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Abstract: Decision making is the key component of people’s daily life, from choosing a mobile phone
to engaging in a war. To model the real world more accurately, probabilistic linguistic term sets
(PLTSs) were proposed to manage a situation in which several possible linguistic terms along their
corresponding probabilities are considered at the same time. Previously, in linguistic term sets,
the probabilities of all linguistic term sets are considered to be equal which is unrealistic. In the
process of decision making, due to the vagueness and complexity of real life, an expert usually
hesitates and unable to express its opinion in a single term, thus making it difficult to reach a final
agreement. To handle real life scenarios of a more complex nature, only membership linguistic
decision making is unfruitful; thus, some mechanism is needed to express non-membership linguistic
term set to deal with imprecise and uncertain information in more efficient manner. In this article,
a novel notion called probabilistic hesitant intuitionistic linguistic term set (PHILTS) is designed,
which is composed of membership PLTSs and non-membership PLTSs describing the opinions of
decision makers (DMs). In the theme of PHILTS, the probabilities of membership linguistic terms
and non-membership linguistic terms are considered to be independent. Then, basic operations,
some governing operational laws, the aggregation operators, normalization process and comparison
method are studied for PHILTSs. Thereafter, two practical decision making models: aggregation based
model and the extended TOPSIS model for PHILTS are designed to classify the alternatives from
the best to worst, as an application of PHILTS to multi-attribute group decision making. In the end,
a practical problem of real life about the selection of the best alternative is solved to illustrate the
applicability and effectiveness of our proposed set and models.

Keywords: hesitant intuitionistic fuzzy linguistic term set; probabilistic hesitant intuitionistic
linguistic term set; multi-attribute group decision making; aggregation operators; TOPSIS

1. Introduction

The choices we make today determine our future, therefore, to choose the best alternative subject
to certain attributes is an important problem. Multi-attribute group decision making (MAGDM)
has established its importance by providing the optimal solution considering different attributes in
many real life problems. For this purpose, many sets and models have been designed to express and
comprehend the opinions of DMs. The classical set theory is too restrictive to express one’s opinion, as
some real life scenarios are too complicated and the vague data are often involved, therefore the DMs
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are unable to form a definite opinion. Fuzzy set theory is proposed as a remedy for such kind of real
life problems. Fuzzy set approaches are suitable to use when the modelling of human knowledge is
necessary and when human evaluations are required. However, the usual fuzzy set theory is limited
to the modelling in which the diversity of variants occurs at the same time.

To overcome such situation, different extensions of fuzzy set have been proposed to better
model the real world, such as intuitionistic fuzzy set [1], hesitant fuzzy set [2], hesitant probabilistic
fuzzy set [3], hesitant probabilistic multiplicative set [4], and necessary and possible hesitant fuzzy
set [5]. Zadeh [6] suggested the concept of a linguistic variable that is more natural for humans to
express there will in situations where data are imprecise. Thus far, linguistic environment has been
extensively used to cope with the problems of decision making within [7]. Mergió et al. [8] used the
Dempster–Shafer theory of evidence to construct an improved linguistic representation model for
the sake of decision making process. Next, they introduced several linguistic aggregation operators.
Zhu et al. [9] proposed a two-dimensional linguistic lattice implication algebra to determine implicitly
and further the compilation of two-dimensional linguistic information decision in MAGDM dilemmas.
Meng and Tang [10] generalized the 2-tuple linguistic aggregation operators and then used them in
MAGDM dilemmas. Li and Dong [11] gave an introduction to the proportional 2-tuple linguistic
form to make easy the solving of MAGDM dilemmas. Xu [12] introduced a dynamic linguistic
weighted geometric operator to cumulate the linguistic information and then solved the problem of
MAGDM when the judgment in different periods to change the linguistic information. Li [13] applied
the concept of extended linguistic variables to construct an advanced way to cope with MAGDM
dilemmas under linguistic environments. Agell et al. [14] used qualitative thinking approaches to
perform and incorporate linguistic decision information and then applied it to MAGDM dilemmas.

Because of the uncertainty, vagueness and complexity of real world problems, it is troublesome
for experts to grant linguistic judgment using a single linguistic term. Torra [2] managed the situation
where several membership values of a fuzzy set are possible by defining hesitant fuzzy set (HFS).
Experts may hesitate among several possible linguistic terms. For this purpose, Rodriguez et al. [15]
introduced the concept of hesitant fuzzy linguistic term sets (HFLTS) to improve the flexibility
of linguistic information within hesitant situation. Zhu and Li [16] designed hesitant fuzzy
linguistic aggregation operators based on the Hamacher t-norm and t-conorm. Cui and Ye [17]
proposed multiple-attribute decision-making method using similarity measures of hesitant linguistic
neutrosophic numbers regarding least common multiple cardinality. Liu et al. [18] defined new kind
of similarity and distance measures based on a linguistic scale function. However, in some cases,
the probabilities of these possible terms are not equal. Given this reality, Peng et al. [19] proposed the
more generalized concept, called probabilistic linguistic term sets (PLTSs). PLTSs allow DMs to state
more than one linguistic term, as an assessment for linguistic variable. This increases the flexibility
and the fruitfulness of the expression of linguistic information and it is more reasonable for DMs to
state their preference in terms of PLTSs because the PLTSs can reflect different probabilities for each
possible assessment of a given object. Therefore, the research on the PLTSs is necessary. Thus, they
used PLTSs in multi-attribute group decision making problem and construct an extended TOPSIS
method as well as an aggregation-based method for MAGDM. Recently, in 2017, Lin et al. [20] extended
the PLTSs to probabilistic uncertain linguistic term set, which is designed as some possible uncertain
linguistic terms coupled with the corresponding probabilities, and developed an extended approach
for preference to rank the alternatives.

Atanassov [1,21] presented the concept of the intuitionistic fuzzy set (IFS) which has three
main parts, membership function, non-membership function and hesitancy function, and is better
suited to handling uncertainty than the usual fuzzy set. Many researchers have been applying
IFS for multi-attribute decision making under various different fuzzy environments. Up to now,
the intuitionistic fuzzy set has been applied extensively to decision making problems [22–27].
Beg and Rashid [28] generalized the concept of HFLTS by hesitant intuitionistic fuzzy linguistic term
set (HIFLTS) which is characterized by a membership and non-membership function that is more
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applicable for dealing with uncertainty than the HFLTS. HIFLTS collects possible membership and
non-membership linguistic values provided by the DMs. This approach is useful to model more
complex real life scenarios.

In this article, we introduce the concept of PHILTS. The main idea is to facilitate DMs to provide
their opinions about membership and non-membership linguistic terms more freely to cope with the
vagueness and uncertainties of real life. To make meaningful decision making, the basic framework of
PHILTS is developed. In this regard, normalization process for the purpose to equalize the length of
PHILTSs, basic operations and their governing laws are presented. Furthermore, to deal with different
scenarios, range of aggregation operators, i.e., probabilistic hesitant intuitionistic linguistic averaging
operator, probabilistic hesitant intuitionistic linguistic weighted averaging operator, probabilistic
hesitant intuitionistic linguistic geometric operator and probabilistic hesitant intuitionistic linguistic
weighted geometric operator are proposed. The DM can choose the aggregation operator according to
his preference. Lastly, for practical use of PHILTS in decision making, an extended TOPSIS method
is derived, in which the DMs provide their opinions in PHILTSs which are further aggregated and
processed according to the proposed mechanism of extended TOPSIS to find the best alternative.

This paper is organized as follows. In Section 2, we review some basic knowledge needed
to understand our proposal. In Section 3, the concept of PHILTSs is firstly proposed and then
some concepts concerning PHILTS, i.e., normalization process, deviation degree, score function,
operations and comparison between probabilistic hesitant intuitionistic linguistic term elements
(PHILTEs), are also discussed. In Section 4, aggregation operators, deviation degree between two
PHILTEs and weight vector are derived. In Section 5, we propose an extended TOPSIS method and
aggregation based method designed for MAGDM with probabilistic hesitant intuitionistic linguistic
information. An example is provided in Section 6 to illustrate the usefulness and practicality of our
methodology by ranking of alternatives. Section 7 is dedicated to highlighting the advantages of the
proposed set and comparing proposed models with existing theory. Finally, some concluding remarks
are given in Section 8.

2. Preliminaries

In this section, we give some concepts and operations related to HFLTSs, HIFLTSs and PLTSs that
will be used in coming sections.

2.1. Hesitant Fuzzy Linguistic Term Set

The DMs may face such a problem where they hesitate with certain possible values. For this
purpose, Rodriguez et al. [15] introduced the following concept of hesitant fuzzy linguistic term
set (HFLTS).

Definition 1 ([15]). Let S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set; then, HFLTS, HS, is a finite and
ordered subset of the consecutive linguistic terms of S.

Example 1. Let S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = medium, s4 = good, s5 = very good ,

s6 = extremely good

}
be a linguistic term set. Then, two different HFLTSs may be defined as:
HS (x) = {s1 = very poor, s2 = poor, s3 = medium, s4 = good} and HS (y) = {s3 = medium, s4 = good, s5 = very good}.

Definition 2 ([15]). Let S = {sα; α = 0, 1, 2, . . . , g} be an ordered finite set of linguistic terms and E be an
ordered finite subset of the consecutive linguistic terms of S. Then, the operators “max” and “min” on E can be
defined as follows:

(i) max (E) = max (sl) = sm ; sl ∈ E and sl ≤ sm ∀l
(ii) min (E) = min (sl) = sn ; sl ∈ E and sl ≥ sn ∀l.
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2.2. Hesitant Intuitionistic Fuzzy Linguistic Term Set

In 2014, Beg and Rashid [28] introduced the concept of hesitant intuitionistic fuzzy linguistic term
set (HIFLTS). This concept is actually based on HFLTS and intuitionistic fuzzy set.

Definition 3 ([28]). Let X be a universe of discourse, and S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set,
then HIFLTS on X are two functions h and h

′
that when applied to an element of X return finite and ordered

subsets of consecutive linguistic terms of S, this can be presented mathematically as:

A =
{〈

x, h (x) , h
′
(x)
〉
|x ∈ X

}
,

where h (x) and h
′
(x) denote the possible membership and non-membership degree in terms of consecutive

linguistic terms of the element x ∈ X to the set A such that the following conditions are satisfied:

(i) max (h (x)) + min
(

h
′
(x)
)
≤ sg;

(ii) min (h (x)) + max
(

h
′
(x)
)
≤ sg.

2.3. Probabilistic Linguistic Term Sets

Recently, in 2016, Pang et al. [19] introduced the concept of PLTSs by attaching probabilities with
each linguistic term, which is basically the generalization of HFLTS, and thus they opened a new
dimension of research in decision theory.

Definition 4 ([19]). Let S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set, then a PLTS can be presented
as follows:

L (p) =

{
L(i)

(
p(i)
)
| L(i) ∈ S, p(i) ≥ 0 i = 1, 2, . . . , #L (p) ,

#L(p)

∑
i=1

p(i) ≤ 1

}
. (1)

where L(i)
(

p(i)
)

is the ith linguistic term L(i) associated with the probabilityp(i), and #L (p) denotes the
number of linguistic terms in L (p) .

Definition 5 ([19]). Let L (p) =
{

L(i)
(

p(i)
)

; i = 1, 2, . . . , #L (p)
}

, r(i) be the lower index of linguistic

term L(i), L (p) is called an ordered PLTS, if all the elements L(i)
(

p(i)
)

in L (p) are ranked according to the

values of r(i) × p(i) in descending order.

However, in a PLTS, it is possible for two or more linguistic terms with equal values of r(i) × p(i).
Taking a PLTS L (p) = {s1 (0.4) , s2 (0.2) , s3 (0.4) }, here r(1) × p(1) = r(2) × p(2) = 0.4

According to the above rule, these two values cannot be arranged. To handle such type of problem,
Zhang et al. [29] defined the following ranking rule.

Definition 6 ([29]). Let L (P) =
{

L(i)
(

p(i)
)

; i = 1, 2, . . . , #L (p)
}

, r(i) be the lower index of linguistic

term L(i).

(1) If the values of r(i)
(

p(i)
)

are different for all elements in PLTS, then arrange all the elements according to

the values of r(i)
(

p(i)
)

directly.

(2) If all the values of r(i)
(

p(i)
)

become equal for two or more elements, then

(a) When the lower indices r(i) (i = 1, 2, . . . , #L (p)) are unequal, arrange r(i)
(

p(i)
)
(i = 1, 2, . . . , #L (p))

according to the values of r(i) (i = 1, 2, . . . , #L (p)) in descending order.
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(b) When the lower indices r(i) (i = 1, 2, . . . , #L (p)) are incomparable, arrange
r(i)
(

p(i)
)
(i = 1, 2, . . . , #L (p)) according to the values of p(i) (i = 1, 2, . . . , #L (p)) in

descending order.

Definition 7 ([19]). Let L (p) be a PLTS such that
#L(p)

∑
i=1

p(i) < 1, then the associated PLTS is denoted and

defined as
L� (p) =

{
L(i)

(
p�

(i)
)

; i = 1, 2, . . . , #L (p)
}

(2)

where p�
(i)

= p(i)
#L(p)

∑
i=1

p(i)
, ∀i = 1, 2, . . . , #L (p) .

Definition 8 ([19]). Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) ={

L(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
be two PLTSs, where #L1 (p) and #L2 (p) denote the number of

linguistic terms in L1 (p) and L2 (p), respectively. If #L1 (p) > #L2 (p), then #L1 (p)− #L2 (p) linguistic
terms will be added to L2 (p) so that the number of elements in L1 (p) and L2 (p) becomes equal. The added
linguistic terms are the smallest one’s in L2 (p) and the probabilities of all the linguistic terms are zero.

Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) =

{
L(i)

2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
,

then the Normalized PLTSs denoted by L̃1 (p) =

{
L̃(i)

1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L̃2 (p) ={

L̃(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
can be obtained according to the following two steps:

(1) If
#Lk(p)

∑
i=1

p(i)k < 1, then L�
k (p) , k = 1, 2 is calculated according to Definition 7.

(2) If #L1 (p) 6= #L2 (p), then according to Definition 8, add some linguistic terms to the one with the
smaller number of elements.

The deviation degree between PLTSs, which is analogous to the Euclidean distance between
hesitant fuzzy sets [30] can be defined as:

Definition 9 ([19]). Let L1 (p) =
{

L(i)
1

(
p(i)1

)
; i = 1, 2, . . . , #L1 (p)

}
and L2 (p) ={

L(i)
2

(
p(i)2

)
; i = 1, 2, . . . , #L2 (p)

}
be two PLTSs, where #L1 (p) and #L2 (p) denote the number of

linguistic terms in L1 (p) and L2 (p), respectively, with #L1 (p) = #L2 (p). Then, the deviation degree between
these two PLTSs can be defined as

d (L1 (p) , L2 (p)) =

√√√√ 1
#L1 (p)

L1(p)

∑
i=1

(
p(i)1 r(i)1 − p(i)2 r(i)2

)2
(3)

where r(i)1 and r(i)2 denote the lower indices of linguistic terms L(i)
1 and L(i)

2 , respectively.

For further detail of PLTS, one can see Ref. [19].

3. Probabilistic Hesitant Intuitionistic Linguistic Term Set

Although HIFLTS allow the DM to state his assessments by using several linguistic terms, it cannot
reflect the probabilities of the assessments of DM.

To overcome this issue, in this section, the concept of probabilistic hesitant intuitionistic linguistic
term set (PHILTS) which is based on the concept of HIFLTS and PLTS is proposed. Furthermore, some
basic operations for PHILTS are also designed.
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Definition 10. Let X be a universe of discourse, and S = {sα; α = 0, 1, 2, . . . , g} be a linguistic term set, then
a PHILTS on X are two functions l and l

′
that when applied to an element of X return finite and ordered subsets

of the consecutive linguistic terms of S along with their occurrence probabilities, which can be mathematically
expressed as

A (p) =



〈
x, l (x) (p (x)) =

{
l(i) (x)

(
p(i) (x)

)}
, l
′
(x)
(

p
′
(x)
)
=

{
l
′(j)

(x)
(

p
′(j)

(x)
)}〉

|p(i) (x) ≥ 0, i = 1, 2, . . . , #l (x) (p (x)) ,
#l(x)(p(x))

∑
i=1

pi (x) ≤ 1 &

p
′(j)

(x) ≥ 0, j = 1, 2, . . . , #l
′
(x)
(

p
′
(x)
)

,
#l
′
(x)
(

p
′
(x)
)

∑
j=1

p
′(j)

(x) ≤ 1


(4)

where l (x) (p (x)) and l
′
(x) p

′
(x) are the PLTSs, denoting the membership and non-membership degree of the

element x ∈ X to the set A (p) such that the following two conditions are satisfied:

(i) max (l (x)) + min
(

l
′
(x)
)
≤ sg;

(ii) min (l (x)) + max
(

l
′
(x)
)
≤ sg.

For the sake of simplicity and convenience, we call the pair A (x) (p (x)) =〈
l (x) (p (x)) , l

′
(x)
(

p
′
(x)
)〉

as the intuitionistic probabilistic linguistic term element (PHILTE),

denoted by A (p) =
〈

l (p) , l
′
(

p
′
)〉

for short.

Remark 1. Particularly, if the probabilities of all linguistic terms in membership part and non-membership
part become equal, then PHILTE reduces to HIFLTE.

Example 2. Let S =

{
s0 = extremely poor, s1 = very poor, s2 = poor, s3 = medium, s4 = good, s5 = very good ,

s6 = extremely good

}
be a linguistic term set. A PHILTS is
A (p) = {〈x1, {s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉 , 〈x2, {s4 (0.33) , s5 (0.5)} , {s1 (0.2) , s2 (0.45)}〉}

One can easily check the conditions of PHILTS for A (p).
To illustrate the PHILTS more straightforwardly, in the following, a practical life example is given

to depict the difference between the PHILTS and HIFLTS:

Example 3. Take the evaluation of a vehicle on the comfortable degree attribute/criteria as an example. Let S be
a linguistic term set used in the above example. An expert provides an HIFLTE 〈{s1, s2, s3} , {s3, s4}〉 on the
comfortable degree due to his/her hesitation for this evaluation. However, he/she is more confident in the linguistic
term s2 for the membership degree set and the linguistic term s4 for the non-membership degree set. The HIFLTS
fails to express his/her confidence. Therefore, we utilize the PHILTS to present his/her evaluations. In this case,
his/her evaluations can be expressed as A (p) = 〈{s1 (0.2) , s2 (0.6) , s3 (0.2)} , {s3 (0.2) , s4 (0.8)}〉.

In the following, the ordered PHILTE is defined to make sure that the operational results among
PHILTEs can be determined easily.

Definition 11. A PHILTE A (p) =
〈

l (p) , l
′
(

p
′
)〉

is known to be an ordered PHILTE, if l (p) and l
′
(

p
′
)

are ordered PLTSs.

Example 4. Consider a PHILTE A (p) = 〈{s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉 used
in the Example 2. Then, according to Definition 11 the ordered PHILTE is A (p) =

〈{s3 (0.35) , s1 (0.4) , s2 (0.1)} , {s4 (0.4) , s3 (0.3)}〉
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3.1. The Normalization of PHILTEs

Ideally, the sum of the probabilities is one, but in PHILTE if either of the membership probabilities
or non-membership probabilities have sum less than one than this issue is resolved as follows.

Definition 12. Consider a PHILTE A (p) =
〈

l (p) , l
′
(

p
′
)〉

, the associated PHILTE A� (p) =〈
l (p�) , l

′ (
p
′�
)〉

is defined, where

l
(

p�
)
=
{

l(i)
(

p�
(i)
)
|i = 1, 2, . . . , #l (p)

}
; p�

(i)
=

p(i)

#l(p)
∑

i=1
p(i)

, ∀i = 1, 2, . . . , #l (p) (5)

and

l
′ (

p
′�)

=

{
l
′(j)
((

p
′�(j)
))
|j = 1, 2, . . . , l

′ (
p
′)}

; p
′�(j)

=
p
′(j)

l′(p′)
∑

j=1
p′(j)

, ∀j = 1, 2, . . . , l
′ (

p
′)

. (6)

Example 5. Consider a PHILTE A (p) = 〈{s1 (0.4) , s2 (0.1) , s3 (0.35)} , {s3 (0.3) , s4 (0.4)}〉. Here, we see

that
#l(p)
∑

i=1
p(i) = 0.85 < 1 also

#l
′(

p
′)

∑
j=1

p
′(j)

= 0.7 < 1 so the associated PHILTE A� (p) =
〈

l (p�) , l
′ (

p
′�
)〉

=〈{
s1

(
0.4

0.85

)
, s2

(
0.1

0.85

)
, s3
( 0.35

0.85
)}

,
{

s3
( 0.3

0.7
)

, s4

(
0.4
0.7

)}〉
.

In decision making process, experts usually face such problems in which the length of PHILTEs is
different. Let A (p) =

〈
l (p) , l

′
(

p
′
)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be two PHILTEs of different

lengths. Then, the following three cases are possible (I) #l (p) 6= #l1 (p1) , (I I) #l
′
(

p
′
)
6= #l

′
1

(
p
′
1

)
,

(I I I) #l (p) 6= #l1 (p1) and #l
′
(

p
′
)
6= #l

′
1

(
p
′
1

)
. In such situation, they need to equalize their lengths by

increasing the number of probabilistic linguistic terms in that PLTS in which the number of probabilistic
linguistic terms are relatively small because PHILTEs of different lengths create great problems in
operations, aggregation operators and finding the deviation degree between two PHILTEs.

Definition 13. Given any two PHILTEs A (p) =
〈

l (p) , l
′
(

p
′
)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
if

#l (p) > #l1 (p1) then #l (p)− #l1 (p1) linguistic terms should be added to l1 (p1) to make their cardinalities
identical. The added linguistic terms are the smallest one(s) in l1 (p1), and the probabilities of all the linguistic
terms are zero.

The remaining cases are analogous to Case (I).
Let A1 (p1) =

〈
l1 (p1) , l

′
1

(
p
′
1

)〉
and A2 (p2) =

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
be two PHILTEs. Then, the

following two simple steps are involved in normalization process.

Step 1: If
#lj(pj)

∑
i=1

p(i)j < 1 or
#l
′
j

(
p
′
j

)
∑

i=1
p
′(i)
j < 1 ; j = 1, 2, then we calculate lj

(
p�j
)

, l
′
j

(
p
′�
j

)
; j = 1, 2

using Equations (5) and (6).
Step 2: If #l1 (p1) 6= #l2 (p2) or #l

′
1

(
p
′
1

)
6= #l

′
2

(
p
′
2

)
, then we add some elements according to

Definition 13 to the one with small number of elements.
The resultant PHILTEs are called the normalized PHILTEs which are denoted as Ã (p) and

Ã1 (p1).
Note, for the convenience of presentation, we denote the normalized PHILTEs by A (p) and

A1 (p1) as well.
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Example 6. Let A (p) = 〈{s2 (0.3) , s3 (0.7)} , {s0 (0.2) , s1 (0.4) , s2 (0.3)}〉 and A1 (p1) =

〈{s3 (0.4) , s4 (0.3) , s5 (0.3)} , {s1 (0.4) , s2 (0.6)}〉 then
Step 1: According to Equation (6) l

′
(

p
′�
)
=
{

s0
( 0.2

0.9
)

, s1

(
0.4
0.9

)
, s2
( 0.3

0.9
)}

Step 2: Since #l (p) < #l1 (p1), so we add the linguistic term s2 to l (p) so that the number of linguistic
terms in l (p) and l1 (p1) becomes equal, thus l (p) = {s2 (0.3) , s3 (0.7) , s2 (0)}. In addition, #l

′
1

(
p
′
1

)
<

#l
′
(

p
′
)

so we add the linguistic term s1 to l
′
1

(
p
′
1

)
, l
′
1

(
p
′
1

)
= {s1 (0.4) , s2 (0.6) , s1 (0)}. Therefore, after

normalization, we have
A (p) = 〈{s2 (0.3) , s3 (0.7) , s2 (0)} , {s0 (0.2) , s1 (0.4) , s2 (0.3)}〉 and
A1 (p1) = 〈{s3 (0.4) , s4 (0.3) , s5 (0.3)} , {s1 (0.4) , s2 (0.6) , s1 (0)}〉 .

3.2. The Comparison between PHILTEs

In this section, the comparison between two PHILTEs is presented. For this purpose, the score
function and the deviation degree of the PHILTE are defined.

Definition 14. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . , #l (p) , j =

1, 2, . . . , l
′
(

p
′
)

be a PHILTE with a linguistic term set S = {sα; α = 0, 1, 2, . . . , g} such that r(i) and r
′(j)

denote, respectively, the lower indices of linguistic terms l(i) and l
′(j)

, then the score of A (p) is denoted and
defined as follows:

E (A (p)) = sγ (7)

where γ =
g + α− β

2
; α =

#l(p)
∑

i=1
r(i)p(i)

#l(p)
∑

i=1
p(i)

and β =

#l
′(

p
′)

∑
j=1

r
′(j)

p
′(j)

#l′(p′)
∑

j=1
p′

(j)

.

It is easy to see that 0 ≤ g+α−β
2 ≤ g which means sγ ∈ S = {sα|α ∈ [0, g]} .

Apparently, the score function represents the averaging linguistic term of PHILTE.
For two PHILTEs A (p) and A1 (p1), if E (A (p)) > E (A1 (p1)) , then A (p) is superior to A1 (p1),

denoted as A (p) > A1 (p1); if E (A (p)) < E (A1 (p1)), then E (A (p)) is inferior to A1 (p1), denoted as
A (p) < A1 (p1); and, if E (A (p)) = E (A1 (p1)), then we cannot distinguish between them. Thus,
in this case, we define another indicator, named as the deviation degree as follows:

Definition 15. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . #l (p) , j =

1, 2, . . . , l
′
(

p
′
)

be a PHILTE such that r(i) and r
′(j)

denote, respectively, the lower indices of linguistic terms

l(i) and l
′(j)

, then the deviation degree of A (p) is denoted and defined as follows:

σ (A (p)) =


#l(p)
∑

i=1

(
p(i)

(
r(i) − γ

))2

#l(p)
∑

i=1
p(i)

+

#l
′(

p
′)

∑
j=1

(
p
′(j)
(

r
′(j)
− γ

))2

#l′(p′)
∑

j=1
p′

(j)



1
2

(8)

The deviation degree shows the distance from the average value in the PHILTE. The greater value
of σ implies lower consistency while the lesser value of σ indicates higher consistency.

Thus, A (p) and A1 (p1) can be ranked by the following procedure:
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(1) if E (A (p)) > E (A1 (p1)), then A (p) > A1 (p1) ;
(2) if E (A (p)) = E (A1 (p1)) and

(a) σ (A (p)) > σ (A1 (p1)), then A (p) < A1 (p1);
(b) σ (A (p)) < σ (A1 (p1)), then A (p) > A1 (p1);
(c) σ (A (p)) = σ (A1 (p1)), then A (p) is indifferent to A1 (p1) and is denoted as A (p) ∼

A1 (p1).

Example 7. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

= 〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s2 (0.1) , s3 (0.3) , s4 (0.6)}〉

, A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
= 〈{s2 (0.3) , s3 (0.3)} , {s3 (0.35) , s4 (0.35)}〉 and S be the linguistic term

set used in Example 2 then

α =
1× 0.12 + 2× 0.26 + 3× 0.62

0.12 + 0.26 + 0.62
= 2.5, β =

2× 0.1 + 3× 0.3 + 4× 0.6
0.6 + 0.3 + 0.1

= 3.5,

γ =
6 + 2.5− 3.5

2
= 2.5, E (A (p)) = s2.5

α1 =
2× 0.3 + 3× 0.3

0.3 + 0.3
= 2.5, β1 =

0.35× 3 + 0.35× 4
0.35 + 0.35

= 3.5,

γ1 =
6 + 2.5− 3.5

2
= 2.5, E (A1 (P1)) = s2.5

Since E (A (p)) = E (A1 (p1)), we have to calculate the deviation degree of A (p) and A1 (p1) .

σ (A (p)) =

√
((0.12(1−2.5))2+(0.26(2−2.5))2+(0.62(3−2.5))2)

0.12+0.26+0.62 +
((0.6(4−3.5))2+(0.3(3−3.5))2+(0.1(2−3.5))2)

0.6+0.3+0.1 =
0.529,

σ (A1 (p1)) =

√
((0.3(2−2.5))2+(0.3(3−2.5))2)

0.3+0.3 +
((0.35(3−3.5))2+(0.35(4−3.5))2)

0.35+0.35 = 0.37

Thus, σ (A (p)) > σ (A1 (p1)) so A (p) is inferior to A1 (p1).

In the following, we present a theorem which shows that the association does not affect the score
and deviation degree of PHILTE.

Theorem 1. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

be a PHILTE and A� (p) =
〈

l (p�) , l
′
(

p
′�
)〉

be the associated
PHILTE then E (A (p)) = E (A� (p)) and σ (A (p)) = σ (A� (p)).

Proof. E (A� (p)) = s �
γ

where
�
γ = g+

�
α−

�
β

2 and
�
α =

#l(p�)
∑

i=1
r(i)p�

(i)

#l(p�)
∑

i=1
p�(i)

. Since
#l(p�)

∑
i=1

p�
(i)

= 1 and p�
(i)

= p(i)
#l(p)

∑
i=1

p(i)
,

which implies that
�
α =

#l(p)
∑

i=1
r(i)p(i)

#l(p)
∑

i=1
p(i)

= α and
�
β =

#l
′(

p
′ �
)

∑
j=1

r(j)p
′�(j)

#l′(p′ .)
∑

j=1
p′ �(j)

. Since
#l
′(

p
′�)

∑
j=1

p
′�(j)

= 1 and p
′ .(j) =

p′(j)

#l′(p′)
∑

j=1
p′(j)

which further implies that
�
β =

#l
′(

p
′)

∑
j=1

r(i)p
′(i)

#l′(p′)
∑

i=1
p′(i)

= β. Hence, E (A� (p)) = E (A (p)) .
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Next, σ (A� (p)) =


#l(p�)

∑
i=1

(
p�(i)

(
r(i)−

�
γ

))2

#l(p.)
∑

i=1
p.(i)

+

#l
′(

p
′ �
)

∑
j=1

(
p
′ �(j)
(

r
′(j)
−

�
γ

))2

#l′(p′ �)
∑

j=1
p′�(j)


1
2

Since
#l(p�)

∑
i=1

p�(i) = 1, p�(i) = p(i)
#l(p)

∑
i=1

p(i)
,

#l
′(

p
′ �
)

∑
j=1

p
′�(j) = 1, p

′�(j) = p
′(j)

#l′(p′)
∑

j=1
p′(j)

and
�
γ = γ.

It yields that σ (A� (p)) =


#l(p)

∑
i=1

(p(i)(r(i)−γ))
2

#l(p)
∑

i=1
p(i)

+

#l
′(

p
′)

∑
j=1

(
p
′(j)(

r
′(j)
−γ

))2

#l′(p′)
∑

j=1
p′
(j)


1
2

= σ (A (p)).

The following theorem shows that order of comparison between two PHILTEs remains unaltered
after normalization.

Theorem 2. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be any two PHILTEs,

Ã (p) =
〈

l̃ (p) , l̃′
(

p
′
)〉

and Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
be the corresponding normalized PHILTEs

respectively, then A (p) < A1 (p1) ⇐⇒ Ã (p) < Ã1 (p1) .

Proof. The proof is quite clear because, according to Theorem 1, E (A (p)) = E (A� (p)) and
σ (A (p)) = σ (A� (p)), so order of comparison in Step (1) of normalization process is preserved
and so for Step (2) is concerned in that step we add some elements to PHILTEs though it does not
change the order as we attach zero probabilities with the corresponding added elements so this means
E
(

Ã (p)
)
= E

(
Ã1 (p1)

)
and σ

(
Ã (p)

)
= σ

(
Ã1 (p1)

)
. Hence, the result holds true.

In the following definition, we summarize the fact that comparison of any two PHILTEs can be
done by their corresponding normalized PHILTEs.

Definition 16. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
be any two PHILTEs,

Ã (p) =
〈

l̃ (p) , l̃′
(

p
′
)〉

and Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
be the corresponding normalized PHILTEs,

respectively, then

(I) If E
(

Ã (p)
)
> E

(
Ã1 (p1)

)
then A (p) > A1 (p1).

(II) If E
(

Ã (p)
)
< E

(
Ã1 (p1)

)
then A (p) < A1 (p1).

(III) If E
(

Ã (p)
)

= E
(

Ã1 (p1)
)

then in this case we are unable to decide which one is superior.
Thus, in this case, we do the comparison of PHILTEs on the bases of the deviation degree of
normalized PHILTEs as follows.

(1) If δ
(

Ã (p)
)
> δ

(
Ã1 (p1)

)
then A (p) < A1 (p1).

(2) If δ
(

Ã (p)
)
< δ

(
Ã1 (p1)

)
then A (p) > A1 (p1).

(3) If δ
(

Ã (p)
)
= δ

(
Ã1 (p1)

)
in such case we say that A (p) is indifferent to A1 (p1) and is denoted

by A (p) ∼ A1 (p1).

Example 8. Let S be the linguistic term set used in Example 2, A (p) =
〈

l (p) , l
′
(

p
′
)〉

=

〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s2 (0.1) , s3 (0.3) , s4 (0.5)}〉 and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=
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〈{s2 (0.3) , s3 (0.3)} , {s3 (0.35) , s4 (0.35)}〉 then the corresponding normalized PHILTEs are
Ã (p) =

〈
l̃ (p) , l̃′

(
p
′
)〉

= 〈{s1 (0.12) , s2 (0.26) , s3 (0.62)} , {s3 (0.375) , s4 (0.625) , s3 (0)}〉 and

Ã1 (p1) =
〈

l̃1 (p1) , l̃′1
(

p
′
1

)〉
= 〈{s2 (.5) , s3 (0.5) , s2 (0)} , {s3 (0.5) , s4 (0.5) , s3 (0)}〉.

We calculate the score of these normalized PHILTEs

α =
1× 0.12 + 2× 0.26 + 3× 0.62

0.12 + 0.26 + 0.62
= 2.5, β =

3× 0.375 + 4× 0.625 + 3× 0
0.375 + 0.625 + 0

= 3.625,

γ =
6 + 2.5− 3.625

2
= 2.437, E

(
Ã (P)

)
= s2.437

α1 =
2× 0.5 + 3× 0.5 + 0× 2

0.5 + 0.5
= 2.5, β1 =

0.5× 3 + 0.5× 4 + 0× 3
0.5 + 0.5

= 3.5,

γ1 =
6 + 2.5− 3.5

2
= 2.5, E

(
Ã1 (p1)

)
= s2.5

Since E
(

Ã (p)
)
< E

(
Ã1 (p1)

)
so A (p) < A1 (p1) .

3.3. Basic Operations of PHILTEs

Based on the operational laws of the PLTSs [19], we develop some basic operational framework
of PHILTEs and investigate their properties in preparation for applications to the practical real life
problems. Hereafter, it is assumed that all PHILTEs are normalized.

Definition 17. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

=

〈
l(i)
(

p(i)
)

, l
′(j)
(

p
′(j)
)〉

; i = 1, 2, . . . , #l (p) , j =

1, 2, . . . , #l
′
(

p
′
)

and A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=

〈
l(i)1

(
p(i)1

)
, l
′(j)

1

(
p
′(j)

1

)〉
; i =

1, 2, . . . , #l1 (p1) , j = 1, 2, . . . , #l
′
1

(
p
′
1

)
be two normalized and ordered PHILTEs, then

Addition:

A (p)⊕ A1 (p1) =
〈

l (p)⊕ l1 (p1) , l
′ (

p
′)⊕ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′
(j)

1

(
p′
(j)

1

) {p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉
(9)

Multiplication:

A (p)⊗ A1 (p1) =
〈

l (p)⊗ l1 (p1) , l
′
(

p
′
)
⊗ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

}
,∪

l′
(j)
∈l′ (p′ ),l′

(j)

1 ∈l′1(p1)


(

l
′(j)
)p′

(j)

⊗
(

l
′(j)

1

)p′
(j)

1


〉

(10)

Scalar multiplication:

γ (A (p)) =
〈

γl (p) , γl
′
(

p
′
)〉

=

〈
∪l(i)∈l(p)γp(i)l(i),∪

l′
(j)
∈l′ (p′ )

γp
′(j)

l
′(j)
〉

(11)

Scalar power:

(A (p))γ =
〈
(l (p))γ ,

(
l
′
(

p
′
)γ)〉

=

〈
∪l(i)∈l(p)

(
l(i)
)γp(i)

,∪
l′
(j)
∈l′ (p′ )

(
l
′(j)
)γp′

(j)〉
(12)
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where l(i) and l(i)1 are the ith linguistic terms in l (p) and l1 (p1), respectively; l
′(j)

and l
′(j)

1 are the jth linguistic terms

in l
′
(

p
′
)

and l
′
1

(
p
′
1

)
, respectively; p(i) and p(i)1 are the probabilities of the ith linguistic terms in l (p) and l1 (p1),

respectively; p
′(j)

and p
′(j)

1 are the probabilities of the jth linguistic terms in l
′
(

p
′
)

and l
′
1

(
p
′
1

)
, respectively; and γ denote a

nonnegative scalar.

Theorem 3. Let A (p) =
〈

l (p) , l
′
(

p
′
)〉

, A1 (p1) =
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
, A2 (p2) =

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
be any three ordered and normalized PHILTEs, γ1,γ2, γ3 ≥ 0, then

(1) A (p)⊕ A1 (p1) = A1 (p1)⊕ A (p) ;
(2) A (p)⊕ (A1 (p1)⊕ A2 (p2)) = (A (p)⊕ A1 (p1))⊕ A2 (p2) ;
(3) γ (A (p)⊕ A1 (p1)) = γA (p)⊕ γA1 (p1) ;
(4) (γ1 + γ2) A (p) = γ1 A (p)⊕ γ2 A (p) ;
(5) A (p)⊗ A1 (p1) = A1 (p1)⊗ A (p) ;
(6) A (p)⊗ (A1 (p1)⊗ A2 (p2)) = (A (p)⊗ A1 (p1))⊗ A2 (p2) ;
(7) (A (p)⊗ A1 (p1))

γ = (A (p))γ ⊗ (A1 (p1))
γ ;

(8) (A (p))γ1+γ2 = (A (p))γ1 ⊗ (A (p))γ2 .

Proof. (1) A (p) ⊕ A1 (p1) =
〈

l (p) , l
′
(

p
′
)〉

⊕
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=〈

l (p)⊕ l1 (p1) , l
′
(

p
′
)
⊕ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)1 l(i)1 ⊕ p(i)l(i)

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

1 l
′(j)

1 ⊕ p
′(j)

l
′(j)
}〉

=
〈

l1 (p1)⊕ l (p) , l
′
1

(
p
′
1

)
⊕ l

′
(

p
′
)〉

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊕
〈

l (p) , l
′
(

p
′
)〉

= A1 (P1)⊕ A (p)
(2) A (p)⊕ (A1 (p1)⊕ A2 (p2)) =

〈
l (p) , l

′
(

p
′
)〉
⊕
(〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉)
=
〈

l (p)⊕ (l1 (p1)⊕ l2 (p2)) , l
′
(

p
′
)
⊕
(

l
′
1

(
p
′
1

)
⊕ l

′
2

(
p
′
2

))〉
=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l(i)(z)∈l2(p2)

{
p(i)l(i) ⊕

(
p(i)1 l(i)1 ⊕ p(i)2 l(i)2

)}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)

(z)∈l′2(p2)

{
p
′(j)

l
′(j)
⊕
(

p
′(j)

1 l
′(j)

1 ⊕ p
′(j)

2 l
′(j)

2

)} 〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l(i)(z)∈l2(p2)

{(
p(i)l(i) ⊕ p(i)1 l(i)1

)
⊕ p(i)2 l(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)

(z)∈l′2(p2)

{(
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

)
⊕ p

′(j)

2 l
′(j)

2

} 〉

=
〈
(l (p)⊕ l1 (p1))⊕ l2 (p2) ,

(
l
′
(

p
′
)
⊕ l

′
1

(
p
′
1

))
⊕ l

′
2

(
p
′
2

)〉
=
(〈

l (p) , l
′
(

p
′
)〉
⊕
〈

l1 (p1) , l
′
1

(
p
′
1

)〉)
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
= (A (p)⊕ A1 (p1))⊕ A2 (p2)

(3) γ (A (p)⊕ A1 (p1)) = γ
〈

l (p) , l
′
(

p
′
)〉

⊕
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=

γ
〈

l (p)⊕ l1 (p1) , l
′
(

p
′
)
⊕ l

′
1

(
p
′
1

)〉
= γ

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊕ p(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊕ p

′(j)

1 l
′(j)

1

}〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
γp(i)l(i) ⊕ γp(i)1 l(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
γp
′(j)

l
′(j)
⊕ γp

′(j)

1 l
′(j)

1

}〉
=
〈

γl (p)⊕ γl1 (p1) , γl
′
(

p
′
)
⊕ γl

′
1

(
p
′
1

)〉
=
〈

γl (p) , γl
′
(

p
′
)〉
⊕
〈

γl1 (p1) , γl
′
1

(
p
′
1

)〉
= γA (p)⊕ γA1 (p1)
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(4) (γ1 + γ2) A (p) = (γ1 + γ2)
〈

l (p) , l
′
(

p
′
)〉

= γ

〈
∪l(i)∈l(p)

{
(γ1 + γ2) p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
(γ1 + γ2) p

′(j)
l
′(j)
}〉

=

〈
∪l(i)∈l(p)

{
γ1 p(i)l(i) ⊕ γ2 p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
γ1 p

′(j)
l
′(j)
⊕ γ2 p

′(j)
l
′(j)
}〉

=

〈
∪l(i)∈l(p)

{
γ1 p(i)l(i)

}
⊕∪l(i)∈l(p)

{
γ2 p(i)l(i)

}
,∪

l′
(j)
∈l′(p′)

{
γ1 p

′(j)
l
′(j)
}
⊕∪

l′
(j)
∈l′(p′)

{
γ2 p

′(j)
l
′(j)
}〉

=
〈

γ1l (p)⊕ γ2l (p) , γ1l
′
(

p
′
)
⊕ γ2l

′
(

p
′
)〉

=
〈

γ1l (p) , γ1l
′
(

p
′
)〉
⊕
〈

γ2l (p) , γ2l
′
(

p
′
)〉

= γ1 A (p)⊕ γ2 A (P)
(5) A (p)⊗ A1 (p1) =

〈
l (p) , l

′
(

p
′
)〉
⊗
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
=
〈

l (p)⊗ l1 (p1) , l
′
(

p
′
)
⊗ l

′
1

(
p
′
1

)〉
=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)


(

l
′(j)
)p
′(j)

⊗
(

l
′(j)

1

)p
′(j)

1


〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)1

)p(i)1 ⊗
(

l(i)
)p(i)

}
,∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)


(

l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)
)p
′(j)

〉

=
〈

l (y) (p (y))⊗ l (p) , l
′
(y)
(

p
′
(y)
)
⊗ l

′
(

p
′
)〉

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊗
〈

l (p) , l
′
(

p
′
)〉

= A1 (P1)⊗ A (p)
(6) A (p)⊗ (A1 (p1)⊗ A2 (p2)) =

〈
l (p) , l

′
(

p
′
)〉
⊗
(〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉)
=
〈

l (p)⊗ (l1 (p1)⊗ l2 (p2)) , l
′
(

p
′
)
⊗
(

l
′
1

(
p
′
1

)
⊗ l

′
2

(
p
′
2

))〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2)

{(
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1 ⊗
(

l(i)2

)p(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)
2 ∈l′2(p2)


(

l
′(j)
)p
′(j)

⊗

(l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)

2

)p
′(j)

2



〉

=

〈 ∪
l(i)∈l(p),l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2)

{((
l(i)
)p(i)
⊗
(

l(i)1

)p(i)1

)
⊗
(

l(i)2

)p(i)2

}
,

∪
l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1),l
′(j)
2 ∈l′2(p2)


(l

′(j)
)p
′(j)

⊗
(

l
′(j)

1

)p
′(j)

1

⊗(l
′(j)

2

)p
′(j)

2


〉

=
〈
(l (p)⊗ l1 (p1))⊗ l2 (p2) ,

(
l
′
(

p
′
)
⊗ l

′
1

(
p
′
1

))
⊗ l

′
2

(
p
′
2

)〉
=
(〈

l (p) , l
′
(

p
′
)〉
⊗
〈

l1 (p1) , l
′
1

(
p
′
1

)〉)
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
= (A (p)⊗ A1 (p1))⊗ A2 (p2)

(7) (A (p)⊗ A1 (p1))
γ =

(〈
l (p) , l

′
(

p
′
)〉
⊗
〈

l1 (p1) , l
′
1

(
p
′
1

)〉)γ

=
〈
(l (p)⊗ l1 (p1))

γ ,
(

l
′
(

p
′
)
⊗ l

′
1

(
p
′
1

))γ〉
=

〈(
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{
p(i)l(i) ⊗ p(i)1 l(i)1

})γ

,

(
∪

l′
(j)
∈l′(p′),l′

(j)

1 ∈l′1(p1)

{
p
′(j)

l
′(j)
⊗ p

′(j)

1 l
′(j)

1

})γ〉

=

〈
∪

l(i)∈l(p),l(i)1 ∈l1(p1)

{(
l(i)
)γp(i)

⊗
(

l(i)1

)γp(i)1

}
,∪

l′
(j)
∈l′ (p′ ),l′

(j)
(y)∈l′1(p1)


(

l
′(j)
)γp′

(j)

⊗
(

l
′(j)

1

)γp′
(j)

1


〉

=
〈
(l (p))γ ⊗ (l1 (p1))

γ ,
(

l
′
(

p
′
))γ
⊗
(

l
′
1

(
p
′
1

))γ〉
=
〈
(l (p))γ ,

(
l
′
(

p
′
))γ〉

⊗
〈
(l1 (p1))

γ ,
(

l
′
1

(
p
′
1

))γ〉
= (A (p))γ ⊗ (A1 (p1))

γ

(8) (A (p))γ1+γ2 =
(〈

l (p) , l
′
(

p
′
)〉)γ1+γ2

=

〈
(l (p))

γ1+γ2 ,
(

l
′
(

p
′
))γ1+γ2

〉
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=

〈
∪l(i)∈l(p)

{(
l(i)
)(γ1+γ2)p(i)

}
,∪

l′
(j)
∈l′(p′)


(

l
′(j)

(x)
)(γ1+γ2)p

′(j)

〉

=

〈
∪l(i)∈l(p)

{(
l(i)
)γ1 p(i)

⊗
(

l(i)
)γ2 p(i)

}
,∪

l′
(j)
∈l′(p′)


(

l
′(j)
)γ1 p

′(j)

⊗
(

l
′(j)
)γ2 p

′(j)

〉

=

〈 ∪l(i)∈l(p)

{(
l(i)
)γ1 p(i)

}
⊗∪l(i)(x)∈l(p)

{(
l(i)
)γ2 p(i)

}
,

∪
l′
(j)
∈l′(p′)


(

l
′(j)
)γ1 p

′(j)
⊗∪l′

(j)
∈l′(p′)


(

l
′(j)
)γ2 p

′(j)

〉

=
〈
(l (p))γ1 ⊗ (l (p))γ2 ,

(
l
′
(

p
′
))γ1 ⊗

(
l
′
(

p
′
))γ2

〉
=
〈
(l (p))γ1 ,

(
l
′
(

p
′
))γ1

〉
⊗
〈
(l (p))γ2 ,

(
l
′
(

p
′
))γ2

〉
= (A (p))γ1 ⊗ (A (p))γ2 .

4. Aggregation Operators and Attribute Weights

This section is dedicated to discussion on some basic aggregation operators of PHILTS.
Deviation degree between two PHILTEs is also defined in this section. Finally, we calculate the
attribute weights in the light of PHILTEs.

4.1. The Aggregation Operators for PHILTEs

The aggregation operators are powerful tools to deal with linguistic information. To make a better
usage of PHILTEs in real world problems, in the following, aggregation operators for PHILTEs have
been developed.

Definition 18. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILA (A1 (p1) , A2 (p2) , . . . , An (pn))

=
1
n

(〈
l1 (p1) , l

′
1

(
p
′
1

)〉
⊕
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
⊕ . . .⊕

〈
ln (pn) , l

′
n

(
p
′
n

)〉)
=

1
n

〈
l1 (p1)⊕ l2 (p2)⊕ . . .⊕ ln (pn) , l

′
1

(
p
′
1

)
⊕ l

′
2

(
p
′
2

)
⊕ . . .⊕ l

′
n

(
p
′
n

)〉
=

1
n

〈 ∪
l(i)1 ∈l1(p1),l

(i)
2 ∈l2(p2),...,l

(i)
n ∈ln(pn)

{
p(i)1 l(i)1 ⊕ p(i)2 l(i)2 ⊕ . . .⊕ p(i)n l(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)

,l′
(j)

2 ∈l′2
(

p′2
)

,...,l′
(j)

n ∈l′n
(

p′n
) {p

′(j)

1 l
′(j)

1 ⊕ p
′(j)

2 l
′(j)

2 ⊕ . . .⊕ p
′(j)

n l
′(j)

n

} 〉 (13)

is called the probabilistic hesitant intuitionistic linguistic averaging (PHILA) operator.

Definition 19. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILWA (A1 (p1) , A2 (p2) , . . . , An (pn))

= w1

〈
l1 (p1) , l

′
1

(
p
′
1

)〉
⊕ w2

〈
l2 (p2) , l

′
2

(
p
′
2

)〉
⊕ . . .⊕ wn

〈
ln (pn) , l

′
n

(
p
′
n

)〉
=
〈

w1l1 (p1)⊕ w2l2 (p2)⊕ . . .⊕ wnln (pn) , w1l
′
1

(
p
′
1

)
⊕ w2l

′
2

(
p
′
2

)
⊕ . . .⊕ wnl

′
n

(
p
′
n

)〉
=

〈 ∪
l(i)1 ∈l1(p1)

{
w1 p(i)1 l(i)1

}
⊕∪

l(i)2 ∈l2(p2)

{
w2 p(i)2 l(i)2

}
⊕ . . .⊕∪

l(i)n ∈ln(pn)

{
wn p(i)n l(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
) {w1 p

′(j)

1 l
′(j)

1

}
⊕∪

l′
(j)

2 ∈l′2
(

p′2
) {w2 p

′(j)

2 l
′(j)

2

}
⊕ . . .⊕∪

l′
(j)

n ∈l′n
(

p′n
) {wn p

′(j)

n l
′(j)

n

} 〉 (14)
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is called the probabilistic hesitant intuitionistic linguistic weighted averaging (PHILWA) operator, where w =

(w1, w2, . . . , wn)
t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0, k = 1, 2, . . . , n, and

n
∑

k=1
wk = 1.

Particularly, if we take w =
(

1
n , 1

n , . . . , 1
n

)t
, then the PHILWA operator reduces to the

PHILA operator.

Definition 20. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then,

PHILG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
(〈

l1 (p1) , l
′
1

(
p
′
1

)〉
⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉
⊗ . . .⊗

〈
ln (pn) , l

′
n

(
p
′
n

)〉) 1
n

=
(〈

l1 (p1)⊗ l2 (p2)⊗ . . .⊗ ln (pn) , l
′
1

(
p
′
1

)
⊗ l

′
2

(
p
′
2

)
⊗ . . .⊗ l

′
n

(
p
′
n

)〉) 1
n

=


〈 ∪

l(i)1 ∈l1(p1),l
(i)
2 ∈l2(p2),...,l

(i)
n ∈ln(pn)

{(
l(i)1

)p(i)1 ⊗
(

l(i)2

)p(i)2 ⊗ . . .⊗
(

l(i)n

)p(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)

,l′
(j)

2 ∈l′2
(

p′2
)

,...,l′
(j)

n ∈l′n
(

p′n
)

(

l
′(j)

1

)p
′(j)

1
⊗
(

l
′(j)

2

)p
′(j)

2
⊗ . . .⊗

(
l
′(j)

n

)p
′(j)
n


〉


1
n (15)

is called the probabilistic hesitant intuitionistic linguistic geometric (PHILG) operator.

Definition 21. Let Ak (pk) =
〈

lk (pk) , l
′
k

(
p
′
k

)〉
(k = 1, 2, . . . , n) be n ordered and normalized

PHILTEs. Then

PHILWG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
〈

l1 (p1) , l
′
1

(
p
′
1

)〉w1 ⊗
〈

l2 (p2) , l
′
2

(
p
′
2

)〉w2 ⊗ . . .⊗
〈

ln (pn) , l
′
n

(
p
′
n

)〉wn

=
〈
(l1 (p1))

w1 ⊗ (l2 (p2))
w2 ⊗ . . .⊗ (ln (pn))

wn ,
(

l
′
1

(
p
′
1

))w1 ⊗
(

l
′
2

(
p
′
2

))w2 ⊗ . . .⊗
(

l
′
n

(
p
′
n

))wn〉

=

〈 ∪
l(i)1 ∈l1(p1)

{(
l(i)1

)w1 p(i)1

}
⊗∪

l(i)2 ∈l2(p2)

{(
l(i)2

)w2 p(i)2

}
⊗ . . .⊗∪

l(i)n ∈ln(pn)

{(
l(i)n

)wn p(i)n

}
,

∪
l′
(j)

1 ∈l′1
(

p′1
)

(

l
′(j)

1

)w1 p
′(j)

1

⊗∪l′
(j)

2 ∈l′2
(

p′2
)

(

l
′(j)

2

)w2 p
′(j)

2

⊗ . . .⊗∪
l′
(j)

n ∈l′n
(

p′n
)

(

l
′(j)

n

)wn p
′(j)
n


〉 (16)

is called the probabilistic hesitant intuitionistic linguistic weighted geometric (PHILWG) operator, where w =

(w1, w2, . . . , wn)
t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0, k = 1, 2, . . . , n, and

n
∑

k=1
wk = 1.

Particularly, if we take w =
(

1
n , 1

n , . . . , 1
n

)t
, then the PHILWG operator reduces to the

PHILG operator.

4.2. Maximizing Deviation Method for Calculating the Attribute Weights

The choice of weights directly affects the performance of weighted aggregation operators. For this
purpose, in this subsection, the affective maximizing deviation method is adopted to calculate weight
in MAGDM when weights are unknown or partly known. Based on Definition 9, the deviation degree
between two PHILTEs is defined as follows:

Definition 22. Let A (p) and A1 (p1) be any two PHILTEs of equal length. Then, the deviation degree D
between A (p) and A1 (p1) is given by

D (A (p) , A1 (p1)) = d (l (p) , l1 (p1)) + d
(

l
′ (

p
′)

, l
′
1

(
p
′
1

))
(17)
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where

d (l (p) , l1 (p1)) =

√√√√√√ #l(p)
∑

i=1

(
p(i)r(i) − p(i)1 r(i)1

)
#l (p)

, (18)

d
(

l
′ (

p
′)

, l
′
1

(
p
′
1

))
=

√√√√√√√
#l′(p′)

∑
j=1

(
p′(j)r′(j) − p′(j)

1 r′(j)
1

)
#l′
(

p′
) (19)

r(i) denote the lower index of the ith linguistic term of l (p) and r
′(j)

denote the lower index of the jth linguistic
term of l

′
(

p
′
)

.

Based on the above definition, in the following, we derive attribute weight vector because working
on the probabilistic linguistic data to deal with the MAGDM problems, in which the weight information
of attribute values is completely unknown or partly known, we must find the attribute weights in
advance.

Given the set of alternatives x = {x1, x2, . . . , xm} and the set of “n” attributes c = {c1, c2, . . . , cn},
respectively, then, by using Equation (17), the deviation measure between the alternative “xi” and all
other alternatives with respect to the attribute “cj” can be given as:

Dij (w) = ∑
q=1,q 6=i

wjD
(
hij, hqj

)
, i = 1, 2, . . . , m, j = 1, 2, . . . , n (20)

In accordance with the theme of the maximizing deviation method, if the deviation degree among
alternatives is smaller for an attribute, then the attribute should give a smaller weight. This one shows
that the alternatives are homologous to the attribute. Contrarily, it should give a larger weight. Let

Dj (w) =
m
∑

i=1
Dij (w) =

m
∑

i=1

m
∑

q 6=i
wjD

(
hij, hqj

)
=

m

∑
i=1

m

∑
q 6=i

wj

(
d
(
lij
(

pij
)

, lqj
(

pqj
))

+ d
(

l
′
ij

(
p
′
ij

)
, l
′
qj

(
p
′
qj

)))
(21)

show the deviation degree of one alternative and others with respect to the attribute “cj” and let

D (w) =
n
∑

j=1
Dj (w) =

n
∑

j=1

m
∑

i=1
Dij (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 6=i
wjD

(
hij, hqj

)
=

n
∑

j=1

m
∑

i=1

m
∑

q 6=i
wj

(
d
(
lij
(

pij
)

, lqj
(

pqj
))

+ d
(

l
′
ij

(
p
′
ij

)
, l
′
qj

(
p
′
qj

)))

=
n

∑
j=1

m

∑
i=1

m

∑
q 6=i

wj



√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2

 (22)

express the sum of the deviation degrees among all attributes.
To obtain the attribute weights vector w = (w1, w2, . . . , wn)

t, we build the following single
objective optimization model (named as M1) to drive the deviation degree d (w) as large as possible.

M1 =


max D (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 6=i
wjD

(
hij, hqj

)
wj ≥ 0, j = 1, 2, . . . , n,

n
∑

j=1
w2

j = 1

To solve the above model M1, we use the Lagrange multiplier function:
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L (w, η) =
n

∑
j=1

m

∑
i=1

m

∑
q 6=i

wjD
(
hij, hqj

)
+

η

2

(
n

∑
j=1

w2
j − 1

)
(23)

where η is the Lagrange parameter.
Then, we compute the partial derivatives of Lagrange function with respect to wj and η and let

them be zero: 
∂L(w,η)

∂wj
=

m
∑

i=1

m
∑

q 6=i
wjD

(
hij, hqj

)
+ ηwj = 0, j = 1, 2, . . . , n.

δL(w,η)
∂η =

n
∑

j=1
w2

j − 1 = 0
(24)

By solving Equation (24), one can obtain the optimal weight w = (w1, w2, . . . , wn)
t .

wj =

m
∑

i=1

m
∑

q 6=i
D(hij ,hqj)√√√√ n

∑
j=1

(
m
∑

i=1
∑

q 6=i
D(hij ,hqj)

)2
=

m
∑

i=1

m
∑

q 6=i

(
d(lij(pij),lqj(pqj))+d

(
l
′
ij

(
p
′
ij

)
,l
′
qj

(
p
′
qj

)))
√√√√ n

∑
j=1

(
m
∑

i=1
∑

q 6=i

(
d(lij(pij),lqj(pqj))+d

(
l′ij
(

p′ij
)

,l′qj

(
p′qj

))))2

wj =

m
∑

i=1

m
∑

q 6=i



√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2


√√√√√√√√√√√

n
∑

j=1


m
∑

i=1
∑

q 6=i



√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2





2
(25)

where j = 1, 2, . . . , n.
Obviously, wj ≥ 0 ∀ j. By normalizing Equation (25), we get:

wj =

m
∑

i=1

m
∑

q 6=i
D(hij ,hqj)

n
∑

j=1

m
∑

i=1
∑

q 6=i
D(hij ,hqj)

wj =

m
∑

i=1

m
∑

q 6=i



√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2



n
∑

j=1

m
∑

i=1
∑

q 6=i



√√√√ 1
#lij(pij)

#lij(pij)
∑

k1=1

(
p(k1)

ij r(k1)
ij − p(k1)

qj r(k1)
qj

)2
+√√√√ 1

#l′ij
(

p′ij
) #l′ij

(
p′ij
)

∑
k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2



(26)

where j = 1, 2, . . . , n.
The above end result can be applied to the situations where the information of attribute weights

is completely unknown. However, in real life decision making problems, the weight information is
usually partly known. In such cases, let H be a set of the known weight information, which can be
given in the following forms based on the literature [31–34].
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Form 1. A weak ranking:
{

wi ≥ wj
}
(i 6= j).

Form 2. A strict ranking:
{

wi − wj ≥ βi
}
(i 6= j).

Form 3. A ranking of differences:
{

wi − wj ≥ wk − wl
}
(j 6= k 6= l).

Form 4. A ranking with multiples:
{

wi ≥ βiwj
}
(i 6= j).

Form 5. An interval form:
{

βi ≤ wj ≤ βi + εi
}
(i 6= j).

βi and εi denote the non-negative numbers.
With the set H, we can build the following model:

M2 =


max D (w) =

n
∑

j=1

m
∑

i=1

m
∑

q 6=i
wjD

(
hij, hqj

)
wj ∈ H, wj ≥ 0, j = 1, 2, . . . , n,

n
∑

j=1
w2

j = 1

from which the optimal weight vector w = (w1, w2, . . . , wn)
t obtained.

5. MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information

In this section, two practical methods, i.e., an extended TOPSIS method and an aggregation based
method, for MAGDM problems are proposed, where the opinions of DMs take the form of PHILTSs.

5.1. Extended TOPSIS Method for MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information

Of the numerous MAGDM methods, TOPSIS (Technique for Order of Preference by Similarity
to Ideal Solution) is one of the effective methods for ranking and selecting a number of possible
alternatives by measuring Euclidean distances. It has been successfully applied to solve evaluation
problems with a finite number of alternatives and criteria [19,24,28] because it is easy to understand
and implement, and can measure the relative performance for each alternative.

In the following, we discuss the complete construction of extended TOPSIS method in PHILTS
regard. This methodology involves the following steps.

Step 1: Analyze the given MAGDM problem; since the problem is group decision making, so let
there be “l” decision makers or experts M = {m1, m2, . . . , ml} involved in the given problem. The set of
alternatives is x = {x1, x2, . . . , xm} and the set of attributes is c = {c1, c2, . . . , cn}. The experts provide
their linguistic evaluation values for membership and non-membership by using linguistic term set S ={

s0, s1, . . . , sg
}

over the alternative xi (i = 1, 2, . . . , m) with respect to the attribute cj (j = 1, 2, . . . , n).
The DM mk (k = 1, 2, . . . , l) states his membership and non-membership linguistic evaluation

values keeping in mind all the alternatives and attributes in the form of PHILTEs. Thus, intuitionistic

probabilistic linguistic decision matrix Hk =
[〈

lk
ij
(

pij
)

, l
′(k)
ij

(
p
′
ij

)〉]
m×n

is constructed. It should be

noted that preference of alternative “xi” with respect to decision maker “mk” and attribute “cj” is
denoted as PHILTE Ak

ij
(

pij
)

in a group decision making problem with “l” experts.
Step 2: Calculate the one probabilistic hesitant intuitionistic linguistic decision matrix H by

aggregating the opinions of DMs
(

H(1), H(2), . . . , H(l)
)

; H =
[
hij
]

, where

hij =
〈{

smij

(
pij
)

, snij

(
qij
)}

,
{

s
′
mij

(
p
′
ij

)
, s
′
nij

(
q
′
ij

)}〉
where

smij

(
pij
)
= min

{
l

min
k=1

(
max lk

ij
(

pij
))

,
l

max
k=1

(
min lk

ij
(

pij
))}

,

snij

(
qij
)
= max

{
l

min
k=1

(
max lk

ij
(
qij
))

,
l

max
k=1

(
min lk

ij
(
qij
))}

,

sm′ij

(
p
′
ij

)
= min

{
l

min
k=1

(
max l

′k

ij

(
p
′
ij

))
,

l
max
k=1

(
min l

′k

ij

(
p
′
ij

))}
,

sn′ij

(
q
′
ij

)
= max

{
l

min
k=1

(
max l

′k

ij

(
q
′
ij

))
,

l
max
k=1

(
min l

′k

ij

(
q
′
ij

))}
,

Here, max lk
ij
(

pij
)

and min lk
ij
(

pij
)

are taken according to the maximum and minimum value of

pij × rl
ij, l = 1, 2, . . . , #lk

ij
(

pij
)
, respectively, where rl

ij denotes the lower index of the lth linguistic term
and pij is its corresponding probability.
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In this aggregated matrix H, the preference of alternative ai with respect to attribute cj is denoted
as hij.

Each term of the aggregated matrix H i.e., hij is also an PHILTE; for this, we have to prove that

smij

(
pij
)
+ s

′
nij

(
q
′
ij

)
≤ sg and snij

(
qij
)
+ s

′
mij

(
p
′
ij

)
≤ sg. Since we know that

[
lk
ij
(

pij
)

, l
′
ij

(
p
′
ij

)]
is a PHILTS for every kth expert, ith alternative and jth attribute, a PHILTS it must satisfy the conditions

min
(

l(k)ij

)
+ max

(
l
′(k)

ij

)
≤ sg , max

(
l(k)ij

)
+ min

(
l
′(k)

ij

)
≤ sg.

Thus, the above simple construction of smij

(
pij
)
, snij

(
qij
)
, s
′
mij

(
p
′
ij

)
, and sn′ij

(
q
′
ij

)
guarantees that

the hij is a PHILTE.
Step 3: Normalize the probabilistic hesitant intuitionistic linguistic decision matrix H =

[
hij
]

according to the method in Section 3.1.
Step 4: Obtain the weight vector w = (w1, w2, . . . , wn)

t of the attributes cj (j = 1, 2, . . . , n) . wj =
m
∑

i=1
∑

q 6=i
D(hij ,hqj)

n
∑

j=1

m
∑

i=1
∑

q 6=i
D(hij ,hqj)

=

m
∑

i=1
∑

q 6=i
d(lij(pij),lqj(pqj))+d

(
l
′
ij

(
p
′
ij

)
,l
′
qj

(
p
′
qj

))
n
∑

j=1

m
∑

i=1
∑

q 6=i
d(lij(pij),lqj(pqj))+d

(
l′ij
(

p′ij
)

,l′qj

(
p′qj

)) , j = 1, 2, . . . , n

Step 5: The PHILTS positive ideal solution (PHILTS-PIS) of alternatives, denoted by A+ =〈
l+ (p) , l

′+
(p)
〉

, is defined as follows:

A+ =
〈

l+ (p) =
(
l+1 (p) , l+2 (p) , . . . , l+n (p)

)
, l
′+
(p) =

(
l
′+
1 (p) , l

′+
2 (p) , . . . , l

′+
n (p)

)〉
(27)

where l+j (p) =

{(
l(k1)
j

)+
|k1 = 1, 2, . . . , #lij (p)

}
and

(
l(k1)
j

)+
=

smaxi

{
p(k1)

ij r(k1)
ij

}
, k1 = 1, 2, . . . , #lij (p), j = 1, 2, . . . , n and r(k1)

ij is lower index of the linguistic

term l(k1)
ij while l

′+
j (p) =

{(
l
′(k2)
j

)+
|k2 = 1, 2, . . . , #l

′
ij (p)

}
and

(
l
′(k2)
j

)+
= smini

{
p
′(k2)
ij r

′(k2)
ij

}
, k2 =

1, 2, . . . , #l
′
ij (p) , j = 1, 2, . . . , n and r

′(k2)
ij is lower index of the linguistic term l

′(k2)
ij . Similarly, the

PHILTS negative ideal solution (PHILTS-NIS) of alternatives, denoted by A− =
〈

l− (p) , l
′− (p)

〉
, is

defined as follows:

A− =
〈

l− (p) =
(
l−1 (p) , l−2 (p) , . . . , l−n (p)

)
, l
′−
(p) =

(
l
′−
1 (p) , l

′−
2 (p) , . . . , l

′−
n (p)

)〉
(28)

where l−j (p) =

{(
l(k1)
j

)−
|k1 = 1, 2, . . . , #lij (p)

}
and

(
l(k1)
j

)−
= smini

{
p(k1)

ij r(k1)
ij

}
, k1 =

1, 2, . . . , #lij (p) , j = 1, 2, . . . , n and r(k1)
ij is lower index of the linguistic term l(k1)

ij while l
′−
j (p) ={(

l
′(k2)
j

)−
|k2 = 1, 2, . . . , #l

′
ij (p)

}
and

(
l
′(k2)
j

)+
= smaxi

{
p
′(k2)
ij r

′(k2)
ij

}
, k2 = 1, 2, . . . , #l

′
ij (p) ; j =

1, 2, . . . , n and r
′(k2)
ij is lower index of the linguistic term l

′(k2)
ij .

Step 6: Compute the deviation degree between each alternative xi PHILTS-PIS A+ as follows:

D (xi, A+) =
n
∑

j=1
wjD

(
hij, A+

)
=

n
∑

j=1
wj

(
d
(

lij (p) , l+j (p)
)
+ d

(
l
′
ij (p) , l

′+
j (p)

))

=
n

∑
j=1

wj



√√√√ 1
#lij(p)

#lij(p)

∑
k1=1

(
p(k1)

ij r(k1)
ij −

(
p(k1)

j r(k1)
j

)+)2
+√√√√√ 1

#l′ij(p)

#l′ij(p)

∑
k2=1

p
′
(k1)
ij r

′(k2)
ij −

(
p
′
(k2)
j r

′(k2)
j

)+
2


(29)

The smaller is the deviation degree D (xi, A+), the better is alternative xi.
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Similarly, compute the deviation degree between each alternative xi PHILTS-NIS A− as follows:

D (xi, A−) =
n
∑

j=1
wjD

(
hij, A−

)
=

n
∑

j=1
wj

(
d
(

lij (p) , l−j (p)
)
+ d

(
l
′
ij (p) , l

′−
j (p)

))

=
n

∑
j=1

wj



√√√√ 1
#lij(p)

#lij(p)

∑
k1=1

(
p(k1)

ij r(k1)
ij −

(
p(k1)

j r(k1)
j

)−)2
+√√√√√ 1

#l′ij(p)

#l′ij(p)

∑
k2=1

p
′
(k1)
ij r

′(k2)
ij −

(
p
′
(k2)
j r

′(k2)
j

)−2


(30)

The larger is the deviation degree D (xi, A−), the better is alternative xi.
Step 7: Determine Dmin (xi, A+) and Dmax (xi, A−) , where

Dmin
(

xi, A+
)
= min

1≤i≤m
D
(
xi, A+

)
(31)

and
Dmax

(
xi, A−

)
= max

1≤i≤m
D
(
xi, A−

)
(32)

Step 8: Determine the closeness coefficient Cl of each alternative xi to rank the alternatives.

Cl (xi) =
D (xi, A−)

Dmax (xi, A−)
− D (xi, A+)

Dmin (xi, A+)
(33)

Step 9: Pick the best alternative xi on the basis of the closeness coefficient Cl, where the larger is
the closeness coefficient Cl (xi) , the better is alternative xi. Thus, the best alternative

xb =

{
xi| max

1≤i≤m
Cl (xi)

}
(34)

5.2. The Aggregation-Based Method for MAGDM with Probabilistic Hesitant Intuitionistic
Linguistic Information

In this subsection, the aggregation-based method for MAGDM is presented, where the preference
opinions of DMs are represented by PHILTS. In Section 4, we have developed some aggregation
operators, i.e., PHILA, PHILWA, PHILG and PHILWG. In this algorithm, we use PHILWA operator to
aggregate the attribute values of each alternative xi, into the overall attribute values. The following
steps are involved in this algorithm. The first four Steps are similar to the extended TOPSIS method.
Therefore, we go to Step 5.

Step 5: Determine the overall attribute values Z̃i (w) (i = 1, 2, . . . , m) , where w = (w1, w2, . . . , wn)
T

is the weight vector of attributes, using PHILWA operator, this can be expressed as follows:

Z̃i (w) = w1

〈
li1 (p) , l

′
i1

(
p
′
)〉
⊕ w2

〈
li2 (p) , l

′
i2

(
p
′
)〉
⊕ . . .⊕ wn

〈
lin (p) , l

′
in

(
p
′
)〉

=
〈

w1li1 (p)⊕ w2li2 (p)⊕ . . .⊕ wnlin (p) , w1l
′
i1

(
p
′
)
⊕ w2l

′
i2

(
p
′
)
⊕ . . .⊕ wnl

′
in

(
p
′
)〉

=

〈 ∪
l(

k1)
i1 ∈li1(p)

{
w1 p(k1)

i1 l(k1)
i1

}
⊕∪

l(
k1)

i2 ∈li2(p)

{
w2 p(k1)

i2 l(k1)
i2

}
⊕ . . .⊕∪

l(
k1)

in ∈lin(p)

{
wn p(k1)

in l(k1)
in

}
,

∪
l
′(k2)
i1 ∈l′i1(p′)

{
w1 p

′(k2)
i1 l

′(k2)
i1

}
⊕∪

l
′(k2)
i2 ∈l′i2(p′)

{
w2 p

′(k2)
i2 l

′(k2)
i2

}
⊕ . . .⊕∪

l
′(k2)
in ∈l′in(p′)

{
wn p

′(k2)
in l

′(k2)
in

} 〉 (35)

where i = 1, 2, . . . , m.
Step 6: Compare the overall attribute values Z̃i (w) (i = 1, 2, . . . , m) mutually, based on their score

function and deviation degree whose detail is given in Section 3.2.
Step 7: Rank the alternatives xi (i = 1, 2, . . . , m) according to the order of Z̃i (w) (i = 1, 2, . . . , m)

and pick the best alternative.
The flow chart of the proposed models is presented in Figure 1.
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Figure 1. Extended TOPSIS and Aggregation-based models.

6. A Case Study

To validate the proposed theory and decision making models, in this section, a practical example
taken from [28] is solved. A group of seven peoples ml (l = 1, 2, 3, . . . , 7) need to invest their savings
in a most profitable way. They considered five possibilities: x1 is real estate, x2 is stock market, x3

is T-bills, x4 is national saving scheme, and x5 is insurance company. To determine best option, the
following attributes are taken into account: c1 is the risk factor, c2 is the growth, c3 is quick refund, and
c4 is complicated documents requirement. Base upon their knowledge and experience, they provide
their opinion in terms of following HIFLTSs.

6.1. The Extended TOPSIS Method for the Considered Case

We handle the above problem by applying the extended TOPSIS method.
Step 1: The probabilistic hesitant intuitionistic linguistic decision matrices derived from Tables 1–3

are shown in Tables 4–6, respectively.

Table 1. Decision matrix provided by the DMs 1, 2, 3 (m1, m2, m3).

c1 c2 c3 c4

x1 〈{s3, s4, s5} , {s1, s2}〉 〈{s4, s5} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s1, s2} , {s3, s4}〉
x2 〈{s1, s2} , {s3, s4}〉 〈{s3, s4, s5} , {s1, s2}〉 〈{s3, s4} , {s0, s1}〉 〈{s4, s5} , {s1, s2}〉
x3 〈{s4, s5)} , {s0, s1, s2}〉 〈{s3, s4} , {s1, s2}〉 〈{s5, s6} , {s0}〉 〈{s1, s2} , {s2, s3, s4}〉
x4 〈{s5, s6} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s1, s2} , {s3, s4}〉 〈{s3, s4, s5} , {s1, s2}〉
x5 〈{s6} , {s0}〉 〈{s1, s2} , {s3, s4, s5}〉 〈{s0, s1} , {s2, s3}〉 〈{s4, s5} , {s1, s2}〉

Table 2. Decision matrix provided by the DMs 4, 5 (m4, m5).

c1 c2 c3 c4

x1 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0, s1}〉 〈{s0, s1} , {s3, s4}〉 〈{s3, s4} , {s1, s2}〉
x2 〈{s0, s1} , {s2, s3}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s4, s5} , {s0, s1}〉 〈{s5, s6} , {s0}〉
x3 〈{s3, s4} , {s0, s1}〉 〈{s1, s2} , {s3, s4}〉 〈{s4, s5} , {s1, s2)}〉 〈{s0, s1} , {s2, s3}〉
x4 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s0, s1, s2}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s4, s5} , {s0}〉
x5 〈{s4, s5} , {s1, s2}〉 〈{s3, s4} , {s1, s2, s3}〉 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0}〉
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Table 3. Decision matrix provided by the DMs 6, 7 (m6, m7).

c1 c2 c3 c4

x1 〈{s4, s5} , {s0, s1}〉 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s1, s2}〉 〈{s0, s1} , {s3, s4}〉
x2 〈{s3, s4} , {s1, s2, s3}〉 〈{s1, s2} , {s3, s4}〉 〈{s5, s6} , {s0}〉 〈{s3, s4} , {s1, s2}〉
x3 〈{s1, s2} , {s2, s3, s4}〉 〈{s5, s6} , {s0}〉 〈{s4, s5} , {s0, s1}〉 〈{s0, s1} , {s3, s4}〉
x4 〈{s4, s5} , {s1, s2}〉 〈{s4, s5} , {s0, s1}〉 〈{s0, s1, s2} , {s2, s3}〉 〈{s3, s4, s5} , {s1, s2}〉
x5 〈{s3, s4} , {s0, s1, s2}〉 〈{s1, s2} , {s2, s3, s4}〉 〈{s2, s3} , {s3, s4}〉 〈{s6} , {s0}〉

Table 4. Probabilistic hesitant intuitionistic linguistic decision matrix H1 with respect to DMs 1, 2, 3
(m1, m2, m3) .

c1 c2

x1 〈{(s3 (0.14) , s4 (0.28) , s5 (0.28))} , {s1 (0.28) , s2 (0.14)}〉 〈{s4 (0.14) , s5 (0.42)} , {s0 (0.42) , s1 (0.28)}〉
x2 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.42) , s4 (0.14)}〉 〈{s3 (0.14) , s4 (.14) , s5 (0.14)} , {s1 (0.14) , s2 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.14)} , {s0 (0.28) , s1 (0.28) , s2 (0.28)}〉 〈{s3 (0.14) , s4 (0.28)} , {s1 (0.14) , s2 (0.14)}〉
x4 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉
x5 〈{s6 (0.14)} , {s0 (0.28)}〉 〈{s1 (0.28) , s2 (0.28)} , {s3 (0.42) , s4 (0.28) , s5 (0.14)}〉

c3 c4

x1 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.28) , s4 (0.28)}〉 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.28) , s4 (0.28)}〉
x2 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.42) , s1 (0.28)}〉 〈{s4 (0.14) , s5 (0.28)} , {s1 (0.28) , s2 (0.28)}〉
x3 〈{s5 (0.42) , s6 (0.14)} , {s0 (0.28)}〉 〈{s1 (0.42) , s2 (0.14)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉
x4 〈{s1 (0.42) , s2 (.42)} , {s3 (0.42) , s4 (0.28)}〉 〈{s3 (0.28) , s4 (0.42) , s5 (0.42)} , {s1 (0.28) , s2 (0.28)}〉
x5 〈{s0 (0.14) , s1 (0.28)} , {s2 (0.28) , s3 (0.42)}〉 〈{s4 (0.14) , s5 (0.28)} , {s1 (0.14) , s2 (0.14)}〉

Table 5. Probabilistic hesitant intuitionistic linguistic decision matrix H2 with respect to DMs
4, 5 (m4, m5).

c1 c2

x1 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.42) , s1 (0.28)}〉
x2 〈{s0 (0.14) , s1 (0.28)} , {s2 (0.28) , s3 (0.42)}〉 〈{s1 (0.28) , s2 (0.28)} , {s2 (0.28) , s3 (0.28) , s4 (0.28)}〉
x3 〈{s3 (0.14) , s4 (.28)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.14)} , {s3 (0.14) , s4 (0.14)}〉
x4 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.28)}〉 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.28) , s1 (0.28) , s2 (0.14)}〉
x5 〈{s4 (0.28) , s5 (0.14)} , {s1 (0.28) , s2 (0.28)}〉 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.28) , s3 (0.42)}〉

c3 c4

x1 〈{s0. (0.14) , s1 (0.28)} , {s3 (0.28) , s4 (0.28)}〉 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.14)}〉
x2 〈{s4 (0.28) , s5 (0.28)} , {s0 (0.42) , s1 (0.28)}〉 〈{s5 (0.28) , s6 (0.14)} , {s0 (0.14)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s1 (0.28) , s2 (0.14)}〉 〈{s0 (0.28) , s1 (0.42)} , {s2 (0.28) , s3 (0.42)}〉
x4 〈{s1 (0.42) , s2 (0.42)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉 〈{s4 (0.42) , s5 (0.42)} , {s0 (0.14)}〉
x5 〈{s1 (0.28) , s2 (0.14)} , {s3 (0.42) , s4 (0.28)}〉 〈{s5 (0.28) , s6 (0.28)} , {s0 (0.28)}〉

Table 6. Probabilistic hesitant intuitionistic linguistic decision matrix H3 with respect to DMs
6, 7 (m6, m7).

c1 c2

x1 〈{s4 (0.28) , s5 (0.28)} , {s0 (0.14) , s1 (0.28)}〉 〈{s5 (0.42) , s6 (0.28)} , {s0 (0.42)}〉
x2 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.28) , s3 (0.42)}〉 〈{s1 (0.28) , s2 (0.28)} , {s3 (0.28) , s4 (0.28)}〉
x3 〈{s1 (0.14) , s2 (0.14)} , {s2 (0.28) , s3 (0.14) , s4 (0.14)}〉 〈{s5 (0.28) , s6 (0.14)} , {s0 (0.14)}〉
x4 〈{s4 (0.14) , s5 (0.42)} , {s1 (0.28) , s2 (0.14)}〉 〈{s4 (0.28) , s5 (0.14)} , {s0 (0.28) , s1 (0.28)}〉
x5 〈{s3 (0.14) , s4 (0.28)} , {s0 (0.28) , s1 (0.28) , s2 (0.28)}〉 〈{s1 (0.28) , s2 (0.28)} , {s2 (0.28) , s3 (0.42) , s4 (0.28)}〉

c3 c4

x1 〈{s3 (0.14) , s4 (0.14)} , {s1 (0.14) , s2 (0.14)}〉 〈{s0 (0.14) , s1 (0.28)} , {s3 (0.28) , s4 (0.28)}〉
x2 〈{s5 (0.28) , s6 (0.14)} , {s0 (.42)}〉 〈{s3 (0.14) , s4 (0.28)} , {s1 (0.28) , s2 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s0 (0.28) , s1 (0.42)} , {s3 (0.42) , s4 (0.28)}〉
x4 〈{s0 (0.14) , s1 (0.42) , s2 (0.42)} , {s2 (0.28) , s3 (0.42)}〉 〈{s3 (0.28) , s4 (0.42) , s5 (0.42)} , {s1 (0.28) , s2 (0.28)}〉
x5 〈{s2 (0.14) , s3 (0.14)} , {s3 (0.28) , s4 (0.28)}〉 〈{s6 (0.28)} , {s0 (0.28)}〉

Step 2: The decision matrix H in Table 7 is constructed by utilizing Tables 4–6.
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Table 7. Decision matrix (H).

c1 c2

x1 〈{s2 (0.14) , s4 (0.28)} , {s1 (0.28) , s3 (0.14)}〉 〈{s6 (0.28) , s5 (0.42)} , {s0 (0.42) , s0 (0.42)}〉
x2 〈{s1 (0.28) , s3 (0.14)} , {s4 (0.14) , s3 (0.42)}〉 〈{s2 (0.28) , s3 (0.14)} , {s2 (0.28) , s3 (0.28)}〉
x3 〈{s2 (0.14) , s0 (0.14)} , {s1 (0.28) , s3 (0.14)}〉 〈{s2 (0.14) , s6 (0.14)} , {s0 (0.14) , s3 (0.14)}〉
x4 〈{s6 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s2 (0.14) , s5 (0.14)} , {s1 (0.28) , s3 (0.14)}〉
x5 〈{s6 (0.14) , s6 (0.14)} , {s0 (0.28) , s1 (0.28)}〉 〈{s3 (0.14) , s2 (0.28)} , {s5 (0.14) , s3 (0.42)}〉

c3 c4

x1 〈{s1 (0.28) , s3 (0.14)} , {s2 (0.14) , s3 (0.28)}〉 〈{s1 (0.28) , s3 (0.14)} , {s2 (0.14) , s3 (0.28)}〉
x2 〈{s4 (0.28) , s4 (0.14)} , {s0 (0.42) , s0 (0.42)}〉 〈{s1 (0.28) , s3 (0.14)} , {s0 (0.14) , s3 (0.28)}〉
x3 〈{s4 (0.28) , s5 (0.42)} , {s0 (0.28) , s1 (0.28)}〉 〈{s1 (0.14) , s2 (0.42)} , {s4 (0.28) , s3 (0.42)}〉
x4 〈{s1 (0.42) , s2 (0.42)} , {s4. (0.28) , s3 (0.42)}〉 〈{s4 (0.42) , s5 (0.42)} , {s0 (0.14) , s2 (0.28)}〉
x5 〈{s1 (0.28) , s2 (0.14)} , {s4. (0.28) , s3 (0.42)}〉 〈{s5 (0.28) , s6 (0.28)} , {s0 (0.28) , s1 (0.14)}〉

Step 3: The normalized probabilistic hesitant intuitionistic linguistic decision matrix of the group
is shown in Table 8.

Table 8. The normalized probabilistic hesitant intuitionistic linguistic decision matrix.

c1

x1 〈{s4 (0.6666667) , s2 (0.3333333)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x2 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.75) , s4 (0.25)}〉
x3 〈{s0 (0.5) , s2 (0.5)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x4 〈{s5 (0.6) , s6 (0.4)} , {s1 (0.5) , s0 (0.5)}〉
x5 〈{s6 (0.5) , s6 (0.5)} , {s0 (0.5) , s1 (0.5)}〉

c2

x1 〈{s5 (0.6) , s6 (0.4)} , {s0 (0.5) , s0 (0.5)}〉
x2 〈{s3 (0.3333333) , s2 (0.6666667)} , {s3 (0.5) , s2 (0.5)}〉
x3 〈{s6 (0.5) , s2 (0.5)} , {s3 (0.5) , s0 (0.5)}〉
x4 〈{s5 (0.5) , s2 (0.5)} , {s3 (0.3333333) , s1 (0.6666667)}〉
x5 〈{s2 (0.6666667) , s3 (0.3333333)} , {s3 (0.75) , s5 (0.25)}〉

c3

x1 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s2 (0.3333333)}〉
x2 〈{s4 (0.6666667) , s4 (0.3333333)} , {s0 (0.5) , s0 (0.5)}〉
x3 〈{s5 (0.6) , s4 (0.4)} , {s5 (0.6) , s4 (0.4)}〉
x4 〈{s1 (0.5) , s2 (0.5)} , {s3 (0.6) , s4. (0.4)}〉
x5 〈{s1 (0.6666667) , s2 (0.3333333)} , {s3 (0.6) , s4 (0.4)}〉

c4

x1 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s2 (0.3333333)}〉
x2 〈{s3 (0.3333333) , s1 (0.6666667)} , {s3 (0.6666667) , s0 (0.3333333)}〉
x3 〈{s2 (0.75) , s1 (0.25)} , {s3 (0.6) , s4 (0.4)}〉
x4 〈{s5 (0.5) , s4 (0.5)} , {s0 (0.3333333) , s2 (0.6666667)}〉
x5 〈{s6 (0.5) , s5 (0.5)} , {s1 (0.3333333) , s0 (0.6666667)}〉

Step 4: The weight vector is derived from Equation (26) as follows:
w = (0.2715, 0.2219, 0.2445, 0.2621)t

Step 5: The PHILTS-PIS “A+” and the PHILTS-NIS “A−” of each alternative are derived using
Equations (27) and (28) as follows:

A+ = (〈{3, 3} , {0, 0}〉 , 〈{3, 2.4} , {0, 0}〉 , 〈{3, 1.6} , {0, 0}〉 , 〈{3, 2.5} , {0, 0}〉)
A− = (〈{0, 0.661} , {2.25, 1}〉 , 〈{1, 1} , {2.25, 1.25}〉 , 〈{.5, 0.66} , {2, 1.6}〉 , 〈{1, 0.2} , {2, 1.6}〉)
D (x1, A+) = 2.1211, D (x2, A+) = 2.5516, D (x3, A+) = 2.9129, D (x4, A+) = 1.7999,

D (x5, A+) = 1.6494
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D (x1, A−) = 2.0142, D (x2, A−) = 1.5861, D (x3, A−) = 1.6204, D (x4, A−) = 2.4056,
D (x5, A−) = 2.2812

Step 7: Calculate Dmin (xi, A+) and Dmax (xi, A−) by Equations (31) and (32) :
Dmin (xi, A+) = 1.6494, Dmax (xi, A−) = 2.4050
Step 8: Determine the closeness coefficient of each alternative xi by Equation (33) :
Cl (x1) = −0.4486, Cl (x2) = −0.8876, Cl (x3) = −1.0924, Cl (x4) = −0.0912, Cl (x5) = −0.0519
Step 9: Rank the alternatives according to the ranking of Cl (xi) (i = 1, 2, . . . , 5): x5 > x4 > x1 >

x2 > x3, and thus, x5(insurance company) is the best alternative.

6.2. The Aggregation-Based Method for the Considered Case

We can also apply the aggregation-based method to attain the ranking of alternatives for the
case study.

Step 1: Construct the probabilistic hesitant intuitionistic fuzzy decision matrices of the group as
listed in Tables 4–6, and then aggregated and normalized as shown in Tables 7 and 8.

Step 2: Utilize Equation (26) to obtain the weight vector
w = (0.2715, 0.2219, 0.2445, 0.2621)t .
Step 3: Derive the overall attribute value of each alternative xi (i = 1, 2, 3, 4, 5) by using

Equation (35) :
Z̃1 (w) = 〈{s1.8962, s0.5187} , {s1.2847, s0.5187}〉 ,
Z̃2 (w) = 〈{s1.4074, s0.9776} , {s1.4679, s0.4934}〉 ,
Z̃3 (w) = {s1.7923, s1.1256} , {s1.8096, s0.9915} ,
Z̃4 (w) = 〈{s2.1467, s1.642} , {s0.7977, s0.8886}〉 ,
Z̃5 (w) = 〈{s2.0596, s1.8546} , {s1.0267, s0.8043}〉 .
Step 4: Compute the score of each attribute value Z̃i (w) by Definition 14:
E
(

Z̃1 (w)
)

= s3.1528, E
(

Z̃2 (w)
)

= s3.1059, E
(

Z̃3 (w)
)

= s3.0584, E
(

Z̃4 (w)
)

= s4.0512,

E
(

Z̃5 (w)
)
= s5.8726

Step 5: Compare the overall attribute values of alternatives according to the values of the score
function. It is obvious, that x5 > x4 > x1 > x2 > x3. Thus, again, we get the best alternative x5.

7. Discussions and Comparison

For the purpose of comparison, in this subsection, the case study is again solved by applying the
TOPSIS method with traditional HIFLTSs.

Step 1: The decision matrix X in Table 9 is constructed by utilizing Tables 1–3 as follows:

Table 9. Decision matrix (X).

c1 c2 c3 c4

x1 ([s2, s4] , [s1, s3]) ([s5, s5] , [s0, s0]) ([s1, s3] , [s2, s3]) ([s1, s3] , [s2, s3])
x2 ([s1, s3] , [s3, s3]) ([s2, s3] , [s2, s3]) ([s4, s5] , [s0, s0]) ([s4, s5] , [s0, s1])
x3 ([s2, s4] , [s1, s2]) ([s3, s5] , [s0, s3]) ([s5, s5] , [s0, s1]) ([s1, s1] , [s3, s3])
x4 ([s5, s5] , [s0, s1]) ([s2, s4] , [s1, s3]) ([s1, s2] , [s3, s3]) ([s4, s5] , [s1, s2])
x5 ([s4, s6] , [s0, s1]) ([s2, s3] , [s3, s3]) ([s1, s2] , [s3, s3]) ([s5, s6] , [s0, s1])

Step 2: Determine the HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” for cost criteria c1,c4 and
benefit criteria c2,c3 as follows:

P+ = [([s0, s1] , [s3, s4]) , ([s5, s6] , [s0, s0]) , ([s5, s6] , [s0, s0]) , ([s0, s1] , [s3, s4])]

P− = [([s6, s6] , [s0, s0]) , ([s1, s2] , [s3, s5]) , ([s0, s1] , [s3, s4]) , ([s6, s6] , [s0, s0])]

Note: One can see the detail of HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” in [28].
Step 3: Calculate the positive ideal matrix D+ and the negative ideal matrix D− as follows:
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D+ =


8 + 1 + 12 + 5

4 + 11 + 2 + 14
9 + 7 + 2 + 2

15 + 9 + 14 + 12
15 + 12 + 14 + 16

 =


26
31
20
50
57


D+

11 = d
(

x11, v+1
)
+ d

(
x12, v+2

)
+ d

(
x13, v+3

)
+ d

(
x14, v+4

)
in which d

(
x11, v+1

)
=

d (([s2, s4] , [s1, s3]) , ([s0, s1] , [s3, s4])) = |2− 0|+ |4− 1|+ |1− 3|+ |3− 4| = 8
Other entries can be found by similar calculation.

D− =


10 + 15 + 5 + 13
14 + 5 + 15 + 4
9 + 9 + 15 + 16

3 + 7 + 3 + 6
3 + 4 + 3 + 2

 =


43
38
49
19
12


Step 4: The relative closeness(RC) of each alternative to the ideal solution can be obtained

as follows:
RC(x1) = 43/ (26 + 43) = 0.6232
RC(x2) = 38/ (31 + 38) = 0.5507
The RC of other alternatives can be find by similar calculations.
RC(x3) = 0.7101 , RC(x4) = 0.2754 , RC(x5) = 0.1739.
Step 5: The ranking of alternatives of alternatives xi (i = 1, 2, . . . , 5) according to the closeness

coefficient RC(xi) is:
x3 > x1 > x2 > x4 > x5.

• In Table 9, the disadvantages of HIFLTS are apparent because in HIFLTS the probabilities of the
linguistic terms is not considered which means that all possible linguistic terms in HIFLTS have
same occurrence possibility which is unrealistic, whereas the inspection of Table 7 shows that
PHILTS not only contains the linguistic terms, but also considers the probabilities of linguistic
terms, and, thus, PHILTS constitutes an extension of HIFLTS.

• The inspection of Table 10 reveals that the extended TOPSIS method and the aggregation-based
method give the same best alternative x5. The TOPSIS method with the traditional HIFLTSs gives
x3 as the best alternative.

• This difference of best alternative in Table 10 is due to the effect of probabilities of membership
and non-membership linguistic terms, which highlight the critical role of probabilities. Thus, our
methods are more rational to get the ranking of alternatives and further to find the best alternative.

• Extended TOPSIS method and aggregation-based method for MAGDM with PLTS information
explained in [19] are more promising and better than extended TOPSIS method and
aggregation-based method for MAGDM with HFLTS information. However, a clear superiority
of PHILTS is that it assigns to each element the degree of belongingness and also the degree of
non-belongingness along with probability. PLTS only assigns to each element a belongingness
degree along with probability. Using PLTSs, various frameworks have been developed by
DMs [19,29] but they are still intolerant, since there is no mean of attributing reliability or
confidence information to the degree of belongingness.

Table 10. Comparison of Results.

TOPSIS [28] x3 > x1 > x2 > x4 > x5

Proposed extend TOPSIS x5 > x4 > x1 > x2 > x3

Proposed aggregation model x5 > x4 > x1 > x2 > x3

The comparisons and other aspects are summarized in Table 11.
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Table 11. The advantages and limitations of the proposed methods.

Advantages Limitations

1. PHILTS generalize the existing PLTS models 1. It is essential to take membership as
since PHILTS take more information from the DMs well as non-membership probabilistic
into account. data.
2. PHILTS is not affected by partial vagueness. 2. Its computational index is
3. PHILTS is more in line with people’s language, high.
leading to much more fruitful decisions.
4. The attribute weights are calculated with
objectivity (without favor).

8. Conclusions

Because of the blurring of human thinking, sometimes it becomes difficult for experts to accurately
measure the opinions in the area of the usual fuzzy set theory, even in the HIFLTSs and PLTSs. For this
purpose, in this article, a new concept called PHILTS was introduced to extend the current HIFLTS
and PLTS. To facilitate the calculation of the PHILTSs, a normalization process, basic operations and
aggregation operators for PHILTSs are also designed. An extended TOPSIS method and aggregation
based method have been proposed to solve decision ranking problems of the group with the multiple
conflict criteria in PHILTS. The proposed models are compared with existing model of TOPSIS.
The PLTS and HIFLTS are special cases of PHILTS, it grants the freedom to DMs to express their
opinions in more dynamic way. Furthermore, the occurrence probabilities of membership and
non-membership linguistic term sets greatly affects the decision making, validating the importance
of designed theory and models in this manuscript. The probability is one of the best tool to handle
uncertainty of future, thus our proposed models are more suitable of decision making related to the
possible future scenarios. However, its arithmetic complexity is high.

In the future, all the work which has been done thus far PLTSs and HIFLTSs can be studied for
PHILTS and then applied to decision making.
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22. Bashir, Z.; Rashid, T.; Wątróbski, J.; Sałabun, W.; Ali, J. Intuitionistic-fuzzy goals in zero-sum multi criteria

matrix games. Symmetry 2017, 9, 158. [CrossRef]
23. Beg, I.; Rashid, T. Group Decision making Using Intuitionistic Hesitant Fuzzy Sets. Int. J. Fuzzy Logic Intell.

Syst. 2014, 14, 181–187. [CrossRef]
24. Boran, F.E.; Gen, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for

supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [CrossRef]
25. De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets

Syst. 2001, 117, 209–213. [CrossRef]
26. Li, D.F. Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput.

Syst. Sci. 2005, 70, 73–85. [CrossRef]
27. Liu, P.; Mahmood, T.; Khan, Q. Multi-Attribute Decision-Making Based on Prioritized Aggregation Operator

under Hesitant Intuitionistic Fuzzy Linguistic Environment. Symmetry 2017, 9, 270. [CrossRef]
28. Beg, I.; Rashid, T. Hesitant intuitionistic fuzzy linguistic term sets. Notes Intuit. Fuzzy Sets 2014, 20, 53–64.
29. Zhang, Y.; Xu, Z.; Wang, H.; Liao, H. Consistency-based risk assessment with probablistic linguistic prefrence

relation. Appl. Soft Comput. 2016, 49, 817–833. [CrossRef]
30. Xu, Z.S.; Xia, M.M. On distance and correlation measures of hesitant fuzzy information. Int. J. Intell. Syst.

2011, 26, 410–425. [CrossRef]
31. Kim, S.H.; Ahn, B.S. Interactive group decision making procedure under incomplete information. Eur. J.

Oper. Res. 1999, 116, 498–507. [CrossRef]
32. Kim, S.H.; Choi, S.H.; Kim, J.K. An interactive procedure for multiple attribute group decision making with

incomplete information: Range-based approach. Eur. J. Oper. Res. 1999, 118, 139–152. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2016.04.006
http://dx.doi.org/10.1080/18756891.2013.874669
http://dx.doi.org/10.1080/18756891.2014.960232
http://dx.doi.org/10.1080/03081070903257920
http://dx.doi.org/10.1142/S0218488509006273
http://dx.doi.org/10.1016/j.ins.2012.05.005
http://dx.doi.org/10.3390/sym10060189
http://dx.doi.org/10.3390/sym10080330
http://dx.doi.org/10.3390/sym10090367
http://dx.doi.org/10.1016/j.ins.2016.06.021
http://dx.doi.org/10.1057/s41274-017-0182-y
http://dx.doi.org/10.3390/sym9080158
http://dx.doi.org/10.5391/IJFIS.2014.14.3.181
http://dx.doi.org/10.1016/j.eswa.2009.03.039
http://dx.doi.org/10.1016/S0165-0114(98)00235-8
http://dx.doi.org/10.1016/j.jcss.2004.06.002
http://dx.doi.org/10.3390/sym9110270
http://dx.doi.org/10.1016/j.asoc.2016.08.045
http://dx.doi.org/10.1002/int.20474
http://dx.doi.org/10.1016/S0377-2217(98)00040-X
http://dx.doi.org/10.1016/S0377-2217(98)00309-9


Symmetry 2018, 10, 392 28 of 28

33. Park, K.S. Mathematical programming models for characterizing dominance and potential optimality when
multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans. Syst. Man Cybern.
2004, 34, 601–614. [CrossRef]

34. Xu, Z.S. An interactive procedure for linguistic multiple attribute decision making with incomplete weight
information. Fuzzy Optim. Decis. Mak. 2007, 6, 17–27. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSMCA.2004.832828
http://dx.doi.org/10.1007/s10700-006-0022-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Hesitant Fuzzy Linguistic Term Set
	Hesitant Intuitionistic Fuzzy Linguistic Term Set
	 Probabilistic Linguistic Term Sets

	 Probabilistic Hesitant Intuitionistic Linguistic Term Set
	The Normalization of PHILTEs
	The Comparison between PHILTEs
	Basic Operations of PHILTEs

	Aggregation Operators and Attribute Weights
	The Aggregation Operators for PHILTEs
	Maximizing Deviation Method for Calculating the Attribute Weights 

	MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information
	Extended TOPSIS Method for MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information
	The Aggregation-Based Method for MAGDM with Probabilistic Hesitant Intuitionistic Linguistic Information

	A Case Study
	The Extended TOPSIS Method for the Considered Case
	The Aggregation-Based Method for the Considered Case

	Discussions and Comparison
	Conclusions
	References

