarized in [35–48].

In all these above AOs, researchers have described the information by considering the independent
of argument assumptions during the aggregation. However, the interaction between the multi-input
parameters have commonly occurred and thus, it is necessary to add their features into the process.
In that direction, Bonferroni mean (BM) and generalized BM (GBM)-based operators are proposed by
the researchers [49,50]. But from them, it has been observed that they have considered only two or three
multi-parameter at a single time. However, they are unable to analyze the effect of the multi-input
argument into one analysis. Furthermore, in BM and GBM, there is a need for two and three
parameters from the irrational set during the process which increases the computational complexity.
An alternative to BM operators, Hamy mean (HM) [51] or Maclaurin symmetric mean (MSM) or
Muirhead mean (MM) operator has advantages of capturing the inter-relationship among the multiple
input arguments. Qin [46] make a correlation between the HM and the MSM and conclude that
the MSM is an instance of HM [16,17]. Garg and Nancy [52] develop MCDM method by prioritized
MM aggregation operators. Additionally, the HM operator involves the parameter, which can provide
more flexibility and robustness during the aggregation operator. The existing - arithmetic and geometric
mean- operators can be easily deduced from the HM by setting a particular value to its parameter.
Be that as it may, the HM just accomplished a couple of research results on the hypothesis and
application of inequality [53,54]. Therefore, it is a means to study the AOs using the HM operator.

It is noted from the above studies that T2FS or IT2FS are examined by considering only
the membership degree (MD) of an element. But in practical problems, it is sometimes not possible
for a DM to give their preferences in terms of MD only as there may be some amount of hesitation
also. For discussing this, a type-2 IFS (T2IFS) [39] has been introduced which simultaneously considers
the MDs, non-membership degrees (NMDs) and the footprint of uncertainties (FOU) between them.
Later on, due to the high complexity of T2IFS, Garg and Singh [55] introduced the concept of
triangular interval T2IFS (TIT2IFS) has introduced by considering the MDs and NMDs as a triangular
fuzzy number.

Based on the above analysis, we can know that the decision-making problems have become more
tedious these days. So in order to make a better decision in terms of selecting the best alternative(s) for
the MCDM problems, it is necessary to consider the various factors such as MDs, NMDs, FOU between
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the alternatives. By keeping the advantages of both the AOs and the TIT2IFS, it is necessary to
extend the Hamy mean AOs to process the TIT2IFNs by using linguistic features of MDs and NMDs
and hence to develop some MCDM methods. Until now, we have not seen any work based on
the AOs used to aggregate the TIT2IFS information. Thus, keeping in mind the advantages of T2IFS and
the multiple input interaction between the argument of HM operator, this paper has presented
the concept of the symmetric TIT2IFS and their desired properties. These considerations have led us to
consider the main objectives of this paper:

1. to propose the concept of the symmetric TIT2IFS (STIT2IFSs);
2. to propose some new AOs for STIT2IFSs under the linguistic intuitionistic features;
3. to develop an algorithm to solve the decision-making problems based on proposed operators;
4. to present some example to validate and compare the results.

To achieve the objective (1), we combine the T2IFSs and the symmetric triangular number to
build a concept of the STIT2IFSs and studied their desired properties. To complete the objective
(2), we presented the averaging AOs by using HM operations and named as symmetric triangular
IT2IF HM averaging (STIT2IFHM) and weighted symmetric triangular IT2IF Hamy mean averaging
(WSTIT2IFHM) operator for decision-making problems by keeping in mind the advantages of T2IFS
and the multiple input interaction between the argument of HM operator. Several enviable properties
and particular cases together with following different parameter values of this operator are calculated
in detail. To cover the objective (3), we establish an MCDM method based on these proposed
operators under the STIT2IFS environment where preferences related to each alternative is expressed
in terms of linguistic STIT2IFNs. A numerical illustration is to given to exemplify the practicability of
the proposed technique and a comparative analysis is analyzed in detail for fulfilling the Objective 4.
Finally, the advantages of the proposed method in the state of the art are highlighted and discussed
in detail.

The rest of the paper is organized as follows. In Section 2, some basic concepts on T2FS, IT2FS,
T2IFS, and HM are reviewed briefly. In Section 3, we present the concept of the symmetric TIT2IF set
and their desirable properties. Section 4 deals with new AOs based on HM operator to accommodate
the STIT2IFN information and its special cases. In Section 5, we present an approach based on
the WSTIT2IFHM operator to solve the MCDM problem. A practical example is discussed in Section 6
and some concluding remarks are summarized in Section 7.

2. Basic Concepts

In this section, we overview some basic definition of T2FSs, IT2FS and T2IFSs defined over
the universal set X.

Definition 1 ([42]). A type-2 fuzzy set (T2FS) A ⊆ X, defined as

A = {((x, uA), µA(x, uA)) | x ∈ X, uA ∈ jx ⊆ [0, 1]} (1)

where uA denotes the primary membership function (PMF) of A, µA ∈ [0, 1] is called as secondary membership
function (SMF) jx ⊆ [0, 1] is PMF of x.

Another equivalent expression for T2FS A is given as

A =
∫

x∈X

µA(x)
x

=
∫

x∈X

[∫
uA∈jx

( fx(uA))

uA

]
/x (2)

Definition 2 ([20]). The collection of all PMFs of T2FS is named as “footprint of uncertainty" (FOU),
i.e., FOU(A) =

⋃
x∈X

jx.
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However, because of high computational burden of T2FSs, researchers prefer using interval type-2
(IT2) fuzzy set (IT2FS) for real-world problems.

Definition 3 ([44]). A T2FS transform into interval type-2 FS when the grades of all SMFs is equal to 1.
Mathematically, an IT2FS A, with a membership function µA(x, uA), may be expressed either as Equation (3)
or as Equation (4) :

A = {(x, uA), µA(x, uA) = 1 | ∀x ∈ X, ∀uA ∈ jx ⊆ [0, 1]} (3)

A =
∫

x∈X

∫
uA∈jx

1/(x, uA), jx ⊆ [0, 1] (4)

Definition 4 ([44]). An IT2 FS is normally described by a zone called as FOU, which is limited by two
membership functions (MFs), known as lower MF (LMF) µ

A
(x, uA) and the upper MF (UMF) µA(x, uA).

That is FOU=[µ
A
(x, uA), µA(x, uA)]. Figure 1 shows the graphical representation of IT2 fuzzy number

(IT2 FN) with triangular MF shape.

Figure 1. LMF (dashed), UMF (solid), FOU (shaded) for IT2FS A.

Definition 5 ([38,39]). A T2IFS is a set of ordered pairs consisting of PMFs and SMFs of the element defined as

A =

{
〈(x, uA, vA), µA(x, uA), νA(x, vA)〉 | x ∈ X, uA ∈ j1x, vA ∈ j2x

}
(5)

where uA(vA) represents the primary membership (non-membership) of A denoted by PMF(PNMF), µA(νA) is
secondary membership (non-membership) function of A, denoted by SMF (SNMF) and j1x, j2x ⊆ [0, 1] are PMF
and PNMF of x, respectively. When the SMFs µA(x, uA) = 1, and SNMF νA(x, vA) = 0, a T2IFS translates
to an IT2 IFS.

Definition 6 ([55]). An IT2 IFS, A, is described by a bounding functions of lower and upper membership and
non-membership functions denoted by LMF, UMF, LNMF and UNMF defined as µA, µ

A
and νA, νA with

conditions: 0 ≤ µA + νA ≤ 1 and 0 ≤ µ
A
+ νA ≤ 1. The FOUs of an IT2IFS is illustrated in Figure 2 with

triangular shape and defined mathematically as

FOU(A) =
⋃

x∈X

[
µ

A
(x), µA(x), νA(x), νA(x)

]
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Figure 2. LMF (dashed), UMF (solid), LNMF (doted), UNMF (solid), FOU (shaded) for IT2IFS A.

Definition 7 ([51]). For non-negative real numbers xi(i = 1, 2, . . . , n), the Hamy mean (HM) is given as

HM(k)(x1, x2, · · · , xn) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

xij

) 1
k

(n
k)

(6)

where k is the parameter, (n
k) =

n!
k!(n−k)! and (i1, i2, . . . , ik) crosses all the k−tuple mix of (1, 2, . . . , n).

3. Proposed Symmetric Triangular Interval T2IFS

In this section, we present a symmetric triangular IT2IFS and characterize their fundamental
operational laws.

Definition 8. Let X be the universal set. A symmetric triangular interval T2 IFS (TIT2IFS) can be represented
as follows:

α = {(ζα(x), $α(x), ϕα(x), ϕ∗α(x), ϑα(x), ϑ∗α(x)) | x ∈ X} (7)

where ζα(x), $α(x), ϕα(x), ϕ∗α(x), ϑα(x), ϑ∗α(x) are the real numbers satisfying the inequalities, ζα(x) ≥ $α(x),
0 ≤ ϕα(x) ≤ ϕ∗α(x) ≤ 1, 0 ≤ ϑ∗α(x) ≤ ϑα(x) ≤ 1 such that ϕα(x) + ϑα(x) ≤ 1 and ϕ∗α(x) + ϑ∗α(x) ≤ 1.

For convenience, we represent this pair as α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) and called as symmetric
triangular IT2 intuitionistic fuzzy (IT2IF) number (STIT2IFN) where ζα ≥ $α, ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1
and ϕα ≤ ϕ∗α, ϑα ≥ ϑ∗α . The graphical representation of STIT2IFN is given in Figure 3.

Figure 3. Representation of STIT2IFN α.



Symmetry 2018, 10, 401 6 of 27

Definition 9. For a STIT2IFN α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α), the lower and upper membership and
non-membership functions denoted by LMF, UMF, LNMF and UNMF are defined as

UMFα(x) =



ϕ∗α
$α

(x− ζα + $α), ζα − $α ≤ x < ζα

ϕ∗α, x = ζα

ϕ∗α
$α

(ζα + $α − x), ζα < x ≤ $α + ζα

; UNMFα(x) =



(ϑ∗α − 1)(x− ζα + $α) + $α

$α
; ζα − $α ≤ x < ζα

ϑ∗α ; x = ζα

(1− ϑ∗α)(x− ζα) + ϑ∗α$α

$α
; ζα < x ≤ $α + ζα

(8)

LMFα(x) =



ϕα

$α
(x− ζα + $α); ζα − $α ≤ x < ζα

ϕα; x = ζα

ϕα

$α
(ζα + $α − x); ζα < x ≤ $α + ζα

; LNMFα(x) =



(ϑα − 1)(x− ζα + $α) + $α

$α
; ζα − $α ≤ x < ζα

ϑα; x = ζα

(1− ϑα)(x− ζα) + ϑα$α

$α
; ζα < x ≤ $α + ζα

(9)

Definition 10. The score function of STIT2IFN α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) is defined as

s(α) = (sx(α), sy(α))

=

(
ζα

2ϕα ϕ∗α
ϕα + ϕ∗α

− ζα
2ϑαϑ∗α

ϑα + ϑ∗α
,

ϑα + ϕ∗α
2

− ϕα + ϑ∗α
2

)
(10)

Definition 11. For two STIT2IFNs α and β, an order relation “(>)” to compare them is defined as

1. If sx(α) > sx(β), then α > β;

2. If sx(α) = sx(β), then

{
sy(α) > sy(β) ⇒ α > β;

sy(α) = sy(β) ⇒ α = β;

Definition 12. For two STIT2IFNs α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) and β =
(

ζβ, $β, ϕβ, ϕ∗β, ϑβ, ϑ∗β

)
, λ > 0,

then the operational laws of it are shown as follows:

1. α⊕ β =
(

ζα + ζβ, $α + $β, ϕα ϕβ, ϕ∗α + ϕ∗β − ϕ∗α ϕ∗β, ϑα + ϑβ − ϑαϑβ, ϑ∗αϑ∗β

)
;

2. α⊗ β =
(

ζαζβ, $α$β, ϕα + ϕβ − ϕα ϕβ, ϕ∗α ϕ∗β, ϑαϑβ, ϑ∗α + ϑ∗β − ϑ∗α ϑ∗β

)
;

3. λα =
(

λζα, λ$α, (ϕα)
λ, 1− (1− ϕ∗α)

λ, 1− (1− ϑα)
λ, (ϑ∗α)

λ
)

;

4. αλ =
(

ζλ
α , $λ

α , 1− (1− ϕα)
λ, (ϕ∗α)

λ, (ϑα)
λ, 1− (1− ϑ∗α)

λ
)

Theorem 1. For STIT2IFNs α and β, the operations defined in Definition 12 are again STIT2IFNs.

Proof. Consider two STIT2IFNs α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) and β =
(

ζβ, $β, ϕβ, ϕ∗β, ϑβ, ϑ∗β

)
. So by

Definition 8, we have ζα ≥ $α, ϕα ≤ ϕ∗α, ϑα ≥ ϑ∗α , ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1, ζβ ≥ $β, ϕβ ≤ ϕ∗β, ϑβ ≥ ϑ∗β
ϕβ + ϑβ ≤ 1, ϕ∗β + ϑ∗β ≤ 1.

Let α⊕ β = γ =
(

ζγ, $γ, ϕγ, ϕ∗γ, ϑγ, ϑ∗γ

)
and thus by Definition 12, we get ζγ = ζα + ζβ, $γ =

$α + $β, ϕγ = ϕα ϕβ, ϕ∗γ = ϕ∗α +
∗
β −ϕ∗α ϕ∗β, ϑγ = ϑα + ϑβ − ϑαϑβ, ϑ∗γ = ϑ∗αϑ∗β. Now, to show α⊕ β is

again an STIT2IFN, we need to prove that ζγ ≥ $γ, ϕγ ≤ ϕ∗γ, ϑγ ≥ ϑ∗γ, ϕγ + ϑγ ≤ 1, ϕ∗γ + ϑ∗γ ≤ 1.
As ζα ≥ $α and ζβ ≥ $β which implies that ζγ ≥ $γ. Further ϕα ≤ ϕ∗α, ϕβ ≤ ϕ∗β, ϑα ≥ ϑ∗α , ϑβ ≥ ϑ∗β,

ϕα + ϑα ≤ 1, ϕ∗α + ϑ∗α ≤ 1 which gives that

ϕγ + ϑγ = ϕα ϕβ +
(
ϑα + ϑβ − ϑαϑβ

)
= ϕα ϕβ + 1− (1− ϑα)

(
1− ϑβ

)
≤ ϕα ϕβ + 1− ϕα ϕβ

≤ 1
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and

ϕ∗γ + ϑ∗γ = ϕ∗α ϕ∗β − ϕ∗α ϕ∗β + ϑ∗αϑ∗β

= 1− (1− ϕ∗α)
(

1− ϕ∗β

)
+ ϑ∗αϑ∗β

≤ 1− ϑ∗αϑ∗β + ϑ∗αϑ∗β

≤ 1

Finally, ϕγ = ϕα ϕβ ≤ ϕ∗α ϕ∗β = ϕ∗γ and ϑγ = ϑα + ϑβ − ϑαϑβ = 1− (1− ϑα)(1− ϑβ) ≥ 1− (1−
ϑ∗α)(1− ϑ∗β) = ϑ∗γ.

Therefore, we conclude that α⊕ β becomes STIT2IFN. Similarly, we can prove that α⊗ β, αλ and
λα are also STIT2IFNs.

4. TIT2IF Hamy Mean Aggregation Operators

Let Ω be the gathering of all non-empty STIT2IFNs αi =
(
ζi, $i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
, (i = 1(1)n). Here,

we present HM-based AOs for STIT2IFNs.

4.1. STIT2IFHM Operator

Definition 13. A STIT2IFHM is a mapping STIT2IFHM : Ωn → Ω defined as

STIT2IFHM(k)(α1, α2, . . . , αn) =

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

) 1
k

(n
k)

(11)

then STIT2IHM(k) is called the symmetric triangular IT2IF Hamy mean operator, where k = 1, 2, . . . , n is
the parameter and (n

k) =
n!

k!(n−k)! represent the binomial coefficient.

Theorem 2. The aggregated value for n STIT2IFNs αi =
(
ζi, $i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
by using Definition 13 is again

STIT2IFN which is given as

STIT2IFHM(k)(α1, α2, . . . , αn) (12)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$αij

) 1
k

(n
k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k



1
(n

k)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k



1
(n

k)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k



1
(n

k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k



1
(n

k)


Proof. The first part of the result can be easily obtained from Theorem 1. So, there is a need to prove
only that Equation (12) is kept.

According to the operational laws of STIT2IFNs, we get
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k⊗
j=1

αij =

(
k

∏
j=1

ζαij
,

k

∏
j=1

$αij
, 1−

k

∏
j=1

(1− ϕαij
),

k

∏
j=1

ϕ∗αij
,

k

∏
j=1

ϑαij
, 1−

k

∏
j=1

(1− ϑ∗αij
)

)

and

 n⊗
j=1

αij


1
k

=



(
k

∏
j=1

ζαij

)1
k

,

(
k

∏
j=1

$αij

)1
k

, 1−
(

k

∏
j=1

(1− ϕαij
)

)1
k

,

(
k

∏
j=1

ϕ∗αij

)1
k

,

(
k

∏
j=1

ϑαij

)1
k

, 1−
(

k

∏
j=1

(1− ϑ∗αij
)

)1
k


Therefore,

⊕
1≤i1<

...<ik≤n

 n⊗
j=1

αij


1
k

=



∑
1≤i1<

...<ik≤n

 k

∏
j=1

ζαij

 1
k

, ∑
1≤i1<

...<ik≤n

 k

∏
j=1

$αij

 1
k

, ∏
1≤i1<

...<ik≤n

1−

 k

∏
j=1

(1− ϕαij
)

 1
k
 ,

1− ∏
1≤i1<

...<ik≤n

1−

 k

∏
j=1

ϕ∗αij

 1
k
 , 1− ∏

1≤i1<
...<ik≤n

1−

 k

∏
j=1

ϑαij

 1
k
 ,

∏
1≤i1<

...<ik≤n

1−

 k

∏
j=1

(1− ϑ∗αij
)

 1
k



Subsequently, we have

STIT2IFHM(k)(α1, α2, . . . , αn)

=

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

)1
k

(n
k)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$αij

) 1
k

(n
k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k



1
(nk)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k



1
(nk)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k



1
(nk)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k



1
(nk)



In what follows, we investigate the certain property of STIT2IFHM operator.
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Theorem 3. (Idempotency) If αi = α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) for all i, then

STIT2IFHM(k)(α1, α2, . . . , αn) = α.

Proof. Since αi = α = (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α) for all i then based on Theorem 2, we have

STIT2IFHM(k)(α, α, . . . , α)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζα

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$α

) 1
k

(n
k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕα)

) 1
k



1
(nk)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗α

) 1
k



1
(nk)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑα

) 1
k



1
(nk)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗α)

) 1
k



1
(nk)



=



∑
1≤i1<

...<ik≤n

(
ζk

α

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
$k

α

)
(n

k)
,

 ∏
1≤i1<

...<ik≤n

(1− (1− ϕα))


1
(nk)

, 1−

 ∏
1≤i1<

...<ik≤n

(1− ϕ∗α)


1
(nk)

,

1−

 ∏
1≤i1<

...<ik≤n

(1− ϑα)


1
(n

k)

,

 ∏
1≤i1<

...<ik≤n

(1− (1− ϑ∗α))


1
(nk)


=

 (n
k)(ζ

k
α)

1
k

(n
k)

,
(n

k)($
k
α)

1
k

(n
k)

, 1− (1− ϕα)

(n
k)

(n
k) , 1− (1− ϕ∗α)

(n
k)

(n
k) , 1− (1− ϑα)

(n
k)

(n
k) , (1− (1− ϑ∗α))

(n
k)

(n
k)


= (ζα, $α, ϕα, ϕ∗α, ϑα, ϑ∗α)

= α

Theorem 4. (Commutativity) Let αi(i = 1, 2, . . . , n) be a collection of STIT2IFNs, and αi be any permutation
of αi. Then

STIT2IFHM(k)(α1, α2, . . . , αn) = STIT2IFHM(k)(α1, α2, . . . , αn)

Proof. Based on the Definition 13, we have

STIT2IFHM(k)(α1, α2, . . . , αn) =

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
α̃ij

) 1
k

(n
k)

=

⊕
1≤i1<

...<ik≤n

(
k⊗

j=1
αij

) 1
k

(n
k)

= STIT2IFHM(k)(α1, α2, . . . , αn)
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Theorem 5. (Monotonicity) For two different STIT2IFNs αi =
(

ζαi , $αi , ϕαi , ϕ∗αi
, ϑαi , ϑ∗αi

)
, and βi =(

ζβi , $βi , ϕβi , ϕ∗βi
, ϑβi , ϑ∗βi

)
, (i = 1, 2, . . . , n). If ζαi ≤ ζβi , $αi ≥ $βi , ϕαi ≥ ϕβi , ϕ∗αi

≤ ϕ∗βi
, ϑαi ≤ ϑβi and

ϑ∗αi
≥ ϑ∗βi

for all i, then

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(β1, β2, . . . , βn). (13)

Proof. Let A = STIT2IFHM(k)(α1, α2, . . . , αn) and B = STIT2IFHM(k)(β1, β2, . . . , βn). Then according
to Theorem 2, we get

A = STIT2IFHM(k)(α1, α2, . . . , αn)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$αij

) 1
k

(n
k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k



1
(nk)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k



1
(nk)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k



1
(nk)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k



1
(nk)


and

B = STIT2IFHM(k)(β1, β2, . . . , βn)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζβij

) 1
k

(n
k)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$βij

) 1
k

(n
k)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕβij
)

) 1
k



1
(nk)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗βij

) 1
k



1
(nk)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑβij

) 1
k



1
(nk)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗βij
)

) 1
k



1
(nk)


Since ζαi ≤ ζβi which implies that

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

≤

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζβij

) 1
k

(n
k)



Symmetry 2018, 10, 401 11 of 27

Also, ϕαi ≥ ϕβi implies that

k

∏
j=1

(1− ϕαij
) ≤

k

∏
j=1

(1− ϕβij
)

⇒
(

k

∏
j=1

(1− ϕαij
)

) 1
k

≤
(

k

∏
j=1

(1− ϕβij
)

) 1
k

⇒

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕαij
)

) 1
k



1
(n

k)

≥

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϕβij
)

) 1
k



1
(n

k)

Similarly for ϕ∗αi
≤ ϕ∗βi

, ϑαi ≤ ϑαi and ϑ∗αi
≥ ϑ∗βi

for all i, we have

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k



1
(n

k)

≤ 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑβij

) 1
k



1
(n

k)

;

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗αij
)

) 1
k



1
(n

k)

≥

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(1− ϑ∗βij
)

) 1
k



1
(n

k)

;

and

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k



1
(n

k)

≤ 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗βij

) 1
k



1
(n

k)

.

Therefore, by using these inequalities and Definition 11, we get

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(β1, β2, . . . , βn)

Theorem 6. (Boundedness) For n STIT2IFNs αi, α− =

(
min

i
{ζi}, max

i
{$i}, min

i
{ϕi}, max

i
{ϕ∗i },

max
i
{ϑi}, min

i
{ϑ∗i }

)
, and α+ =

(
max

i
{ζi}, min

i
{$i}, max

i
{ϕi}, min

i
{ϕ∗i }, min

i
{ϑi}, max

i
{ϑ∗i }

)
, we have

α− ≤ STIT2IFHM(k)(α1, α2, . . . , αn) ≤ α+ (14)

Proof. Clearly, we get α− ≤ αi ≤ α+. Thus, based on Theorems 4 and 5, we have

STIT2IFHM(k)(α1, α2, . . . , αn) ≥ STIT2IFHM(k)(α−, α−, . . . , α−) = α−

STIT2IFHM(k)(α1, α2, . . . , αn) ≤ STIT2IFHM(k)(α+, α+, . . . , α+) = α+
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Lemma 1 ([51]). For n non-negative real numbers xi, we have

HM(1)(x1, x2, . . . , xn) ≥ HM(2)(x1, x2, . . . , xn) ≥ . . . ≥ HM(n)(x1, x2, . . . , xn) (15)

with equality holding iff x1 = x2 = . . . = xn.

Lemma 2 ([54]). Let xi, yi > 0 and
n
∑

i=1
yi = 1. Then

n

∏
i=1

xyi
i ≤

n

∑
i=1

xiyi (16)

Theorem 7. For given STIT2IFNs αi, the operator STIT2IFHM is monotonically decreasing
with parameter k.

Proof. For STIT2IFNs αi and k = 1, 2, . . . , n, we denote

C(k) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

, ∆(k) =

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$αij

) 1
k

(n
k)

,

T(k) =

 ∏
1≤i1<

...<ik≤n

1−
(

k
∏
j=1

(1− ϕαij
)

) 1
k



1
(n

k)

, S(k) = 1−

∏ 1≤i1<
...<ik≤n

1−
(

k
∏
j=1

ϕ∗αij

) 1
k


1
(n

k)
,

T∗(k) = 1−

 ∏
1≤i1<

...<ik≤n

(
1−

(
∏k

j=1 ϑαij

) 1
k
)

1
(n

k)

, S∗(k) =

(
∏ 1≤i1<

...<ik≤n

(
1−

(
∏k

j=1(1− ϑ∗αij
)

) 1
k
)) 1

(n
k)

Based on Theorem 2, we have

STIT2IFHM(k)(α1, α2, . . . , αn) = (C(k), ∆(k), T(k), S(k), T∗(k), S∗(k))

and STIT2IFHM(k+1)(α1, α2, . . . , αn) = (C(k + 1), ∆(k + 1), T(k + 1), S(k + 1), T∗(k + 1), S∗(k + 1))

Following Definition 10 and Lemma 1, we obtained

sx(STIT2IFHM(k)(α1, α2, . . . , αn)) ≥

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

≥

∑
1≤i1<

...<ik+1≤n

(
k+1
∏
j=1

ζαij

) 1
k+1

( n
k+1)

≥ sx(STIT2IFHM(k+1)(α1, α2, . . . , αn))

Then, two cases are arisen:

Case 1 If sx

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
> sx

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
, following

the Definition 11 we get

STIT2IFHM(k)(α1, α2, . . . , αn) > STIT2IFHM(k+1)(α1, α2, . . . , αn)
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Case 2 If sx

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
= sx

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
. Then, by

Lemmas 1 and 2, we get

S(k) = 1−

 ∏
1≤i1<

...<ik≤n

1−

 k

∏
j=1

ϕ∗αij

 1
k



1
(nk)

≥ 1−

∑
1≤i1<

...<ik≤n

1−
(

k
∏
j=1

ϕ∗αij

) 1
k


(n
k)

= ∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ϕ∗αij

) 1
k

(n
k)

To check the monotonic behavior of S(k), we assume that it is increasing with k, i.e.,

S(n) > S(n− 1) > . . . > S(1) (17)

Also since

S(1) ≥ 1− ∑
1≤i1≤n

1
∏
j=1

(
1− ϕ∗αij

)
(n

1)
= 1−

n−
n
∑

i=1
(ϕ∗αi

)

n
=

n
∑

i=1
ϕ∗αi

n
(18)

which implies that

S(n) > S(1) =
∑n

i=1 ϕ∗αi

n

⇒
(

n

∏
i=1

ϕ∗αi

) 1
n

>
∑n

i=1 ϕ∗αi

n

which contradict the Lemma 2. Hence with parameter k, S(k) is monotonically decreasing. Similarly,
we can get T∗(k) is also monotonically decreasing with parameter k. Also, the functions T(k) and
S∗(k) are monotonically increasing with parameter k.

Therefore,

sy

(
STIT2IFHM(k)(α1, α2, . . . , αn)

)
=

S(k) + T∗(k)
2

− T(k) + S∗(k)
2

>
S(k + 1) + T∗(k + 1)

2
− T(k + 1) + S∗(k + 1)

2

= sy

(
STIT2IFHM(k+1)(α1, α2, . . . , αn)

)
Thus, by both the cases, we get STIT2IFHM(k)(α1, α2, . . . , αn) ≥

STIT2IFHM(k+1)(α1, α2, . . . , αn).

Furthermore, we will talk about a few special cases of the STIT2IFHM operator concerning
the parameter the k.
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1. When k = 1, Equation (12) reduces to the triangular IT2IF averaging operator.

STIT2IFHM(1)(α1, α2, · · · , αm)

=



∑
1≤i1≤n

(
1
∏
j=1

ζαij

) 1
1

(n
1)

,

∑
1≤i1≤n

(
1
∏
j=1

$αij

) 1
1

(m
1 )

,

 ∏
1≤i1≤n

1−

 1

∏
j=1

(
1− ϕαij

) 1
1



1
(n1)

,

1−

 ∏
1≤i1≤n

1−

 1

∏
j=1

ϕ∗αij

 1
1



1
(n1)

, 1−

 ∏
1≤i1≤n

1−

 1

∏
j=1

ϑαij

 1
1



1
(n1)

,

 ∏
1≤i1≤n

1−

 1

∏
j=1

(
1− ϑ∗αij

) 1
1



1
(n1)



=



n
∑

i=1
ζαi

n
,

n
∑

i=1
$αi

n
,

(
n

∏
i=1

(
1−

(
1− ϕαij

))) 1
n

, 1−
(

n

∏
i=1

(
1− ϕ∗αij

)) 1
n

,

1−
(

n

∏
i=1

(
1− ϑαij

)) 1
n

,

(
n

∏
i=1

(
1−

(
1− ϑ∗αij

))) 1
n


=


r
∑

i=1
ζαi

n
,

n
∑

i=1
$αi

n
,

(
n

∏
i=1

ϕαij

) 1
n

, 1−
(

n

∏
i=1

(
1− ϕ∗αij

)) 1
n

, 1−
(

n

∏
i=1

(
1− ϑαij

)) 1
n

,

(
n

∏
i=1

ϑ∗αij

) 1
n


2. When k = n, Equation (12) will reduce to triangular IT2IF geometric operator.

STIT2IFHM(m)(α1, α2, · · · , αn)

=



∑
1≤i1<

...<ik≤n

(
k

∏
j=1

ζαij

) 1
n

(n
n)

,

∑
1≤i1<

...<ik≤n

(
k

∏
j=1

$γij

) 1
n

(n
n)

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(
1− ϕγij

)) 1
n



1
(nn)

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
n



1
(nn)

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
n



1
(nn)

,

 ∏
1≤i1<

...<ik≤n

(
1−

(
k

∏
j=1

(
1− ϑ∗αij

) 1
n
)) 1

(nn)





=


(

k

∏
j=1

ζαij

) 1
n

,

(
k

∏
j=1

$αij

) 1
n

,

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
n
 , 1−

1−
(

k

∏
j=1

ϕ∗γij

) 1
n
 ,

1−

1−
(

k

∏
j=1

ϑαij

) 1
n
 ,

1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
n




=



(
k

∏
j=1

ζαij

) 1
n

,

(
k

∏
j=1

$αij

) 1
n

,

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
n
 ,

(
k

∏
j=1

ϕ∗αij

) 1
n

,

(
k

∏
j=1

ϑαij

) 1
n

,

(
1−

(
k

∏
j=1

(
1− ϑ∗αij

) 1
n
))
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4.2. WSTIT2IFHM Operator

Definition 14. For a collection of n STIT2IFNs, αi, w = (w1, w2, · · · , wn)T is weight vector of αi, where
wi > 0 and ∑n

i=1 wi = 1, we define WSTIT2IFHM operator as

WSTIT2IFHM(k)
w (α1, α2, · · · , αm) =



⊕
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k⊗

j=1
αij

) 1
k

(n−1
k )

; 1 ≤ k < n

k⊗
j=1

α

1−wj
n−1

j ; k = n

(19)

then WSTIT2IFHM(k)
w is stated as weighted symmetric triangular IT2IF Hamy mean operator.

Theorem 8. For n STIT2IFNs αi =
(
ζi, $i, ϕi, ϕ∗i , ϑi, ϑ∗i

)
(i = 1, 2, . . . , n), the value obtained through

Equation (19) is also STIT2IFN, and is given as

WSTIT2IFHM(k)
w (α1, α2, · · · , αm)

=



∑
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k

∏
j=1

ζαij

) 1
k

(n−1
k )

,

∑
1≤i1<

...<ik≤n

(
1−

k
∑

j=1
wij

)(
k

∏
j=1

$αij

) 1
k

(n−1
k )

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k

(

1−
k
∑

j=1
wij

)
1

(
n−1

k )

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k

(

1−
k
∑

j=1
wij

)
1

(
n−1

k )

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k

(

1−
k
∑

j=1
wij

)
1

(
n−1

k )

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k

(

1−
k
∑

j=1
wij

)
1

(
n−1

k )



; if 1 ≤ k < n

and

WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=


k

∏
j=1

ζ

1−wj
n−1

αj ,
k

∏
j=1

$

1−wj
n−1

αj , 1−
k

∏
j=1

(
1− ϕαj

) 1−wj
n−1 ,

k

∏
j=1

(
ϕ∗αj

) 1−wj
n−1 ,

k

∏
j=1

(
ϑαj

) 1−wj
n−1 , 1−

k

∏
j=1

(
1− ϑ∗αj

) 1−wj
n−1

 ; if k = n

Proof. Similar to the proof of Theorem 2.

Theorem 9. The operator STIT2IFHM is a special case of the WSTIT2IFHM operator.

Proof. Assume that w =

(
1
n , 1

n , · · · , 1
n

)T

, then by Theorem 5, we have

1. if 1 ≤ k < n, we have
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WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=



∑
1≤i1<

...<ik≤n

(
1− k

n

)( k
∏
j=1

ζαij

) 1
k

(n−1
k )

,

∑
1≤i1<

...<ik≤n

(
1− k

m

)( k
∏
j=1

$αij

) 1
k

(n−1
k )

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
(1− k

m )


1
(
n−1

k )

, 1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k
(1− k

m )


1
(
n−1

k )

,

1−

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k
(1− k

m )


1
(
n−1

k )

,

 ∏
1≤i1<

...<ik≤n

1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
(1− k

m )


1
(
n−1

k )



=



∑
1≤i1<
···<ik≤n

(
1− k

n

)( k
∏
j=1

ζαij

) 1
k

(n
k)

n−k
n

,

∑
1≤i1<
···<ik≤n

(
1− k

n

)( k
∏
j=1

$αij

) 1
k

(n
k)

n−k
n

,

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k
(1− k

n )


1
(nk)

n−k
n

, 1−

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k
(1− k

n )


1
(nk)

n−k
n

,

1−

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k
(1− k

n )


1
(nk)

n−k
n

,

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k
1− k

n


1

(nk)
n−k

n



=



∑
1≤i1<
···<ik≤n

(
k

∏
j=1

ζαij

) 1
k

(n
k)

,

∑
1≤i1<
···<ik≤n

(
k

∏
j=1

$αij

) 1
k

(n
k)

,

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

(
1− ϕαij

)) 1
k



1
(nk)

,

1−

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

ϕ∗αij

) 1
k



1
(nk)

, 1−

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

ϑαij

) 1
k



1
(nk)

,

 ∏
1≤i1<
···<ik≤n

1−
(

k

∏
j=1

(
1− ϑ∗αij

)) 1
k



1
(nk)


= STIT2IFHM(k)(α1, α2, · · · , αn)

2. If k = n, we have

WSTIT2IFHM(k)
w (α1, α2, · · · , αn)

=


k

∏
j=1

ζ
1− 1

n
n−1

αj ,
k

∏
j=1

$
1− 1

n
n−1

αj , 1−
k

∏
j=1

(
1− ϕαj

) 1− 1
n

n−1 ,

k

∏
j=1

(
ϕ∗αj

) 1− 1
n

n−1 ,
k

∏
j=1

(
ϑαj

) 1− 1
n

n−1 , 1−
k

∏
j=1

(
1− ϑ∗αj

) 1− 1
n

n−1



=



k

∏
j=1

ζ
1
n
αj ,

k

∏
j=1

$
1
n
αj , 1−

k

∏
j=1

(1− ϕαj)
1
n ,

k

∏
j=1

(ϕ∗αj
)

1
n ,

k

∏
j=1

(ϑαj)
1
n , 1−

k

∏
j=1

(1− ϑ∗αj
)

1
n


= STIT2IFHM(k)(α1, α2, · · · , αn)
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5. An Approach to MCDM Based on the Proposed WSTIT2IFHM Operator

In this section, an MCDM approach is developed under the triangular IT2IF (TIT2IF) environment.
The description of the problem, as well as the procedure steps, are explained as below.

Assume an MCDM problem which consists of ‘n’ different alternatives A1, A2, . . . , An and a set
of ‘m’ attributes C1, C2, . . . , Cm whose weight vector is w = (w1, w2, · · · , wm)T , satisfying wj > 0 and
∑m

j=1 wj = 1. An expert has evaluated these given alternatives and rate them under TIT2IF environment
denoted by lpj(p = 1, 2, . . . , n; j = 1, 2, . . . , m) where lpj represent the linguistic information about
the alternatives. Furthermore, the importance of the attributes plays a dominant role during
the decision-making process. During handling the MCDM problems, if the sum of the relative
coefficient w.r.t. each criterion is small, it relates that such criteria demonstrate a major impact on
the overall values of the alternative. Similarly, if the relative coefficient sum is large then it shows such
criterion play a less significant role. Hence, the relative coefficient of the alternative under the certain
criteria is inversely proportional to the corresponding weights of criteria. Therefore, the weight of
the criteria is determined by using the Spearman method [56] which main steps are summarized
in Algorithm 1.

Algorithm 1 Weight determination using Spearman coefficient method.
1: Take two criteria Ck and Cj and then compute their relative coefficients as

∆kj = 1−
6 ∑n

p=1(lpk − lpj)
2

m(m− 1)
(20)

and hence construct the matrix ∆m×m = (∆kj)m×m as

∆m×m =


∆11 ∆12 · · · ∆1m
∆21 ∆22 · · · ∆2m

. . . . . .
. . . . . .

∆m1 ∆m2 · · · ∆mm

 (21)

2: Compute the relative coefficient sum of each criteria by using Equation (22).

∆j =
m

∑
k=1
k 6=j

∆jk (22)

3: Compute the weight of each criteria as

wj =
σj

∑m
j=1 σj

(23)

where σj =
1
∆j

represent the contribution index of the criteria.

By using this weight vector, we summarized the following steps based on the proposed AO to
rank the alternatives under TIT2IFS environment.
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Step 1: Arrange the information of each alternative in decision matrix L as

L =

C1 C2 . . . Cn


A1 l11 l12 . . . l1n
A2 l21 l22 . . . l2n
...

...
...

. . .
...

Am lm1 lm2 . . . lmn

(24)

where lpj =
(

ζ pj, $pj, ϕpj, ϕ∗pj, ϑpj, ϑ
∗
pj

)
be the STIT2IFNs provided by an expert.

Step 2: Compute the normalized decision matrix L from L by using the normalized formula

lpj =


(

ζ pj, $pj, ϕpj, ϕ∗pj, ϑpj, ϑ
∗
pj

)
; for the benefit type criteria(

ζ pj, $pj, ϑpj, ϑ
∗
pj, ϕpj, ϕ∗pj

)
; for the cost type criteria

(25)

Step 3: Compute the weight vector to each criteria by using Algorithm 1.
Step 4: Combine the different values of STIT2IFNs lpj(j = 1, 2, . . . , m) into the single one lp of each

alternative Ap(p = 1, 2, . . . , n) by using WSTIT2IFHM operator as follows:

lp = WSTIT2IFHM(k)
w (lp1, lp2, · · · , lpn)

=



∑
1≤p1<

...<pk≤n

(
1−

k
∑

j=1
wpj

)(
k

∏
j=1

ζpj

) 1
k

(n−1
k )

,

∑
1≤p1<

...<pk≤n

(
1−

k
∑

j=1
wpj

)(
k

∏
j=1

$pj

) 1
k

(n−1
k )

,

 ∏
1≤p1<

...<pk≤n

1−
(

k

∏
j=1

(
1− ϕpj

)) 1
k

(

1−
k
∑

j=1
wpj

)
1

(
n−1

k )

, 1−

 ∏
1≤p1<

...<pk≤n

1−
(

k

∏
j=1

ϕ∗pj

) 1
k

(

1−
k
∑

j=1
wpj

)
1

(
n−1

k )

,

1−

 ∏
1≤p1<

...<pk≤n

1−
(

k

∏
j=1

ϑpj

) 1
k

(

1−
k
∑

j=1
wpj

)
1

(
n−1

k )

,

 ∏
1≤p1<

...<pk≤n

1−
(

k

∏
j=1

(
1− ϑ∗pj

)) 1
k

(

1−
k
∑

j=1
wpj

)
1

(
n−1

k )



Step 5: Compute the score value of the lp by using Equation (10).
Step 6: Rank all the alternatives by using an order relation defined in Definition 11 and hence select

the most feasible alternative(s).

6. Illustrative Example

The above mentioned approach has been illustrate with a numerical example which is stated
as below.

6.1. A Case Study

Jharkhand is the eastern state of the India, which has the 40 percent mineral resources of
the country and second leading state of the mineral wealth after Chhattisgarh state. It is also known
for its vast forest resources. Jamshedpur, Bokaro and Dhanbad cities of the Jharkhand are famous for
industries in all over the world. After that, it is the widespread poverty state of the India because
it is the primarily a rural state as 76 percent of the population live in the villages which depend on
the agriculture and wages. Only 30 percent villages are connected by roads while only 55 percent
villages have accessed to electricity and other facilities. But in the today’s life, everyone is changing
fast to himself for a better life, therefore, everyone moves to the urban cities for a better job. To stop
this emigration, Jharkhand government wants to set up the industries based on the agriculture in
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the rural areas. For this, the government has been organized “MOMENTUM JHARKHAND” global
investor submit 2017 in Ranchi to invite the companies for investment in the rural areas. Government
announced the various facilities for setup the five food processing plants in the rural areas and
consider the six attributes required for company selection to setup them, namely, project cost (G1),
completion time (G2), technical capability (G3), financial status (G4), company background (G5),
reference from previous project (G6) and assign the weights of relative importance of each attributes.
The six companies taken as in the form of the alternatives, namely, Surya Food and Agro Pvt. Ltd. (A1),
Mother Dairy Fruit and Vegetable Pvt. Ltd. (A2), Parle Products Ltd. (A3), Heritage Food Ltd. (A4),
Verka Pvt. Ltd. (A5) and Reliance Pvt. Ltd. (A6) interested for these projects. Then the main object
of the government is to choose the best company among them for the task. In order to find the best
feasible alternative(s) for the required task, the authority called an expert to evaluate these alternatives
and rate their preferences in terms of linguistic terms (LTs). The standardized LTs such as “Very High”
(VH), “High”(H), “Medium”(M), “Medium Low”(ML), “Low”(L), “Very Low”(VL) are defined in
terms of STIT2IFNs given in Table 1. Furthermore, the complementary relation corresponding to LTs is
presented in Table 2.

Table 1. Linguistic grade and coressponding values.

LTs Triangular IT2IFNs

VL (0.20,0.10,0.60,0.65,0.35,0.30)
L (0.30,0.10,0.65,0.70,0.30,0.25)

ML (0.40,0.20,0.70,0.75,0.20,0.18)
M (0.50,0.20,0.75,0.80,0.16,0.15)

MH (0.60,0.30,0.80,0.85,0.13,0.12)
H (0.70,0.30,0.85,0.90,0.10,0.08)

VH (0.80,0.40,0.90,0.95,0.07,0.03)

Table 2. Linguistic grades and compliments.

LT VL L ML M MH H VH

Complemented LT VH H MH M ML L VL

The above mentioned steps are executed to locate the best alternative(s).

Step 1: An expert has evaluated each alternative and present their rating values in terms of LTs which
are summarized as

L =

C1 C2 C3 C4 C5 C6 C7



A1 VH H M MH H VH H
A2 M ML H VH H VH VH
A3 H VH VH M MH L VL
A4 MH VL MH H VL MH H
A5 VH H VL H M VL L
A6 ML VL VH M VL L H

(26)
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Step 2: As the criteria C1 and C2 are the cost type, so we normalize their rating values by using
Table 2 and Equation (25), we get

L =

C1 C2 C3 C4 C5 C6 C7



A1 VL L M MH H VH H
A2 M MH H VH H VH VH
A3 L VL VH M MH L VL
A4 ML VH MH H VL MH H
A5 VL L VL H M VL L
A6 MH VH VH M VL L H

(27)

Step 3: Apply the Algorithm 1 to compute the weight vector to each criteria. For it, we follows
the steps of the algorithm and summarized as below

(a) By using Equation (20), construct the relative coefficient matrix ∆ for each criteria as

∆ =

C1 C2 C3 C4 C5 C6 C7



C1 1 0.9666 0.9344 0.9094 0.9044 0.9174 0.9344
C2 0.9666 1 0.9344 0.9311 0.8444 0.9144 0.9694
C3 0.9344 0.9344 1 0.9344 0.9014 0.9144 0.9374
C4 0.9094 0.9314 0.9344 1 0.9414 0.9464 0.9574
C5 0.9044 0.8444 0.9014 0.9414 1 0.9504 0.9004
C6 0.9174 0.9144 0.9144 0.9464 0.9504 1 0.9714
C7 0.9344 0.9694 0.9374 0.9574 0.9004 0.9714 1

(b) The relative coefficient sum of each criteria is computed by using Equation (22) and get

∆1 = 5.564, ∆2 = 5.558, ∆3 = 5.554, ∆4 = 5.618,

∆5 = 5.440, ∆6 = 5.612, ∆7 = 5.668.

(c) By using Equation (23), the weight vector of each criteria is obtained as

w1 = 0.1431, w2 = 0.1432, w3 = 0.1433, w4 = 0.1417,

w5 = 0.1463, w6 = 0.1419, w7 = 0.1405.

Step 4: Aggregate all the values by using WSTIT2IFHM operator into a collective one lp(p =

1, 2, . . . , 6). Here, without loss of generality, we take k = 2 and the obtained results are

l1 = WSTIT2IFHM(2)
w (l11, l12, · · · , l17)

=



∑
1≤p1<p2≤7

(
1−

2
∑

j=1
w1j

)(
2

∏
j=1

ζ1j

) 1
2

(6
2)

,

∑
1≤p1<p2≤7

(
1−

2
∑

j=1
wpj

)(
2

∏
j=1

$pj

) 1
2

(6
2)

,

 ∏
1≤p1<p2≤7

1−
(

2

∏
j=1

(
1− ϕpj

)) 1
2

(

1−
2
∑

j=1
wpj

)
1
(62)

, 1−

 ∏
1≤p1<p2≤7

1−
(

2

∏
j=1

ϕ∗pj

) 1
2

(

1−
2
∑

j=1
wpj

)
1
(62)

,

1−

 ∏
1≤p1<p2≤7

1−
(

2

∏
j=1

ϑpj

) 1
2

(

1−
2
∑

j=1
wpj

)
1
(62)

,

 ∏
1≤p1<p2≤7

1−
(

2

∏
j=1

(
1− ϑ∗pj

)) 1
2

(

1−
2
∑

j=1
wpj

)
1
(62)


= (0.5154, 0.2276, 0.7820, 0.8314, 0.1596, 0.1339)
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Similarly, we have

l2 = (0.6950, 0.3239, 0.8546, 0.9053, 0.0974, 0.0687);

l3 = (0.3846, 0.1681, 0.7166, 0.7633, 0.2243, 0.1927);

l4 = (0.5481, 0.2612, 0.7952, 0.8449, 0.1436, 0.1210);

l5 = (0.3201, 0.1342, 0.6769, 0.7244, 0.2642, 0.2292);

l6 = (0.5272, 0.2390, 0.7914, 0.8414, 0.1536, 0.1232)

Step 5: The score values of lp(p = 1, 2, . . . , 6) are computed by Equation (10) and get

s(l1) = (0.3404, 0.0375); s(l2) = (0.5550, 0.0396); s(l3) = (0.2046, 0.0392)

s(l4) = (0.3770, 0.0362); s(l5) = (0.1455, 0.0412); s(l6) = (0.3579, 0.0402)

Step 6: Since sx(l2) > sx(l4) > sx(l6) > sx(l1) > sx(l3) > sx(l5) and thus by Definition 11, we get
the ranking order of the alternatives as A2 � A4 � A6 � A1 � A3 � A5. Here “�” means
“preferred to”. Therefore, A2 is the best alternative.

6.2. Influence of k on Alternatives

Keeping in mind the end goal to investigate the impact of the parameter k on to the final
positioning order of the alternatives, we use an alternate estimation of k in our test. Here n is 7
in our case, so we shift k from 1 to 7 and their outcomes relating to the proposed technique have
been outlined in Table 3. From this table, it is seen that with the expansion of the interaction
of the multi-input options, the general score estimations of it diminishes which recommend that
the proposed operator reflect the risk preferences to the decision makers. This examination will
propose the distinctive decisions to the analyst as indicated by his/her decision. For example, in
the event that he will cover the risk parameters during the aggregation then they will allocate a
little incentive to the parameter k with the goal that score esteems increments while, if the analyst
is pessimistic in nature towards the choice then the bigger estimation of k can be allocated during
the procedure.

Table 3. Effect of k on to ranking of alternatives.

Value of k Score Values (sx, sy) of the Alternatives Ranking Order
A1 A2 A3 A4 A5 A6

1 (0.3615, 0.0762) (0.5627, 0.0523) (0.2268, 0.0872) (0.3953, 0.0677) (0.1577, 0.0702) (0.3836, 0.0856) A2 � A4 � A6 � A1 � A3 � A5
2 (0.3404, 0.0375) (0.5550, 0.0396) (0.2046, 0.0392) (0.3770, 0.0362) (0.1455, 0.0412) (0.3579, 0.0402) A2 � A4 � A6 � A1 � A3 � A5
3 (0.3324, 0.0241) (0.5526, 0.0840) (0.1997, 0.0250) (0.3702, 0.0268) (0.1427, 0.0321) (0.3484, 0.0240) A2 � A4 � A6 � A1 � A3 � A5
4 (0.3285, 0.0177) (0.5507, 0.0329) (0.1976, 0.0181) (0.3656, 0.0203) (0.1415, 0.0275) (0.3437, 0.0161) A2 � A4 � A6 � A1 � A3 � A5
5 (0.3260, 0.0138) (0.5498, 0.0314) (0.1964, 0.0141) (0.3631, 0.0170) (0.1409, 0.0247) (0.3408, 0.0115) A2 � A4 � A6 � A1 � A3 � A5
6 (0.3244, 0.0113) (0.5492, 0.0304) (0.1957, 0.0114) (0.3613, 0.0148) (0.1405, 0.0228) (0.3389, 0.0086) A2 � A4 � A6 � A1 � A3 � A5
7 (0.3232, 0.0095) (0.5488, 0.0298) (0.1952, 0.0094) (0.3601, 0.0131) (0.1402, 0.0215) (0.3376, 0.0064) A2 � A4 � A6 � A1 � A3 � A5

Furthermore, in some other existing Bonferroni mean (BM) and generalized Bonferroni mean
(GBM) operators, the information takes only two or three arguments during an aggregation. Also, in
BM operator there is need of two additional parameters (p, q) while the three parameters (p, q, r) for
GBM from an infinite rational set. Thus, the computational complexity is too high in such cases. On the
other hand, in the proposed operator, there is only one parameter k from a finite integer set and hence
the computational complexity is low and easier to understand. Finally, the several operators such as
averaging, BM and geometric for the T2IFNs can be deduced from the proposed ones by setting k = 1,
k = 2 and k = n respectively. Subsequently, our proposed operator and the strategy are more summed
up and adaptable to tackle the decision-making problems.
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6.3. Comparative Study

In this section, we perform some comparative analysis of the proposed method result with some
of the existing approaches results in [36,46–48] under the uncertain environment. The results computed
from them on to the considered problem are summarized as below:

1. In [36], authors proposed the weighted geometric Bonferroni mean operator under the type-2
fuzzy environment, denoted by IT2FWGBM, which is defined as

dk = IT2FWGBMp,q
w (A1, A2, . . . , Am)

=
1

p + q

 m⊗
i,j=1
i 6=j

(
p(Ai)

wi ⊕ q(Aj)
wj
)

1/m(m−1)

(28)

By applying Equation (28) on to the considered data, we get the aggregated value corresponding
to each alternative as

d1 = IT2FWGBM1,1
w (A11, A12, A13, A14, A15, A16, A17)

= (0.8321, 0.9050, 0.9050, 0.9534, 0.6065)

d2 = IT2FWGBM1,1
w (A21, A22, A23, A24, A25, A26, A27)

= (0.8671, 0.9486, 0.9486, 1.0000, 0.7500)

d3 = IT2FWGBM1,1
w (A31, A32, A33, A34, A35, A36, A37)

= (0.7980, 0.8676, 0.8676, 0.9137, 0.6015)

d4 = IT2FWGBM1,1
w (A41, A42, A43, A44, A45, A46, A47)

= (0.8317, 0.9131, 0.9131, 0.9656, 0.6080)

d5 = IT2FWGBM1,1
w (A51, A52, A53, A54, A55, A56, A57)

= (0.7802, 0.8456, 0.8456, 0.8895, 0.6085)

d6 = IT2FWGBM1,1
w (A61, A62, A63, A64, A65, A66, A67)

= (0.8318, 0.9073, 0.9073, 0.9569, 0.6000)

Therefore, the score values of these aggregated numbers are s(d1) = 0.5405, s(d2) = 0.7079,
s(d3) = 0.5182, s(l4) = 0.5450, s(l5) = 0.5052, and s(l6) = 0.5418 and hence the final ranking of
all alternatives Ak(k = 1, 2, . . . , 6) is found as

A2 � A4 � A6 � A1 � A3 � A5

2. If we use the existing WSTIT2FHM operator as proposed by Qin [46] under
the T2FS environment
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lp = WSTIT2FHM(k)(A1, A2, . . . , An) (29)

=



∑
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,

then, the aggregated values corresponding to each alternative (by taking k = 2) are obtained as

l1 = (0.5154, 0.2276, 0.7820, 0.8314); l2 = (0.6950, 0.3239, 0.8546, 0.9054)

l3 = (0.3846, 0.1681, 0.7166, 0.7633); l4 = (0.5481, 0.2612, 0.7951, 0.8449)

l5 = (0.3201, 0.1342, 0.6769, 0.7244); l6 = (0.5272, 0.2390, 0.7914, 0.8414)

Thus, the score values are

s(l1) = (0.2077, 0.8067); s(l2) = (0.3055, 0.8799); s(l3) = (0.1422, 0.7400)

s(l4) = (0.2245, 0.8200); s(l5) = (0.1120, 0.7006); s(l6) = (0.2150, 0.8164)

and hence ordering is

A2 � A4 � A6 � A1 � A3 � A5

From the above examinations, it is revealed that the ranking order of the alternatives stays same
yet the computational procedure is altogether unique. For instance, in [36,46] authors have introduced
AOs under TIT2FNs by considering just the degree of membership during an examination. But it is
quite recognizable that the level of non-membership likewise assumes a predominant part during
the aggregation process. Thus, the outcomes processes by these methodologies [36,46] might be
unreasonable under some specific constraints where the degree of non-membership pays a more
significance than the degree of agreement.

However, apart from these, we give some characteristics comparison of our proposed method
and the aforementioned methods, which are listed in Table 4.

Table 4. The characteristic comparisons of different methods.

Methods
Whether Captures Whether Captures Whether It Makes the Whether Criteria Weights Whether Describe Whether Flexible to

Interrelationship of Two Interrelationship of Multiple Method Flexible by Are Depends on the Information Using Express a Wider
Aggregated Arguments Aggregated Arguments the Parameter Vector Collective Information Linguistic Features Range of Information

Gong et al. [36] X × × × × ×
Liu and Wang [47] × × × × × ×
Pedrycz and Song [48] × × × X X ×
Qin [46] X X X × X ×
The proposed method X X X X X X
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In [47], authors presented an analytical method for solving the problems by using the fuzzy
weighted average. In [36], the authors have presented the BM by considering simultaneously
the values of UMF and LMF to aggregate IT2FS information. On the other hand, the present study
is based on the HM operator which is more adaptable and robustness in process of information
fusion than others such as BM, GBM. The outstanding characteristic of the HM operator is to catch
the inter-relationship between more than two input arguments with a parameter k from the finite integer
set. Furthermore, in [46], the author developed HM operator by taking into account the membership
degree only but in practical problems, it is sometimes not possible for DM to give their preferences
in terms of acceptance degree only. Therefore, the non-membership degree is required for handling
the problems in which rejection degree is not equal to one minus acceptance degree. Also by comparing
with the AHP-based method [48], the proposed method does not require any software package
to compute the results while the technique proposed in [48] requires it. Thus, the computation
complexity of the proposed technique is comparatively easy. Furthermore, the AHP-based technique
is usually dependent on various parameters and thus the final ranking may some time suffers from
inconsistency, in the case of inappropriate parameter selection. On the other hand, the proposed
method draws up a more authentic ranking result as it can terminate the difference, draws up for
the flaws of already existing aggregation methods that do not capture experts utility or decision
preference and achieves more stationary and commendable interrelationships result with less
information loss. The proposed method takes into consideration the uniformity of the alternatives as
well as highlights the significance and interactions in association with any solutions of alternatives.
On the other hand, the AHP-based technique is good at calculating only the optimal ranking values of
the alternatives beyond inter-relationships.

7. Conclusions

In this paper, an endeavor has been made to exhibit the some new AOs to accommodate the IT2IF
conditions. IT2IFS is one of the augmentations of the conventional FS, IFS by considering grades
of the primary membership functions also. On the other hand, in practical application problems,
the criteria interrelationship phenomenon occurs frequently. To address it, Hamy means (HM) operator
is a standout among the most critical operators that catches the inter-relationship together with
the multi-input arguments. Furthermore, to diminish the computational complexity of the IT2IFS,
we introduce symmetric IT2IFS and characterize some operation laws. Then, keeping the advantages
of STIT2IFS and HM operators, we exhibit the symmetric TIT2 intuitionistic fuzzy HM (STIT2IFHM)
operator and weighted symmetric TIT2 intuitionistic fuzzy HM (WSTIT2IFHM) operator under
a provision of type-2 intuitionistic uncertain situation. Various beneficial characteristics of these
operators have endorsed. Furthermore, in light of these operators, a decision-making approach is
introduced to solve the MCDM problems. The presented approach has been tried and clarified with
a numerical illustration and registered that it can efficiently deal with the available information by
eliminating more amount of fuzziness as compared to the existing approaches. The major advantages
of the proposed operator with respect to the existing ones are that it need only one parameter k from a
finite integer set while other needs more than one from an infinite rational set such as BM and GBM
etc., and hence the computational complexity is low and easier to understand. Additionally, a portion
of the existing studies can be effectively concluded from the proposed operators by setting k = 1, k = 2
and k = n. Thus, it expresses a better technique for taking care of the decision-making problems with
additional benefits.

In future research, we shall extend the present study to some more generalized environment and
applied it to many other fields such as graph theory, transportation evaluation, resource management
using different uncertain environments [57–62].
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