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Abstract: There are numerous models for solving the efficiency evaluation in data envelopment
analysis (DEA) with fuzzy input and output data. However, because of the limitation of those
strategies, they cannot be implemented for solving fully fuzzy DEA (FFDEA). Furthermore, in
real-world problems with imprecise data, fuzziness is not sufficient to consider, and the reliability
of the information is also very vital. To overcome these flaws, this paper presented a new method
for solving the fully fuzzy DEA model where all parameters are Z-numbers. The new approach is
primarily based on crisp linear programming and has a simple structure. Moreover, it is proved that
the only existing method to solve FFDEA with Z-numbers is not valid. An example is also presented
to illustrate the efficiency of our proposed method and provide an explanation for the content of
the paper.

Keywords: data envelopment analysis; Z-numbers; full fuzzy environment; fuzzy efficiency

1. Introduction

Data envelopment analysis (DEA) is a linear programming method for measuring the relative
efficiencies of homogeneous decision-making units (DMUs) without knowing production functions
(i.e., just by utilizing input and output information) [1,2]. The DEA technique has just been
effectively connected in various cases such as broadcasting companies, banking institutions,
R&D organizations, health care services, manufacturing, telecommunications, and supply chain
management. Classical DEA models, such as CCR and BCC models [1,2], need crisp inputs and
outputs, which are not typically accessible in real-world applications. However, the observed values
of the input and output information in real-world issues are imprecise or vague [3–12] and imprecise
evaluations could also be the end result of the unquantifiable, incomplete and non-available facts.

It is beneficial to consider the information of experts about the parameters as fuzzy data. The idea
of the fuzzy set became established in [13]. After this, many researchers have applied this theory to
different problems; see [14–22] and references therein. There are also many studies reported utilizing
fuzzy set theory in DEA; see [23–33] and references therein.

Sengupta was the first to analyze DEA models in a fuzzy environment [23]. Triantis and Girod [24]
combine DEA and fuzzy parametric programming to handle random measurement errors in input
and output data. Kao and Liu [24] accompanied the simple concept of transforming a fuzzy DEA
model to a crisp DEA model and presented an approach to measure the efficiencies of the DMUs.
According to fuzzy arithmetic operations and fuzzy comparisons among fuzzy numbers, Dia [26]
planned a model of fuzzy DEA (FDEA). Garcia et al. [27] applied the possibility of DEA version
for failure mode and effects analysis (FMEA) and proposed a fuzzy DEA method to figure out
ranking indices. Wang et al. [28] developed fuzzy DEA models with fuzzy inputs and outputs
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through fuzzy arithmetic. To obtain the efficiencies of DMUs as fuzzy numbers, they converted the
proposed fuzzy DEA models into three linear programming (LP) models. Wang and Chin [29] utilized
a fuzzy expected value approach and suggested the optimistic and the pessimistic efficiencies to
solve FDEA. Emrouznejad et al. [30] presented a taxonomy of the FDEA methods and provided a
classification scheme with six categories. Puri and Yadav [31] applied the α-cut approach and provided
a cross-efficiency technique for a fuzzy DEA model with undesirable fuzzy outputs. Wanke et al. [32]
developed a new FDEA model and, using the bootstrap-truncated regressions, evaluated the efficiency
of the Mozambican Banks. Hatami-Marbini et al. [33] proposed a comprehensive cross-efficiency fuzzy
DEA approach for supplier evaluation. Readers can also refer to [34–43] for reviews of more recent
research on fuzzy DEA approaches.

However, because of the limitations of the above methods, they cannot be implemented
for solving fully fuzzy DEA (FFDEA), where all the inputs and outputs, as well as the decision
variables, are fuzzy numbers. To the best of our knowledge, there is not much research on FFDEA.
Hatami-Marbini et al. [44] utilized a fully fuzzy linear programming problem presented by an FFDEA
model. Kazemi and Alimi [45] proposed an FFDEA model based on the ranking function. The feature of
this proposed model is that it considers three situations for the problem and solves them simultaneously.
Puri and Yadav [46] developed a new FFDEA model with undesirable factors and applied this model
on multi-component FFDEA. Khaleghi et al. [47], based on simplex techniques and multi-objective
optimization, obtain the fuzzy efficiency of FFDEA model.

Although the fuzzy set theory has been introduced as a powerful tool to quantify vague data,
and several authors have suggested various fuzzy methods in DEA, there is a key inadequacy in past
methodologies. A critical problem is that in classical fuzzy sets, the degree of sureness of information
is not taken into account. When dealing with real information, fuzziness is not enough to take into
account and the reliability of the information is vital. Recently, Sotoudeh-Anvari et al. [48] suggested
a new FFDEA in a fuzzy situation with Z-numbers. The Z-number is a novel fuzzy notion which
has more potential to articulate the vague circumstances of real applications. A Z-number has two
components used to express a value of an arbitrary variable X, Z = (A, B), where A is an assessment
of a value of X and B is an assessment of certainty of A [49]. Sotoudeh-Anvari et al.’s model [48] is
based on Kang et al.’s [50] and Allahviranloo et al.’s [51] methods and has low computational intricacy.
However, the method has some flaws and is not valid.

In this paper, it is shown that the mentioned model is not true. To solve this drawback,
we improved the model and propose a new algorithm. The rest of this work is ordered as follows:
Section 2 presents some essential concepts regarding fuzzy set theory and converting a Z-number
into a fuzzy number. In Section 3, we study the DEA, fuzzy DEA and fully fuzzified DEA models,
briefly. Sotoudeh-Anvari et al.’s model [48] is reviewed in Section 4. Section 5 explains the shortcoming
of the existing model [48]. The new FFDEA model with Z-numbers is also proposed in this section.
A numerical example is given in Section 6. Finally, the paper is concluded.

2. Preliminaries

We start with some fundamental notations and starter results that we seek advice from later.
For details, we refer to [1,13,18,21,48–50].

2.1. Definitions

Definition 1 [18]. A fuzzy subset Ã of a set X is defined by its membership function µÃ : X → [0, 1] , where the
value of µÃ(x) at x shows the grade of membership of x in Ã.
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Definition 2 [18]. A triangular fuzzy number (TFNs) Ã can be defined by (a, b, c), where c ≥ b ≥ a.
The membership function µÃ(x) is given by (1):

µÃ(x) =


x−a
b−a a ≤ x ≤ b

x−c
b−c b ≤ x ≤ c

0 otherwise

(1)

Definition 3 [21]. Let Ã = (a, b, c) be a triangular fuzzy number. Then Ã is called a non-negative fuzzy
number if and only if a ≥ 0.

Definition 4 [21]. Let Ã = (a, b, c) be a triangular fuzzy number. Then Ã is called an unrestricted fuzzy
number if a, b, c ∈ R.

Definition 5 [21]. Consider Ã = (a, b, c) and B̃ = (d, e, f ) as two triangular fuzzy numbers, then we have:

(i) Ã⊕ B̃ = (a, b, c)⊕ (d, e, f ) = (a + d, b + e, c + f ),

(ii) Ã− B̃ = (a, b, c)− (d, e, f ) = (a− f , b− e, c− d),

(iii) Ã⊗ B̃ = (min(γ), be, max(γ)) where, γ = {ad, a f , cd, c f }.

Definition 6 [21]. Consider Ã = (a, b, c) and B̃ = (d, e, f ) as two triangular fuzzy numbers. Then these
numbers are equal if and only if a = d, b = e and c = f .

Definition 7 [21]. Consider Ã = (a, b, c) as a triangular fuzzy number. Then the ranking function of Ã is
defined as follows:

R(Ã) =
1
4
(a + 2b + c)

Definition 8 [21]. Suppose Ã and B̃ be two triangular fuzzy numbers, then

(i) Ã ≤ B̃ if and only if R(Ã) ≤ R(B̃).

(ii) Ã < B̃ if and only if R(Ã) < R(B̃).

Definition 9 [48]. A triangular fuzzy number can also be defined as Ã = (M, α, β) which is referred to as a left
right (L-R) fuzzy number. M Is the central value, α is the left width (spread) and β is the right width (spread).
The membership function also has the following form:

µÃ(x) =


x−M+α

α M− α ≤ x ≤ M
M−x+β

β M ≤ x ≤ M + β

0 otherwise

(2)

Remark 1. By Definitions 2 and 6, we can see that a triangular fuzzy number Ã = (a, b, c) can be represented
as Ã = (M, α, β), where a = M− α, b = M and c = M + β.

So, based on Definitions 3–5, we have:

Definition 10. A L-R fuzzy number Ã = (M, α, β) is called a non-negative (positive) fuzzy number if and
only if M− α ≥ 0 (M− α > 0).
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Definition 11. Let Ã = (MA, αA, βA) and B̃ = (MB, αB, βB) be two triangular fuzzy numbers and λ is a
non-fuzzy number. Then we have:

Ã + B̃ = (MA, αA, βA) + (MB, αB, βB) = (MA + MB, αA + αB, βA + βB) (3)

Ã− B̃ = (MA, αA, βA)− (MB, αB, βB) = (MA −MB, αA + βB, βA + αB) (4)

λÃ = (λMA, λαA, λβA) λ > 0 (5)

And for non-negative fuzzy numbers Ã, B̃ the multiplication is defined as follows:

Ã⊗ B̃ = (MA MB, MAαB + MBαA − αAαB, MAβB + MBβA + βAβB)

Definition 12. Let Ã = (MA, αA, βA) be any triangular fuzzy number, then the ranking function of Ã is as
follows:

R(Ã) = MA +
βA − αA

4
.

Definition 13 [49]. A Z-number is an ordered pair of fuzzy numbers indicated as Z = (Ã, B̃). The first
component, Ã, is a fuzzy restriction and the second component, B̃, is a level of reliability of the first component.
For ease, A and B are supposed to be triangular fuzzy numbers.

2.2. Converting a Z-Number into a Fuzzy Number

In order to make more computations, the Z-number should be transformed into a usual fuzzy
number. Kang et al. [50] presented an efficient and very easy to implement approach, called Kang et al.’s
method, for turning a Z-number into a classical fuzzy number based on the fuzzy expectation.
Kang et al.’s method is described as follows:

Suppose a Z-number is Z = (Ã, B̃).

Step 1: Convert the second part (B̃) into a crisp number. Defuzzification transforms a fuzzy number
into a crisp value. The most commonly used defuzzification technique is the centroid
defuzzification approach. This calculation is completed by using Equation (6).

α =

∫
xµB̃(x)dx∫
µB̃(x)dx

(6)

We noted that when B̃ = (b1, b2, b3), Equation (6) becomes as follows:

α =
b1 + b2 + b3

3
(7)

Step 2: The weighted Z-number can be defined as:

Z̃α =
{
(x, µÃα )

∣∣µÃα = αµÃ(x), x ∈ [0, 1]} (8)

Step 3: By multiplying
√

α, convert the weighted Z-number into the following classical fuzzy number:

Z̃′ =
√

α× Ãα = (
√

α× a,
√

α× b,
√

α× c,
√

α× d) (9)

In this way, the Z-number is transformed into a conventional fuzzy number.
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3. DEA, FDEA and FFDEA

The efficiency of a DMU is established as the ratio of sum weighted output to sum weighted
input, subjected to happen between one and zero.

Let p-th DMU (DMUp) be under consideration, then the CCR model for the relative efficiency is
as follows [1]:

θp
∗ = max

s
∑

r=1
uryrp

m
∑

i=1
vixip

s.t.
s
∑

r=1
uryrj

m
∑

i=1
vixij

≤ 1, ∀j

ur, vi ≥ 0 ∀r, i.

(10)

In this model, each DMU (suppose that we have n DMUs) uses m inputs xij (i = 1, 2, . . . , m),
to obtain s outputs yrj (r = 1, 2, . . . , s). Here ur(r = 1, 2, . . . , s) and vi(i = 1, 2, . . . , m) are the weights
of the ith input and rth output. This fractional program is calculated for every DMU to find out its best
input and output weights. To simplify the computation, the nonlinear program shown as (10) can be
converted to a linear program (LP) and the model is called the CCR model:

θp
∗ = max

s
∑

r=1
uryrp

s.t :
m
∑

i=1
vixip = 1

s
∑

r=1
uryrj −

m
∑

i=1
vixij ≤ 0, ∀j

ur, vi ≥ 0 ∀r, i.

(11)

We solve Equation (11) n-times to work out the efficiency of n DMUs. If θp
∗ = 1, we say that the

DMUp is efficient, otherwise it is inefficient.
Fuzzy DEA (FDEA) is a strong method for evaluating the efficiency of DMUs with imprecise

information. The fuzzy CCR model is defined as follows:

θp
∗ = max

s
∑

r=1
ur ỹrp

s.t :
m
∑

i=1
vi x̃ip = 1

s
∑

r=1
ur ỹrj −

m
∑

i=1
vi x̃ij ≤ 0, ∀j

ur, vi ≥ 0 ∀r, i.

(12)

where, x̃ij(i = 1, 2, . . . , m) and ỹrj(r = 1, 2, . . . , s) are fuzzy inputs and fuzzy outputs for the jth DMU
(DMUj).
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If all input and output data and all parameters are characterized by fuzzy numbers, we call this
problem a fully fuzzy DEA (FFDEA) with the following model:

θp
∗ = max

s
∑

r=1
ũr ỹrp

s.t :
m
∑

i=1
ṽi x̃ip = 1

s
∑

r=1
ũr ỹrj −

m
∑

i=1
ṽi x̃ij ≤ 0, ∀j

ũr, ṽi ≥ 0 ∀r, i

(13)

where x̃ij = (xM
ij , xα

ij, xβ
ij), ỹij = (yM

ij , yα
ij, yβ

ij) and their weights given by ũr = (uM
r , uα

r , uβ
r ),ṽr =

(vM
r , vα

r , vβ
r ). Using the Charnes and Cooper transformation, we have the following model:

max θp =
s
∑

r=1
(uM

r , uα
r , uβ

r )⊗ (yM
rp , yα

rp, yβ
rp)

s.t.(vM
r , vα

r , vβ
r )⊗ (xM

ip , yα
ip, yβ

ip) = (1, 0, 0)

s
∑

r=1
(uM

r , uα
r , uβ

r )⊗ (yM
rj , yα

rj, yβ
rj)−

m
∑

i=1
(uM

r , uα
r , uβ

r )⊗ (xM
ij , yα

ij, yβ
ij) ≤ (0, 0, 0) ∀j

(uM
r , uα

r , uβ
r ), (vM

r , vα
r , vβ

r ) ≥ 0 ∀r, j

(14)

4. Sotoudeh-Anvari et al.’s Algorithm

Sotoudeh-Anvari et al. [48] proposed a regular technique to extend the DEA to the fully fuzzy
environment with Z-numbers. Their model is as follows:

Method 1.

Step 1: Consider the inputs and outputs of each DMU as well as their weights by using Z-numbers.
Using the Charnes and Cooper transformation we have:

θp
≈ = max

s
∑

r=1

˜̃ur˜̃yrp

s.t :
m
∑

i=1

˜̃vi˜̃xip = 1

s
∑

r=1

˜̃ur˜̃yrj −
m
∑

i=1

˜̃vi˜̃xij ≤ 0, ∀j

˜̃ur, ˜̃vi ≥ 0 ∀r, i

(15)

where ≈ point out the Z-numbers.
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Step 2: Using the Kang et al. [50] model, convert Z-numbers into usual fuzzy numbers. Then the inputs

and outputs of each DMU convert into x̃ij = (xM
ij , xα

ij, xβ
ij) and ỹij = (yM

ij , yα
ij, yβ

ij). Furthermore,

their weights will be ũr = (uM
r , uα

r , uβ
r ), ṽr = (vM

r , vα
r , vβ

r ) and we have:

max θ̃p =
s
∑

r=1
(uM

r , uα
r , uβ

r )⊗ (yM
rp , yα

rp, yβ
rp)

s.t.
m
∑

i=1
(vM

i , vα
i , vβ

i )⊗ (xM
ip , yα

ip, yβ
ip) ≈ (1, 0, 0)

s
∑

r=1
(uM

r , uα
r , uβ

r )⊗ (yM
rj , yα

rj, yβ
rj)−

m
∑

i=1
(uM

r , uα
r , uβ

r )⊗ (xM
ij , yα

ij, yβ
ij) ≤ (0, 0, 0) ∀j

(uM
r , uα

r , uβ
r ), (vM

i , vα
i , vβ

i ) ≥ 0 ∀r, i.

(16)

Step 3: The fuzzy DEA Equation (16) can be transformed into the following DEA model:

max θ̃p =
s
∑

r=1
(uM

r (yM
rp + yβ

rp − yα
rp), uβ

r yM
rp , uα

r yM
rp)

s.t.
m
∑

i=1
(vM

i (xM
ip + xβ

ip − xα
ip), vβ

i xM
ip , vα

i xM
ip ) = 1,

s
∑

r=1
(uM

r (yM
rj + yβ

rj − yα
rj), uβ

r yM
rj , uα

r yM
rj )−

m
∑

i=1
(vM

i (xM
ij + xβ

ij − xα
ij), vβ

i xM
ij , vα

i xM
ij ) ≤ (0, 0, 0) ∀j

(uM
r , uα

r , uβ
r ), (vM

i , vα
i , vβ

i ) ≥ 0 ∀r, i.

(17)

Step 4: Convert the fuzzy DEA Equation (17) into the following LP model:

max θP = R(θ̃P) =
s
∑

r=1

[
uM

r

(
yM

rp + ( 1
4 )y

β
rp − ( 1

4 )y
α
rp

)
+ uβ

r

((
1
4

)
yM

rp

)
− uα

r

((
1
4

)
yM

rp

)]
s.t.
m
∑

i=1

[
vM

i

(
xM

ip +
(

1
4

)
xβ

ip −
(

1
4

)
xα

ip

)
+ vβ

i

((
1
4

)
xM

ip

)
− vα

i

((
1
4

)
xM

ip

)]
= 1

s
∑

r=1

[
uM

r

(
yM

rj +
(

1
4

)
yβ

rj −
(

1
4

)
yα

rj

)]
+ uβ

r

((
1
4

)
yM

rj

)
− uα

r

((
1
4

)
yM

rj

)
≤

s
∑

r=1

[
vM

i

(
xM

ij + ( 1
4 )xβ

ij − ( 1
4 )xα

ij

)
+ vβ

i

((
1
4

)
xM

ij

)
− vα

i

((
1
4

)
xM

ij

)]
, ∀j

uM
r − uα

r ≥ 0, ∀r

uM
r −

(
1
4

)
uα

r +
(

1
4

)
uβ

r ≥ 0 ∀r

vM
i − uα

i ≥ 0, ∀i

vM
i −

(
1
4

)
vα

i +
(

1
4

)
vβ

i ≥ 0 ∀i

uα
r ≥ 0, uβ

r ≥ 0, ∀r

vα
i ≥ 0, vβ

i ≥ 0, ∀i.

(18)

Step 5: Run Equation (18) and obtain the optimal solutions of uM∗
r , uα∗

r , uβ∗
r , vM∗

i , vα∗
i and vβ∗

i .

5. Main Results

In this section, we explain the shortcomings of Sotoudeh-Anvari et al.’s Algorithm [48] and
present the new Algorithm.
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5.1. The Shortcoming of the Existing Algorithm

From Definition 11, if Ã = (MA, αA, βA) and B̃ = (MB, αB, βB) are two non-negative triangular
fuzzy numbers then:

Ã⊗ B̃ = (MA MB, MAαB + MBαA − αAαB, MAβB + MBβA + βAβB).

Nonetheless, it is evident from Step 3 of Method 1 that Sotoudeh-Anvari et al. [38], have utilized
the wrong product:

Ã⊗ B̃ = (MA(MB + βB − αB), βA MB, αA MB),

to transform the fuzzy DEA Equation (16) into the fuzzy DEA Equation (17). Henceforth, Method 1,
proposed by Sotoudeh-Anvari et al. [48], is not substantial in its present frame.

5.2. Improvement Model for FFDEA with Z-Numbers

In this section, to remove the mentioned shortcoming, we proposed an improved model for fully
fuzzy DEA with Z-numbers.

Method 2.

Step 1: Consider the DEA model that the inputs and outputs of each DMU as well as their weights
are Z-numbers.

Step 2: Using Kang et al.’s [50] model, convert Z-numbers into usual fuzzy numbers and obtain a fully
fuzzy DEA model with triangular fuzzy numbers.

Step 3: Using Definition 11, the fully fuzzy DEA model of Step 2 can be transformed into the following
model:

max θ̃p =
s
∑

r=1
(uM

r yM
rp , uM

r yα
rp + yM

rpuα
r − uα

r yα
rp, uM

r yβ
rp + yM

rpuβ
r + uβ

r yβ
rp)

s.t.
m
∑

i=1
(vM

i xM
ip , vM

i xα
ip + xM

ip vα
i − vα

i xα
ip, vM

i xβ
ip + xM

ip vβ
i + vβ

i xβ
ip) ≈ 1,

s
∑

r=1
(uM

r yM
rj , uM

r yα
rj + yM

rj uα
r − uα

r yα
rj, uM

r yβ
rj + yM

rj uβ
r + uβ

r yβ
rj) ≤

m
∑

i=1
(vM

i xM
ij , vM

i xα
ij + xM

ij vα
i − vα

i xα
ij, vM

i xβ
ij + xM

ij vβ
i + vβ

i xβ
ij) ∀j

(uM
r , uα

r , uβ
r ), (vM

i , vα
i , vβ

i ) ≥ 0 ∀r, i

(19)

Step 4: Based on Definitions 7 and 8, convert the fuzzy DEA Equation (19) into the following model:

max θP = R(θ̃P) =
s
∑

r=1
R((uM

r yM
rp , uM

r yα
rp + yM

rpuα
r − uα

r yα
rp, uM

r yβ
rp + yM

rpuβ
r + uβ

r yβ
rp))

m
∑

i=1
R((vM

i xM
ip , vM

i xα
ip + xM

ip vα
i − vα

i xα
ip, vM

i xβ
ip + xM

ip vβ
i + vβ

i xβ
ip)) = R(1, 1, 1),

s
∑

r=1
R((uM

r yM
rj , uM

r yα
rj + yM

rj uα
r − uα

r yα
rj, uM

r yβ
rj + yM

rj uβ
r + uβ

r yβ
rj)) ≤

m
∑

i=1
R((vM

i xM
ij , vM

i xα
ij + xM

ij vα
i − vα

i xα
ij, vM

i xβ
ij + xM

ij vβ
i + vβ

i xβ
ij)) ∀j

R(uM
r , uα

r , uβ
r ) ≥ (0, 0, 0), R(vM

i , vα
i , vβ

i ) ≥ (0, 0, 0), ∀r, i

uM
r − uα

r ≥ 0, ∀r,

vM
i − vα

i ≥ 0, ∀i,

uα
r ≥ 0, uβ

r ≥ 0, ∀r

vα
i ≥ 0, vβ

i ≥ 0, ∀i.

(20)
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Step 5: Based on Definition 12, convert Equation (20) into the following model:

max θP = R(θ̃P) =
s
∑

r=1

[
uM

r yM
rp +

1
4 [u

M
r yβ

rp + yM
rpuβ

r + uβ
r yβ

rp]− 1
4 [u

M
r yα

rp + yM
rpuα

r − uα
r yα

rp]
]

s.t.
m
∑

i=1

[
vM

i xM
ip + 1

4 [v
M
i xβ

ip + xM
ip vβ

i + vβ
i xβ

ip]−
1
4 [v

M
i xα

ip + xM
ip vα

i − vα
i xα

ip]
]
= 1,

s
∑

r=1

[
uM

r yM
rj +

1
4 [u

M
r yβ

rj + yM
rj uβ

r + uβ
r yβ

rj]−
1
4 [u

M
r yα

rj + yM
rj uα

r − uα
r yα

rj]
]
≤

m
∑

i=1

[
vM

i xM
ij + 1

4 [v
M
i xβ

ij + xM
ij vβ

i + vβ
i xβ

ij]−
1
4 [v

M
i xα

ij + xM
ij vα

i − vα
i xα

ij]
]
, ∀j

uM
r − uα

r ≥ 0, ∀r

uM
r −

(
1
4

)
uα

r +
(

1
4

)
uβ

r ≥ 0 ∀r

vM
i − uα

i ≥ 0, ∀i

vM
i −

(
1
4

)
vα

i +
(

1
4

)
vβ

i ≥ 0 ∀i

uα
r ≥ 0, uβ

r ≥ 0, ∀r

vα
i ≥ 0, vβ

i ≥ 0, ∀i.

(21)

Step 6: Obtain the optimal solutions of uM∗
r , uα∗

r , uβ∗
r , vM∗

i , vα∗
i and vβ∗

i .

6. Numerical Example

Sotoudeh-Anvari et al. [48], tackled the existing problem taken from Guo and Tanaka [52] to
represent their proposed approach. However, as discussed in Section 5, there are some shortcomings in
Method 1. Therefore, the results of Sotoudeh-Anvari et al. [48] are likewise not correct. In this section,
the correct consequences of this problem are solved by Method 2.

Problem 1. Consider five DMUs with two inputs and two outputs where all the input and output data are
designed as Z-numbers (see Table 1).

Table 1. Five decision-making units (DMUs) with two Z-number inputs and two Z-number outputs.
M = medium. MH = medium high. H = high. VH = very high.

DMU Inputs 1 Inputs 2 Outputs 1 Outputs 2

A ((4.51, 5.16, 5.80), MH) ((2.125, 2.348, 2.572), VH) ((2.870, 3.110, 3.349), H) ((4.545, 4.904, 5.263), H)
B ((3.46, 3.46, 3.46), H) ((1.674, 1.794, 1.913), H) ((2.460, 2.460, 2.460), VH) ((4.263, 4.521, 4.780), MH)
C ((4.92, 5.48, 6.04), VH) ((2.631, 3.11, 3.588), H) ((3.229, 3.827, 4.425), H) ((4.809, 5.704, 6.599), VH)
D ((4.80, 5.80, 6.79), M) ((2.460, 2.572, 2.684), VH) ((2.971, 3.229, 3.746), MH) ((7.779, 8.062, 8.345), M)
E ((7.05, 7.77, 8.49), H) ((4.647, 5.293, 5.938), MH) ((6.223, 7.213, 8.203), M) ((7.775, 8.851, 9.928), H)

In Table 1, the linguistic variables need to be transformed into triangular fuzzy numbers which
are listed in Table 2.

Table 2. Linguistic variables for measuring of the reliability of Z-numbers.

Linguistic Term Abbreviation Corresponding TFNs

Very Low VL (0.1, 0.2, 0.3)
Low L (0.2, 0.3, 0.4)

Medium Low ML (0.3, 0.4, 0.5)
Medium M (0.4, 0.5, 0.6)

Medium High MH (0.5, 0.6, 0.7)
High H (0.6, 0.7, 0.8)

Very High VH (0.7, 0.8, 0.9)

By using Kang et al.’s [50] model, the Z-number values of Table 1 are converted into fuzzy
numbers, which are listed in Table 3.



Symmetry 2018, 10, 384 10 of 15

Table 3. Data transformation from Z-numbers into fuzzy numbers.

DMU Inputs 1 Inputs 2 Outputs 1 Outputs 2

A (4, 0.5, 0.5) (2.1, 0.2, 0.2) (2.6, 0.2, 0.2) (4.1, 0.3, 0.3)
B (2.9, 0, 0) (1.5, 0.1, 0.1) (2.2, 0, 0) (3.5, 0.2, 0.2)
C (4.9, 0.5, 0.5) (2.6, 0.4, 0.4) (3.2, 0.5, 0.5) (5.1, 0.8, 0.8)
D (4.1, 0.7, 0.7) (2.3, 0.1, 0.1) (2.5, 0.2, 0.4) (5.7, 0.2, 0.2)
E (6.1, 0.2, 1) (4.1, 0.5, 0.5) (5.1, 0.7, 0.7) (7.4, 0.9, 0.9)

Now, we use Method 2 to solve the performance assessment problem. For example, Method 2 for
DMUA can be used as follows:

Step 1: Obtain a fully fuzzy DEA model with triangular fuzzy numbers:

max θ̃A ≈ (2.6, 0.2, 0.2)⊗ (uM
1 , uα

1 , uβ
1 ) + (4.1, 0.3, 0.3)⊗ (uM

2 , uα
2 , uβ

2 )

s.t.
(4, 0.5, 0.5)⊗ (vM

1 , vα
1 , vβ

1 ) + (2.1, 0.2, 0.2)⊗ (vM
2 , vα

2 , vβ
2 ) ≈ 1,[

(2.6, 0.2, 0.2)⊗ (uM
1 , uα

1 , uβ
1 ) + (4.1, 0.3, 0.3)⊗ (uM

2 , uα
2 , uβ

2 )
]
−[

(4, 0.5, 0.5)⊗ (vM
1 , vα

1 , vβ
1 ) + (2.1, 0.2, 0.2)⊗ (vM

2 , vα
2 , vβ

2 )
]
≤ (0, 0, 0),[

(2.2, 0, 0)⊗ (uM
1 , uα

1 , uβ
1 ) + (3.5, 0.2, 0.2)⊗ (uM

2 , uα
2 , uβ

2 )
]
−[

(2.9, 0, 0)⊗ (vM
1 , vα

1 , vβ
1 ) + (1.5, 0.1, 0.1)⊗ (vM

2 , vα
2 , vβ

2 )
]
≤ (0, 0, 0),[

(3.2, 0.5, 0.5)⊗ (uM
1 , uα

1 , uβ
1 ) + (5.1, 0.8, 0.8)⊗ (uM

2 , uα
2 , uβ

2 )
]
−[

(4.9, 0.5, 0.5)⊗ (vM
1 , vα

1 , vβ
1 ) + (2.6, 0.4, 0.4)⊗ (vM

2 , vα
2 , vβ

2 )
]
≤ (0, 0, 0),[

(2.5, 0.2, 0.4)⊗ (uM
1 , uα

1 , uβ
1 ) + (5.7, 0.9, 0.9)⊗ (uM

2 , uα
2 , uβ

2 )
]
−[

(4.1, 0.7, 0.7)⊗ (vM
1 , vα

1 , vβ
1 ) + (2.3, 0.1, 0.1)⊗ (vM

2 , vα
2 , vβ

2 )
]
≤ (0, 0, 0),[

(5.1, 0.7, 0.7)⊗ (uM
1 , uα

1 , uβ
1 ) + (7.4, 0.9, 0.9)⊗ (uM

2 , uα
2 , uβ

2 )
]
−[

(6.1, 0.2, 1)⊗ (vM
1 , vα

1 , vβ
1 ) + (4.1, 0.5, 0.5)⊗ (vM

2 , vα
2 , vβ

2 )
]
≤ (0, 0, 0),

(uM
r , uα

r , uβ
r ), (vM

i , vα
i , vβ

i ) ≥ 0 ∀r, i

(22)

Step 2: Using the Definition 11, the fully fuzzy DEA model of Step 2 can be transformed into the
following model:

max θ̃A ≈ (2.6uM
1 , 0.2uM

1 + 2.4uα
1 , 0.2uM

1 + 2.8uβ
1 ) + (4.1uM

2 , 0.3uM
2 + 3.8uα

2 , 0.3uM
2 + 4.4uβ

2 )

s.t.
(4vM

1 , 0.5vM
1 + 3.5vα

1 , 0.5vM
1 + 4.5vβ

1 ) + (2.1vM
2 , 0.2vM

2 + 1.9vα
2 , 0.2vM

2 + 2.3vβ
2 ) ≈ (1, 1, 1),

(2.6uM
1 , 0.2uM

1 + 2.4uα
1 , 0.2uM

1 + 2.8uβ
1 ) + (4.1uM

2 , 0.3uM
2 + 3.8uα

2 , 0.3uM
2 + 4.4uβ

2 )

− (4vM
1 , 0.5vM

1 + 3.5vα
1 , 0.5vM

1 + 4.5vβ
1 )− (2.1vM

2 , 0.2vM
2 + 1.9vα

2 , 0.2vM
2 + 2.3vβ

2 ) ≤ (0, 0, 0),

(2.2uM
1 , 2.2uα

1 , 2.2uβ
1 ) + (3.5uM

2 , 0.2uM
2 + 3.3uα

2 , 0.2uM
2 + 3.7uβ

2 )

− (2.9vM
1 , 2.9vα

1 , 2.9vβ
1 )− (1.5vM

2 , 0.1vM
2 + 1.4vα

2 , 0.1vM
2 + 1.6vβ

2 ) ≤ (0, 0, 0),

(3.2uM
1 , 0.5uM

1 + 2.7uα
1 , 0.5uM

1 + 3.7uβ
1 ) + (5.1uM

2 , 0.8uM
2 + 4.3uα

2 , 0.8uM
2 + 5.9uβ

2 )

− (4.9vM
1 , 0.5vM

1 + 4.4vα
1 , 0.5vM

1 + 5.4vβ
1 )− (2.6vM

2 , 0.4vM
2 + 2.2vα

2 , 0.4vM
2 + 3vβ

2 ) ≤ (0, 0, 0),

(2.5uM
1 , 0.2uM

1 + 2.3uα
1 , 0.4uM

1 + 2.9uβ
1 ) + (5.7uM

2 , 0.2uM
2 + 5.5uα

2 , 0.2uM
2 + 5.9uβ

2 )

− (4.1vM
1 , 0.7vM

1 + 3.4vα
1 , 0.7vM

1 + 4.8vβ
1 )− (2.3vM

2 , 0.1vM
2 + 2.2vα

2 , 0.1vM
2 + 2.4vβ

2 ) ≤ (0, 0, 0),

(5.1uM
1 , 0.7uM

1 + 4.4uα
1 , 0.7uM

1 + 5.8uβ
1 ) + (7.4uM

2 , 0.9uM
2 + 6.5uα

2 , 0.9uM
2 + 8.3uβ

2 )

− (6.1vM
1 , 0.2vM

1 + 5.9vα
1 , vM

1 + 7.1vβ
1 )− (4.1vM

2 , 0.5vM
2 + 3.6vα

2 , 0.5vM
2 + 4.6vβ

2 ) ≤ (0, 0, 0),

(uM
r , uα

r , uβ
r ), (vM

i , vα
i , vβ

i ) ≥ (0, 0, 0) ∀r, i

(23)
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Step 3: Based on Definitions 7 and 8, convert the above fuzzy DEA model to the following model:

max θA = R(θ̃A) = R
(
(2.6uM

1 , 0.2uM
1 + 2.4uα

1 , 0.2uM
1 + 2.8uβ

1 ) + (4.1uM
2 , 0.3uM

2 + 3.8uα
2 , 0.3uM

2 + 4.4uβ
2 )
)

s.t.
R
(
(4vM

1 , 0.5vM
1 + 3.5vα

1 , 0.5vM
1 + 4.5vβ

1 ) + (2.1vM
2 , 0.2vM

2 + 1.9vα
2 , 0.2vM

2 + 2.3vβ
2 )
)
= R(1, 1, 1),

R

 (2.6uM
1 , 0.2uM

1 + 2.4uα
1 , 0.2uM

1 + 2.8uβ
1 ) + (4.1uM

2 , 0.3uM
2 + 3.8uα

2 , 0.3uM
2 + 4.4uβ

2 )

− (4vM
1 , 0.5vM

1 + 3.5vα
1 , 0.5vM

1 + 4.5vβ
1 )− (2.1vM

2 , 0.2vM
2 + 1.9vα

2 , 0.2vM
2 + 2.3vβ

2 )

 ≤ R(0, 0, 0),

R

 (2.2uM
1 , 2.2uα

1 , 2.2uβ
1 ) + (3.5uM

2 , 0.2uM
2 + 3.3uα

2 , 0.2uM
2 + 3.7uβ

2 )

− (2.9vM
1 , 2.9vα

1 , 2.9vβ
1 )− (1.5vM

2 , 0.1vM
2 + 1.4vα

2 , 0.1vM
2 + 1.6vβ

2 )

 ≤ R(0, 0, 0),

R

 (3.2uM
1 , 0.5uM

1 + 2.7uα
1 , 0.5uM

1 + 3.7uβ
1 ) + (5.1uM

2 , 0.8uM
2 + 4.3uα

2 , 0.8uM
2 + 5.9uβ

2 )

− (4.9vM
1 , 0.5vM

1 + 4.4vα
1 , 0.5vM

1 + 5.4vβ
1 )− (2.6vM

2 , 0.4vM
2 + 2.2vα

2 , 0.4vM
2 + 3vβ

2 )

 ≤ R(0, 0, 0),

R

 (2.5uM
1 , 0.2uM

1 + 2.3uα
1 , 0.4uM

1 + 2.9uβ
1 ) + (5.7uM

2 , 0.2uM
2 + 5.5uα

2 , 0.2uM
2 + 5.9uβ

2 )

− (4.1vM
1 , 0.7vM

1 + 3.4vα
1 , 0.7vM

1 + 4.8vβ
1 )− (2.3vM

2 , 0.1vM
2 + 2.2vα

2 , 0.1vM
2 + 2.4vβ

2 )

 ≤ R(0, 0, 0),

R

 (5.1uM
1 , 0.7uM

1 + 4.4uα
1 , 0.7uM

1 + 5.8uβ
1 ) + (7.4uM

2 , 0.9uM
2 + 6.5uα

2 , 0.9uM
2 + 8.3uβ

2 )

− (6.1vM
1 , 0.2vM

1 + 5.9vα
1 , vM

1 + 7.1vβ
1 )− (4.1vM

2 , 0.5vM
2 + 3.6vα

2 , 0.5vM
2 + 4.6vβ

2 )

 ≤ R(0, 0, 0),

R(uM
r , uα

r , uβ
r ) ≥ R(0, 0, 0), ∀r

R(vM
i , vα

i , vβ
i ) ≥ R(0, 0, 0) ∀i

uM
r − uα

r ≥ 0, ∀r,

vM
i − vα

i ≥ 0, ∀i,

uα
r ≥ 0, uβ

r ≥ 0, ∀r
vα

i ≥ 0, vβ
i ≥ 0, ∀i.

(24)

Step 4: Based on Definition 12, convert the above model to the following model:

max θA =
(
(2.6uM

1 − 0.6uα
1 + 0.7uβ

1 ) + (4.1uM
2 − 0.95uα

2 + 1.1uβ
2 )
)

s.t.(
(4vM

1 − 0.875vα
1 + 1.125vβ

1 ) + (2.1vM
2 − 0.475vα

2 + 0.575vβ
2 )
)
= 1,

(2.6uM
1 − 0.6uα

1 + 0.7uβ
1 ) + (4.1uM

2 − 0.95uα
2 + 1.1uβ

2 )−(
(4vM

1 − 0.875vα
1 + 1.125vβ

1 ) + (2.1vM
2 − 0.475vα

2 + 0.575vβ
2 )
)
≤ 0,

(2.2uM
1 − 0.55uα

1 + 0.55uβ
1 ) + (3.5uM

2 − 0.825uα
2 + 0.925uβ

2 )−(
(2.9vM

1 − 0.725vα
1 + 0.725vβ

1 ) + (1.5vM
2 − 0.35vα

2 + 0.4vβ
2 )
)
≤ 0,

(3.2uM
1 − 0.675uα

1 + 0.925uβ
1 ) + (5.1uM

2 − 1.075uα
2 + 1.475uβ

2 )−(
(4.9vM

1 − 1.1vα
1 + 1.35vβ

1 ) + (2.6vM
2 − 0.55vα

2 + 0.75vβ
2 )
)
≤ 0,

(2.55uM
1 − 0.575uα

1 + 0.725uβ
1 ) + (5.7uM

2 − 1.2uα
2 + 1.65uβ

2 )−(
(4.1vM

1 − 0.85vα
1 + 1.2vβ

1 ) + (2.3vM
2 − 0.55vα

2 + 0.6vβ
2 )
)
≤ 0,

(5.1uM
1 − 1.1uα

1 + 1.45uβ
1 ) + (7.4uM

2 − 1.625uα
2 + 2.075uβ

2 )−(
(6.3vM

1 − 1.475vα
1 + 1.775vβ

1 ) + (4.1vM
2 − 0.9vα

2 + 1.15vβ
2 )
)
≤ 0,

uM
1 − 0.25uα

1 + 0.25uβ
1 ≥ 0, uM

2 − 0.25uα
2 + 0.25uβ

2 ≥ 0,

vM
1 − 0.25vα

1 + 0.25vβ
1 ≥ 0, vM

2 − 0.25vα
2 + 0.25vβ

2 ≥ 0,

uM
1 − uα

1 ≥ 0, uM
2 − uβ

2 ≥ 0,

vM
1 − vα

1 ≥ 0, vM
2 − vα

2 ≥ 0,
uα

r ≥ 0, uβ
r ≥ 0, r = 1, 2,

vα
i ≥ 0, vβ

i ≥ 0, i = 1, 2.

(25)
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After computations with Lingo, we have the following optimal information for DMUA:

u∗1 = (0.08682, 0.08682, 0.36267), u∗2 = (0.107402, 0, 0), v∗1 = (0.15182, 0, 0), v∗2 = (0.132123, 0, 0.20046).

And,
θ̃∗A = (θ̃M

1 , θ̃α
1 , θ̃

β
1 ) = (0.6660, 0.2579, 1.0651).

Similarly, for other DMUs, we report the results in Table 4.

Table 4. Fuzzy efficiencies of the other DMUs.

DMUB DMUC DMUD DMUE

u∗1 (0, 0, 0) (0, 0, 1.08108) (0, 0, 0) (0, 0, 0.68965)
u∗2 (0, 0, 1.08108) (0, 0, 0) (0.17544, 0, 0) (0, 0, 0)
v∗1 (0, 0, 1.158997) (0, 0, 0.45747) (0.24390, 0, 0) (0.16949, 0, 0)
v∗2 (0, 0, 0.39932) (0.14282, 0, 0.14783) (0, 0, 0) (0, 0, 0)
θ̃∗ (0, 0, 4) (0, 0, 4) (1, 0.1579, 0.1579) (0, 0, 4)

By these results, we can see that DMUA is inefficient, and the others are efficient. Further, we have
used Wang et al.’s model [28] for comparing and ranking fuzzy efficiencies.

From Table 5, the DMUs are fully ranked in terms of their fuzzy efficiencies as follows:

B = C = E
60.57%
≥ D

56.92%
≥ A.

Table 5. The matrix of the degree of preference for fuzzy efficiencies obtained by model [28].

DMUs A B C D E

A - 0.4308 0.4308 0.3943 0.4308
B 0.5692 - 0.5 0.5557 0.5
C 0.5692 0.5 - 0.5557 0.5
D 0.6257 0.4443 0.4443 - 0.4443
E 0.5692 0.5 0.5 0.5557 -

According to our model, DMUB, DMUC and DMUE are efficient. However, by the model of [48],
we can see that DMUB, DMUD and DMUE are efficient. Even if the results were the same, because the
model of [48] uses the wrong strategy, it would still not be valid. We take note that this example is
utilized to demonstrate the computational procedure of the proposed technique and such a comparison
is insignificant. Although the suggested procedure has been employed to a numerical case, the same
frames could be used, with some adjustment, to other benchmarking problems.

7. Conclusions and Future Work

Within the past few years, a developing interest has appeared in fully fuzzy DEA (FFDEA) and
presently there are numerous strategies to solve it. However, in original fuzzy sets, the certainty of the
information is approximately ignored. Z-number is a suitable measure for comprehensive explanation
of real-life information and has that extra ability of being able to depict uncertain information. This
paper explains the drawbacks of Sotoudeh-Anvari et al.’s method [48] in the fully fuzzy DEA to rank
DMUs with imprecise data. We show that the mentioned method did not consider the fuzzy axioms,
so it may produce incorrect rankings in some cases. To remove the existing drawbacks, we presented a
new fully fuzzified DEA, where all decision parameters and variables are Z-numbers. Based on our
results, we can see that Sotoudeh-Anvari et al.’s method [48] should not be used for evaluating the
best relative fuzzy efficiencies of DMUs. Furthermore, our model used Wang et al.’s model [28] for
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comparing and ranking fuzzy efficiencies. It is explained that our model provides the right evaluation
of the relative efficiency of a DMU under ambiguous circumstances and gives more reliable results.
In spite of the fact that the model, arithmetic operations and results introduced here have exhibited
the viability of our approach, it might be additionally applied in other fuzzy DEA problem such as
network FFDEA, FFDEA with common weights, and FFDEA with undesirable outputs. For future
work, we plan to consider these issues.
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