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Abstract: The goal of this paper is to define the (p, q)-analogue of tangent numbers and polynomials
by generalizing the tangent numbers and polynomials and Carlitz-type q-tangent numbers and
polynomials. We get some explicit formulas and properties in conjunction with (p, q)-analogue of
tangent numbers and polynomials. We give some new symmetric identities for (p, q)-analogue of
tangent polynomials by using (p, q)-tangent zeta function. Finally, we investigate the distribution
and symmetry of the zero of (p, q)-analogue of tangent polynomials with numerical methods.
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1. Introduction

The field of the special polynomials such as tangent polynomials, Bernoulli polynomials,
Euler polynomials, and Genocchi polynomials is an expanding area in mathematics (see [1–16]).
Many generalizations of these polynomials have been studied (see [1,3–9,11–18]). Srivastava [14]
developed some properties and q-extensions of the Euler polynomials, Bernoulli polynomials, and
Genocchi polynomials. Choi, Anderson and Srivastava have discussed q-extension of the Riemann zeta
function and related functions (see [5,17]). Dattoli, Migliorati and Srivastava derived a generalization
of the classical polynomials (see [6]).

It is the purpose of this paper to introduce and investigate a new some generalizations of
the Carlitz-type q-tangent numbers and polynomials, q-tangent zeta function, Hurwiz q-tangent
zeta function. We call them Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent
zeta function, and Hurwitz (p, q)-tangent zeta function. The structure of the paper is as follows:
In Section 2 we define Carlitz-type (p, q)-tangent numbers and polynomials and derive some of their
properties involving elementary properties, distribution relation, property of complement, and so on.
In Section 3, by using the Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function are defined. We also contains some connection
formulae between the Carlitz-type (p, q)-tangent numbers and polynomials and the (p, q)-tangent
zeta function, Hurwitz (p, q)-tangent zeta function. In Section 4 we give several symmetric
identities about (p, q)-tangent zeta function and Carlitz-type (p, q)-tangent polynomials and numbers.
In the following Section, we investigate the distribution and symmetry of the zero of Carlitz-type
(p, q)-tangent polynomials using a computer. Our paper ends with Section 6, where the conclusions
and future developments of this work are presented. The following notations will be used throughout
this paper.

Symmetry 2018, 10, 395; doi:10.3390/sym10090395 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10090395
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/9/395?type=check_update&version=2


Symmetry 2018, 10, 395 2 of 12

• N denotes the set of natural numbers.
• Z−0 = {0,−1,−2,−2, . . .} denotes the set of nonpositive integers.
• R denotes the set of real numbers.
• C denotes the set of complex numbers.

We remember that the classical tangent numbers Tn and tangent polynomials Tn(x) are defined
by the following generating functions (see [19])

2
e2t + 1

=
∞

∑
n=0

Tn
tn

n!
, (|2t| < π), (1)

and (
2

e2t + 1

)
ext =

∞

∑
n=0

Tn(x)
tn

n!
, (|2t| < π). (2)

respectively. Some interesting properties of basic extensions and generalizations of the tangent numbers
and polynomials have been worked out in [11,12,18–20]. The (p, q)-number is defined as

[n]p,q =
pn − qn

p− q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

It is clear that (p, q)-number contains symmetric property, and this number is q-number when
p = 1. In particular, we can see limq→1[n]p,q = n with p = 1. Since [n]p,q = pn−1[n] q

p
, we observe

that (p, q)-numbers and p-numbers are different. In other words, by substituting q by q
p in the

definition q-number, we cannot have (p, q)-number. Duran, Acikgoz and Araci [7] introduced the
(p, q)-analogues of Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Araci,
Duran, Acikgoz and Srivastava developed some properties and relations between the divided
differences and (p, q)-derivative operator (see [1]). The (p, q)-analogues of tangent polynomials were
described in [20]. By using (p, q)-number, we construct the Carlitz-type (p, q)-tangent polynomials
and numbers, which generalized the previously known tangent polynomials and numbers, including
the Carlitz-type q-tangent polynomials and numbers. We begin by recalling here the Carlitz-type
q-tangent numbers and polynomials (see [18]).

Definition 1. For any complex x we define the Carlitz-type q-tangent polynomials, Tn,q(x), by the equation

Fq(t, x) =
∞

∑
n=0

Tn,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m+x]qt. (3)

The numbers Tn,q(0) are called the Carlitz-type q-tangent numbers and are denoted by Tn,q.
Based on this idea, we generalize the Carlitz-type q-tangent number Tn,q and q-tangent polynomials
Tn,q(x). It follows that we define the following (p, q)-analogues of the the Carlitz-type q-tangent
number Tn,q and q-tangent polynomials Tn,q(x). In the next section we define the (p, q)-analogue of
tangent numbers and polynomials. After that we will obtain some their properties.

2. (p, q)-Analogue of Tangent Numbers and Polynomials

Firstly, we construct (p, q)-analogue of tangent numbers and polynomials and derive some of
their relevant properties.

Definition 2. For 0 < q < p ≤ 1, the Carlitz-type (p, q)-tangent numbers Tn,p,q and polynomials Tn,p,q(x)
are defined by means of the generating functions

Fp,q(t) =
∞

∑
n=0

Tn,p,q
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m]p,qt, (4)
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and

Fp,q(t, x) =
∞

∑
n=0

Tn,p,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m+x]p,qt, (5)

respectively.

Setting p = 1 in (4) and (5), we can obtain the corresponding definitions for the Carlitz-type
q-tangent numbers Tn,q and q-tangent polynomials Tn,q(x) respectively. Obviously, if we put p = 1,
then we have

Tn,p,q(x) = Tn,q(x), Tn,p,q = Tn,q.

Putting p = 1, we have

lim
q→1

Tn,p,q(x) = Tn(x), lim
q→1

Tn,p,q = Tn.

Theorem 1. For n ∈ N∪ {0}, one has

Tn,p,q = [2]q

(
1

p− q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 p2(n−l)
. (6)

Proof. By (4), we have

∞

∑
n=0

Tn,p,q
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m]p,qt

=
∞

∑
n=0

(
[2]q

(
1

p− q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 p2(n−l)

)
tn

n!
.

Equating the coefficients of tn

n! , we arrive at the desired result (6).

If we put p = 1 in Theorem 1, we obtain (cf. [18])

Tn,q = [2]q

(
1

1− q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 .

Next, we construct the Carlitz-type (h, p, q)-tangent polynomials T(h)
n,p,q(x). Define the Carlitz-type

(h, p, q)-tangent polynomials T(h)
n,p,q(x) by

T(h)
n,p,q(x) = [2]q

∞

∑
m=0

(−1)mqm phm[2m + x]np,q. (7)

Theorem 2. For n ∈ N∪ {0}, one has

Tn,p,q(x) = [2]q

(
1

p− q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)+h

= [2]q
∞

∑
m=0

(−1)mqm[2m + x]np,q.

Proof. By (5), we obtain

Tn,p,q(x) = [2]q

(
1

p− q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)
. (8)
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Again, by using (5) and (8), we obtain

∞

∑
n=0

Tn,p,q(x)
tn

n!

=
∞

∑
n=0

(
[2]q

(
1

p− q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)

)
tn

n!

= [2]q
∞

∑
m=0

(−1)mqme[2m+x]p,qt.

(9)

Since [x + 2y]p,q = p2y[x]p,q + qx[2y]p,q, we have

Tn,p,q(x) = [2]q
n

∑
l=0

(
n
l

)
[x]n−l

p,q qxl
l

∑
k=0

(
l
k

)
(−1)k

(
1

p− q

)l 1
1 + q2k+1 p2(n−k)

. (10)

By using (9) and (10), (p, q)-number, and the power series expansion of ext, we give Theorem 2.

Furthermore, by (7) and Theorem 2, we have

Tn,p,q(x) =
n

∑
l=0

(
n
l

)
[x]n−l

p,q qxlT(2n−2l)
l,p,q ,

Tn,p,q(x + y) =
n

∑
l=0

(
n
l

)
pxlqy(n−l)[y]lp,qT(2l)

n−l,p,q.

From (4) and (5), we can derive the following properties of the Carlitz-type tangent numbers
Tn,p,q and polynomials Tn,p,q(x). So, we choose to omit the details involved.

Proposition 1. For any positive integer n, one has

(1) Tn,p,q(x) =
[2]q
[2]qm

[m]np,q ∑m−1
a=0 (−1)aqaTn,pm ,qm

( 2a+x
m
)

, (m = odd).

(2) Tn,p−1,q−1(2− x) = (−1)n pnqnTn,p,q(x).

Theorem 3. For n ∈ N∪ {0}, one has

qTn,p,q(2) + Tn,p,q =

{
[2]q, if n = 0,
0, if n 6= 0.

Theorem 4. If n is a positive integer, then we have

n−1

∑
l=0

(−1)lql [2l]mp,q =
(−1)n+1qnTm,p,q(2n) + Tm,p,q

[2]q
.

Proof. By (4) and (5), we get

− [2]q
∞

∑
l=0

(−1)l+nql+ne[2l+2n]p,qt + [2]q
∞

∑
l=0

(−1)lqle[2l]p,qt = [2]q
n−1

∑
l=0

(−1)lqle[2l]p,qt. (11)
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Hence, by (4), (5) and (11), we have

(−1)n+1qn
∞

∑
m=0

Tm,p,q(2n)
tm

m!
+

∞

∑
m=0

Tm,p,q
tm

m!

=
∞

∑
m=0

(
[2]q

n−1

∑
l=0

(−1)lql [2l]mp,q

)
tm

m!
.

Equating coefficients of tm

m! gives Theorem 4.

3. (p, q)-Analogue of Tangent Zeta Function

Using Carlitz-type (p, q)-tangent numbers and polynomials, we define the (p, q)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function. These functions have the values of the Carlitz-type
(p, q)-tangent numbers Tn,p,q, and polynomials Tn,p,q(x) at negative integers, respectively. From (4),
we note that

dk

dtk Fp,q(t)

∣∣∣∣∣
t=0

= [2]q
∞

∑
m=0

(−1)nqm[2m]kp,q

= Tk,p,q, (k ∈ N).

From the above equation, we construct new (p, q)-tangent zeta function as follows:

Definition 3. We define the (p, q)-tangent zeta function for s ∈ C with Re(s) > 0 by

ζp,q(s) = [2]q
∞

∑
n=1

(−1)nqn

[2n]sp,q
. (12)

Notice that ζp,q(s) is a meromorphic function on C(cf.7). Remark that, if p = 1, q → 1,
then ζp,q(s) = ζT(s) which is the tangent zeta function (see [19]). The relationship between the
ζp,q(s) and the Tk,p,q is given explicitly by the following theorem.

Theorem 5. Let k ∈ N. We have
ζp,q(−k) = Tk,p,q.

Please note that ζp,q(s) function interpolates Tk,p,q numbers at non-negative integers. Similarly,
by using Equation (5), we get

dk

dtk Fp,q(t, x)

∣∣∣∣∣
t=0

= [2]q
∞

∑
m=0

(−1)mqm[2m + x]kp,q (13)

and (
d
dt

)k
(

∞

∑
n=0

Tn,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Tk,p,q(x), for k ∈ N. (14)

Furthermore, by (13) and (14), we are ready to construct the Hurwitz (p, q)-tangent zeta function.

Definition 4. For s ∈ C with Re(s) > 0 and x /∈ Z−0 , we define

ζp,q(s, x) = [2]q
∞

∑
n=0

(−1)nqn

[2n + x]sp,q
. (15)

Obverse that the function ζp,q(s, x) is a meromorphic function on C. We note that, if p = 1 and
q → 1, then ζp,q(s, x) = ζT(s, x) which is the Hurwitz tangent zeta function (see [19]). The function
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ζp,q(−k, x) interpolates the numbers Tk,p,q(x) at non-negative integers. Substituting s = −k with k ∈ N
into (15), and using Theorem 2, we easily arrive at the following theorem.

Theorem 6. Let k ∈ N. One has
ζp,q(−k, x) = Tk,p,q(x).

4. Some Symmetric Properties About (P, Q)-Analogue of Tangent Zeta Function

Our main objective in this section is to obtain some symmetric properties about (p, q)-tangent
zeta function. In particular, some of these symmetric identities are also related to the Carlitz-type
(p, q)-tangent polynomials and the alternate power sums. To end this section, we focus on some
symmetric identities containing the Carlitz-type (p, q)-tangent zeta function and the alternate
power sums.

Theorem 7. Let w1 and w2 be positive odd integers. Then we have

[2]qw1 [w1]
s
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x +

2w1i
w2

)

= [2]qw2 [w2]
s
p,q

w1−1

∑
j=0

(−1)jqw2 jζpw1 ,qw1

(
s, w2x +

2w2 j
w1

)
.

Proof. For any x, y ∈ C, we observe that [xy]p,q = [x]py ,qy [y]p,q. By substituting w1x + 2w1i
w2

for x in
Definition 4, replace p by pw2 and replace q by qw2 , respectively, we derive

ζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw2

∞

∑
n=0

(−1)nqw2n

[w1x + 2w1i
w2

+ 2n]spw2 ,qw2

= [2]qw2 [w2]
s
p,q

∞

∑
n=0

(−1)nqw2n

[w1w2x + 2w1i + 2w2n]sp,q
.

Since for any non-negative integer m and positive odd integer w1, there exist unique non-negative
integer r such that m = w1r + j with 0 ≤ j ≤ w1 − 1. Thus, this can be written as

ζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw2 [w2]

s
p,q

∞

∑
w1r+j=0

0≤j≤w1−1

(−1)w1r+jqw2(w1r+j)

[2w2(w1r + j) + w1w2x + 2w1i]sp,q

= [2]qw2 [w2]
s
p,q

w1−1

∑
j=0

∞

∑
r=0

(−1)w1r+jqw2(w1r+j)

[w1w2(2r + x) + 2w1i + 2w2 j]sp,q
.

It follows from the above equation that

[2]qw1 [w1]
s
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw1 [2]qw2 [w1]

s
p,q[w2]

s
p,q

×
w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2 j)

[w1w2(2r + x) + 2w1i + 2w2 j]sq
.

(16)
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From the similar method, we can have that

ζpw1 ,qw1

(
s, w2x +

2w2 j
w1

)
= [2]qw1

∞

∑
n=0

(−1)nqw1n

[w2x + 2w2 j
w1

+ 2n]spw1 ,qw1

= [2]qw1 [w1]
s
p,q

∞

∑
n=0

(−1)nqw1n

[w1w2x + 2w2 j + 2w1n]sp,q
.

After some calculations in the above, we have

[2]qw2 [w2]
s
p,q

w1−1

∑
j=0

(−1)jqw2 jζ
(h)
pw1 ,qw1

(
s, w2x +

2w2 j
w1

)
= [2]qw1 [2]qw2 [w1]

s
p,q[w2]

s
p,q

×
w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2 j)

[w1w2(2r + x) + 2w1i + 2w2 j]sp,q
.

(17)

Thus, from (16) and (17), we obtain the result.

Corollary 1. For s ∈ C with Re(s) > 0, we have

ζp,q(s, w1x) = [w1]
−s
p,q

w1−1

∑
j=0

(−1)jqjζpw1 ,qw1

(
s,

x + 2j
w1

)
.

Proof. Let w2 = 1 in Theorem 7. Then we immediately get the result.

Next, we also derive some symmetric identities for Carlitz-type (p, q)-tangent polynomials by
using (p, q)-tangent zeta function.

Theorem 8. Let w1 and w2 be any positive odd integers. The following multiplication formula holds true for
the Carlitz-type (p, q)-tangent polynomials:

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)

= [2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)
.

Proof. By substituting Tn,p,q(x) for ζp,q(s, x) in Theorem 7, and using Theorem 6, we can find that

[2]qw1 [w1]
−n
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
−n, w1x +

2w1i
w2

)

= [2]qw1 [w1]
−n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)
,

(18)

and

[2]qw2 [w2]
−n
p,q

w1−1

∑
j=0

(−1)jqw2 jζpw1 ,qw1

(
−n, w2x +

2w2 j
w1

)

= [2]qw2 [w2]
−n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)
.

(19)

Thus, by (18) and (19), this concludes our proof.
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Considering w1 = 1 in the Theorem 8, we obtain as below equation.

Tn,p,q(x) =
[2]q
[2]qw2

[w2]
n
p,q

w2−1

∑
j=1

(−1)jqjTn,pw2 ,qw2

(
x + 2j

w2

)
.

Furthermore, by applying the addition theorem for the Carlitz-type (h, p, q)-tangent polynomials
T(h)

n,p,q(x), we can obtain the following theorem.

Theorem 9. Let w1 and w2 be any positive odd integers. Then one has

[2]qw2

n

∑
l=0

(
n
l

)
[w2]

l
q[w1]

n−l
p,q pw1w2xlT(2l)

n−l,pw1 ,qw1 (w2x)Tn,l,pw2 ,qw2 (w1)

= [2]qw1

n

∑
l=0

(
n
l

)
[w1]

l
p,q[w2]

n−l
p,q pw1w2xlT(2l)

n−l,pw2 ,qw2 (w1x)Tn,l,pw1 ,qw1 (w2).

Proof. From Theorem 8, we have

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)

= [2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1i
n

∑
l=0

(
n
l

)
q2w1(n−l)i pw1w2xl

× T(2l)
n−l,pw2 ,qw2 (w1x)

(
[w1]p,q

[w2]p,q

)l

[2i]lpw1 ,qw1

= [2]qw1 [w2]
n
p,q

n

∑
l=0

(
n
l

)(
[w1]p,q

[w2]p,q

)l

pw1w2xlT(2l)
n−l,pw2 ,qw2 (w1x)

×
w2−1

∑
i=0

(−1)iqw1iq2(n−l)w1i[2i]lpw1 ,qw1 .

Therefore, we obtain that

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)
= [2]qw1

n

∑
l=0

(
n
l

)
[w1]

l
p,q[w2]

n−l
p,q pw1w2xlT(2l)

n−l,pw2 ,qw2 (w1x)Tn,l,pw1 ,qw1 (w2),

(20)

and

[2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)

= [2]qw2

n

∑
l=0

(
n
l

)
[w2]

l
q[w1]

n−l
p,q pw1w2xlT(2l)

n−l,pw1 ,qw1 (w2x)Tn,l,pw2 ,qw2 (w1).

(21)

where Tn,l,p,q(k) = ∑k−1
i=0 (−1)iq(1+2n−2l)i[2i]lp,q is called as the alternate power sums. Thus, the theorem

can be established by (20) and (21).
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5. Zeros of the Carlitz-Type (P, Q)-Tangent Polynomials

The purpose of this section is to support theoretical predictions using numerical experiments
and to discover new exciting patterns for zeros of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x).
We propose some conjectures by numerical experiments. The first values of the Tn,p,q(x) are given by

T0,p,q(x) = 1,

T1,p,q(x) = − −px − pxq3 + qx + p2q1+x

(p− q)(1 + p2q)(1− q + q2)
,

T2,p,q(x) =
p2x + p2+2xq3 + p2xq5 + p2+2xq8 − 2pxqx + q2x − 2p4+xq1+x

(p− q)2(1 + p4q)(1 + p2q3)(1− q + q2 − q3 + q4)

− 2pxq5+x − 2p4+xq6+x + p4q1+2x + p2q3+2x + p6q4+2x

(p− q)2(1 + p4q)(1 + p2q3)(1− q + q2 − q3 + q4)
.

Tables 1 and 2 present the numerical results for approximate solutions of real zeros of Tn,p,q(x).
The numbers of zeros of Tn,p,q(x) are tabulated in Table 1 for a fixed p = 1

2 and q = 1
10 .

Table 1. Numbers of real and complex zeros of Tn,p,q(x), p = 1
2 , q = 1

10 .

Degree n Real Zeros Complex Zeros

1 1 0
2 2 0
3 1 2
4 2 2
5 1 4
6 2 4
7 1 6
8 2 6
9 1 8

10 2 8
11 1 10
12 2 10
13 1 12
14 2 12
...

...
...

30 2 28

Table 2. Numerical solutions of Tn,p,q(x) = 0, p = 1
2 , q = 1

10 .

Degree n x

1 0.0147214
2 –0.0451666, 0.0490316
3 0.0737013
4 –0.0782386, 0.0906197
5 0.102727
6 –0.0935042, 0.111767

The use of computer has made it possible to identify the zeros of the Carlitz-type (p, q)-tangent
polynomials Tn,p,q(x). The zeros of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) for x ∈ C are
plotted in Figure 1.

In Figure 1(top-left), we choose n = 10, p = 1/2 and q = 1/10. In Figure 1(top-right), we choose
n = 20, p = 1/2 and q = 1/10. In Figure 1(bottom-left), we choose n = 30, p = 1/2 and
q = 1/10. In Figure 1(bottom-right), we choose n = 40, p = 1/2 and q = 1/10. It is amazing
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that the structure of the real roots of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) is regular.
Thus, theoretical prediction on the regular structure of the real roots of the Carlitz-type (p, q)-tangent
polynomials Tn,p,q(x) is await for further study (Table 1). Next, we have obtained the numerical
solution satisfying Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) = 0 for x ∈ R. The numerical
solutions are tabulated in Table 2 for a fixed p = 1

2 and q = 1
10 and various value of n.

-0.1 0 0.1 0.2

ReHxL

-0.1

0

0.1

0.2

ImHxL

-0.1 0 0.1 0.2

ReHxL

-0.1

0

0.1

0.2

ImHxL

-0.1 0 0.1 0.2

ReHxL

-0.1

0

0.1

0.2

ImHxL

-0.1 0 0.1 0.2

ReHxL

-0.1

0

0.1

0.2

ImHxL

Figure 1. Zeros of Tn,p,q(x).

6. Conclusions and Future Developments

This study constructed the Carlitz-type (p, q)-tangent numbers and polynomials. We have
derived several formulas for the Carlitz-type (h, q)-tangent numbers and polynomials.
Some interesting symmetric identities for Carlitz-type (p, q)-tangent polynomials are also obtained.
Moreover, the results of [18] can be derived from ours as special cases when q = 1. By numerical
experiments, we will make a series of the following conjectures:

Conjecture 1. Prove or disprove that Tn,p,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex
functions. Furthermore, Tn,p,q(x) has Re(x) = a reflection symmetry for a ∈ R.

Many more values of n have been checked. It still remains unknown if the conjecture holds or
fails for any value n (see Figure 1).

Conjecture 2. Prove or disprove that Tn,p,q(x) = 0 has n distinct solutions.
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In the notations: RTn,p,q(x) denotes the number of real zeros of Tn,p,q(x) lying on the real plane
Im(x) = 0 and CTn,p,q(x) denotes the number of complex zeros of Tn,p,q(x). Since n is the degree of the
polynomial Tn,p,q(x), we get RTn,p,q(x) = n− CTn,p,q(x) (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

RTn,p,q(x) =

{
1, if n = odd,
2, if n = even.

We expect that investigations along these directions will lead to a new approach employing
numerical method regarding the research of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x)
which appear in applied mathematics, and mathematical physics (see [11,18–20]).
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