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Abstract: In respect to the multi-attribute group decision making (MAGDM) problems in which
the evaluated value of each attribute is in the form of q-rung orthopair fuzzy numbers (q-ROFNs),
a new approach of MAGDM is developed. Firstly, a new aggregation operator, called the partitioned
Maclaurin symmetric mean (PMSM) operator, is proposed to deal with the situations where the
attributes are partitioned into different parts and there are interrelationships among multiple
attributes in same part whereas the attributes in different parts are not related. Some desirable
properties of PMSM are investigated. Then, in order to aggregate the q-rung orthopair fuzzy
information, the PMSM is extended to q-rung orthopair fuzzy sets (q-ROFSs) and two q-rung orthopair
fuzzy partitioned Maclaurin symmetric mean (q-ROFPMSM) operators are developed. To eliminate
the negative influence of unreasonable evaluation values of attributes on aggregated result, we further
propose two q-rung orthopair fuzzy power partitioned Maclaurin symmetric mean (q-ROFPPMSM)
operators, which combine the PMSM with the power average (PA) operator within q-ROFSs. Finally,
a numerical instance is provided to illustrate the proposed approach and a comparative analysis is
conducted to demonstrate the advantage of the proposed approach.

Keywords: partitioned Maclaurin symmetric mean; q-rung orthopair fuzzy set; q-rung orthopair
fuzzy partitioned Maclaurin symmetric mean; q-rung orthopair fuzzy power partitioned Maclaurin
symmetric; multi-attribute group decision making

1. Introduction

Multi-attribute group decision making (MAGDM) is one of the most important branches of
modern decision making theory. Generally speaking, MAGDM is an activity in which alternatives are
evaluated by a group of decision makers and the most suitable alternative is determined accordingly.
In MAGDM, one of critical problems is how to represent the information of attributes given by decision
makers, due to the appearance of fuzzy and uncertainty information. The other critical problem is
how to aggregate the attribute information and provide the ranking of alternatives. For this problem,
the aggregation operator is regarded as an effective tool to aggregate decision information. A large
number of studies on aggregation operator have been done and many aggregation operators have
been widely applied in MAGDM, such as the power average (PA) operator [1], the Bonferroni mean
(BM) operator [2], the Maclaurin symmetric mean (MSM) operator [3], partitioned Bonferroni mean
(PBM) operator [4], and so on. (A review of related literature is listed in Section 2)

The aforementioned aggregation approaches are used to capture various interrelationships of
attributes in MAGDM, but they ignore this situation in which the attributes are divided into several
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parts and there are interrelationships among multiple attributes in each part. Thus, in this paper,
we extend the traditional Maclaurin symmetric mean (MSM) [3] and propose the partitioned Maclaurin
symmetric mean (PMSM) operator, which can model this circumstance in which attributes are divided
into several parts and multiple attributes in each part are interrelated. In addition, as the complexity of
MAGDM problems increase, we may encounter the following case: the decision maker maybe evaluate
the attributes in form of q-rung orthopair fuzzy number (q-ROFN) and provide some unduly high or
unduly low assessments owing to time shortage and a lack of priori experience. These unreasonable
assessments may negatively affect the finally decision results.

In order to solve the above issues, we utilize PMSM to aggregate q-ROFNs. Meanwhile,
we combine the PMSM with PA in q-rung orthopair fuzzy set (q-ROFS) and propose q-rung orthopair
fuzzy power partitioned Maclaurin symmetric mean (q-ROFPPMSM) operator and the weighted
form of the q-ROFPPMSM operator. The q-ROFPPMSM not only reduces the negative influence of
unreasonable evaluations on the aggregating result, but also deals with this circumstance where
attributes are divided into several parts and multiple attributes in each part are interrelated.

We firstly define the PMSM operator and provide the mathematical formula. Some desirable
properties and special cases of PMSM are also investigated. It can be found that some existing operators
can be obtained from PMSM when the parameters of PMSM are assigned different values. Further,
we extend the PMSM in q-ROFS, and propose q-rung orthopair fuzzy partitioned Maclaurin symmetric
mean (q-ROFPMSM) operator and q-rung orthopair fuzzy weighted partitioned Maclaurin symmetric
mean (q-ROFWPMSM) operator to deal with q-rung orthopair fuzzy information. In order to reduce
the negative influence of unreasonable assessments on decision result, we take advantage of PMSM
and PA and propose q-ROFPPMSM and the weighted form of q-ROFPPMSM, which is called q-rung
orthopair fuzzy weighted power partitioned Maclaurin symmetric mean (q-ROFWPPMSM) operator.
Finally, a new approach based on the q-ROFWPPMSM operator is introduced for solving the q-rung
orthopair fuzzy MAGDM problems. A numerical instance is also provided to illustrate the approach
we proposed and a comparative analysis is conducted to demonstrate the advantage of the proposed
approach. The contributions of this paper are as follows:

(1) We propose the PMSM operator, which can handle this situation where the attributes are divided
into several parts and there are interrelationships among multiple attributes in each part.

(2) We extend the PMSM in q-ROFS for dealing with the q-rung orthopair fuzzy information.
(3) We combine PMSM and PA in q-ROFS and introduce the q-ROFPPMSM and the weighted form

of q-ROFPPMSM which not only take advantage of PMSM, but also reduce the negative influence
of unreasonable arguments on the aggregating result.

(4) We propose a new approach of MAGDM based on the proposed operator.

The rest of this paper is organized as follows: Section 2 provides a review of related literature.
Section 3 introduces some basic concepts. In Section 4, we define the PMSM, the q-ROFPMSM and the
q-ROFWPMSM. Meanwhile, we propose q-ROFPPMSM and q-ROFWPPMSM based on the PA and
PMSM operators. A new approach of q-rung orthopair fuzzy MAGDM based on q-ROFWPPMSM is
introduced in Section 5. Section 6 gives a numerical example to illustrate the validity and advantages
of the proposed approach and the last section summarizes the paper.

2. Literature Review

The application of fuzzy set theory in MAGDM and the application of aggregation operators in
MAGDM have been widely studied by researchers. In our review, we mainly focus on the literature
related to the q-rung orthopair fuzzy set (q-ROFS). In addition, we also concentrate on some aggregation
operators that are widely applied in fuzzy MAGDM problems. Due to the increasing complexity of real
decision making problems, crisp numbers are insufficient and inadequate to represent attribute values.
Zadeh’s [5] fuzzy set (FS) theory is regarded to an effectively tool to deal with impreciseness, and many
works on MAGDM with fuzzy information has been done [6–8]. To overcome the shortcomings of FS,
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Atanassov [9] proposed the concept of intuitionistic fuzzy set (IFS), which has a membership degree
and a non-membership degree simultaneously. Owing to its great ability for handling fuzziness and
uncertainty, IFSs have been widely applied in pattern recognition [10,11], medical diagnosis [12,13],
clustering analysis [14,15] and especially MAGDM [16–18]. The constraint of IFS is that the sum of
membership and non-membership degrees should be less than or equal to one. Thus, Yager [19]
generalized the IFS and proposed the Pythagorean fuzzy set (PFS), whose constraint is that the square
sum of membership and non-membership degrees is less than or equal to one. Since its appearance,
PFS has received much scholarly attention, which has led to a wider range of applications [20–26].

More recently, Yager [27] introduced a new concept: the q-rung orthopair fuzzy set (q-ROFS),
which satisfies the condition that the sum of the qth power of the membership degree and the qth power
of the non-membership degree is bounded by one. This feature makes q-ROFS more powerful than
IFS and PFS in the aspect of dealing with the vagueness and fuzzy information. For instance, when a
decision maker provides 0.8 and 0.7 as the membership and non-membership degrees, respectively,
then the ordered pair (0.7, 0.8) is not valid for IFSs or PFSs, whereas it is valid for q-ROFS. Many works
on q-ROFS have been done to handle q-rung orthopair information. Peng [28] defined new exponential
operational laws of q-ROFNs in which the bases are positive real numbers and the exponents are
q-ROFNs and proposed a new score function for comparing two q-ROFNs. Du [29] defined some
Minkowski-type distance measures for q-ROFS and investigated the application of the distance measure
in decision making. Li et al. [30] combined the q-ROFS with a picture fuzzy set and proposed a q-rung
picture linguistic set. Liu and Wang [31] proposed a family of simple weighted averaging and
geometric operators for solving the q-rung orthopair fuzzy MAGDM problems. Liu and Liu [32]
and Wei et al. [33] respectively proposed some q-rung orthopair fuzzy Bonferroni mean operators
and some q-rung orthopair fuzzy Heronian mean operators, which consider the interrelationship
between any two q-ROFNs. Liu and Wang [34] proposed some q-rung orthopair fuzzy Archimedean
Bonferroni mean (q-ROFABM) operators, which applied Bonferroni mean (BM) in the q-ROFS based
on Archimedean T-norm and T-conorm.

Obviously, aggregation operators play an important role in MAGDM, especially the ones that
reflect the interrelationship among attributes. According to the type of relationship between attributes,
the aggregation operator can be divided into two groups. The one assumes each attribute is related
to the other attributes, such as the power average (PA) operator [1] and power geometric (PG)
operator [35], which allows the attributes to be aggregated to support and reinforce each other.
However, the PA and PG only capture the relationship by assigning the weight to each attribute and
they do not directly reflect the interrelationship structure among the attributes.

Thus, Yager [36] originally extended the BM [2] to capture the interrelationship between any two
attributes. Xia et al. [37] generalized the classical BM and proposed the generalized weighted BM
(GWBM) where the interrelationship among any three arguments can be measured. Zhang et al. [38]
also defined the dual generalized weighted BM (DGWBM) operator. To capture the interrelationship
among multiple attributes, Detemple and Robertson [39] explored the MSM [3] operator in MAGDM,
which assumes that each argument is related to other k-1 arguments and the parameter k can be
adjusted by decision maker. Owning to this flexibility of MSM, it has been used to deal with various
MAGDM problems [40–42].

The aforementioned operators are based on the assumption that each attribute is related with the
others in MAGDM. However, interrelationships do not usually exist among all attributes. Thus, the
second group operator mainly focuses on the circumstances in which parts of attributes are related
and others do not have any interrelationship. For such operators, the partitioned Bonferroni mean
(PBM) operator [4] is the representative. The PBM considers this situation where the arguments are
partitioned into several parts, and the argument in the same part is related to the others. Similarly,
Liu et al. [43] extended the Heronian mean (HM) to the partitioned Heronian mean (PHM). The PBM
and PHM operators have been extensively applied in the process of decision making [44,45]. Table 1
summarizes main characteristics of above aggregation operators.
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Table 1. The main characteristics of different aggregation operators.

Approaches Captures
Two Attributes

Captures
Three Attributes

Captures
Multiple Attributes

Attributes
Partitions

PA [1] Yes No No No
PG [35] Yes No No No
BM [2] Yes No No No

GWBM [37] Yes Yes No No
DGWBM [38] Yes Yes Yes No

MSM [3] Yes Yes Yes No
PBM [4] Yes No No Yes

PHM [43] Yes No No Yes

It is worthy to point that as PBM and PHM inherit the features of BM and HM respectively, and
they fail to capture the interrelationship among multiple arguments. That motivates us to propose
PMSM operator and extend it in q-ROFS to deal with heterogeneous among attributes and capture the
interrelationship among multiple attributes in that same partition. In addition, we take advantage of
PMSM and PA and propose q-ROFPPMSM and q-ROFWPPMSM. Finally, a new approach based on
q-ROFWPPMSM operator is introduced for solving the q-rung orthopair fuzzy MAGDM problems.

3. Preliminaries

3.1. q-ROFS

Definition 1 [27]. Let X be a universe of discourse, a q-rung orthopair fuzzy set (q-ROFS) A defined on X is
given by

A = {〈x, uA(x), vA(x)〉|x ∈ X } (1)

where µA(x) ∈ [0, 1] and vA(x) ∈ [0, 1] respectively represent the membership and non-membership degrees of
the element x to the set A satisfying uA(x)q + vA(x)q ≤ 1, (q ≥ 1). The indeterminacy degree of the element

x to the set A is πA(x) =
(

1−
(

µ
q
A(x) + vq

A(x)
))1/q

. For convenience, Liu and Wang [31] called the pair
(uA(x), vA(x)) as a q-rung orthopair fuzzy number (q-ROFN), which can be denoted by A = (uA, vA).

Definition 2 [31]. Let ã1 = (u1, v1) and ã2 = (u2, v2) be two q-ROFNs, and λ be a positive real number, then
the operational laws of the q-ROFN are defined as follows:

1. ã1 ⊕ ã2 =

((
uq

1 + uq
2 − uq

1uq
2

)1/q
, v1v2

)
,

2. ã1 ⊗ ã2 =

(
u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)

,

3. λã1 =

((
1−

(
1− uq

1

)λ
)1/q

, vλ
1

)
,

4. ãλ
1 =

(
uλ

1 ,
(

1−
(

1− vq
1

)λ
)1/q

)
.

Definition 3 [31]. Let ã = (µã, vã) be a q-ROFN, then the score function of ã is defined as S(ã) = µ
q
ã − ν

q
ã

and the accuracy function is defined as H(ã) = µ
q
ã + ν

q
ã . For any two q-ROFNs ã1 = (µ1, v1) and ã2 =

(µ2, v2), then

1. If S(ã1) > S(ã2), then ã1 > ã2;
2. If S(ã1) = S(ã2), then

(1) If H(ã1) > H(ã2), then ã1 > ã2;
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(2) If H(ã1) = H(ã2), then ã1 = ã2.

Distance measure, as an effective tool to comparing the fuzzy information, has been widely
used in decision making. Recently, a distance measure for q-ROFNs called as the Minkowski-type
distance measure was proposed by Du [29] for evaluating the fuzzy degree. The definition is presented
as follows:

Definition 4 [29]. Let ã1 = (µ1, v1) and ã2 = (µ2, v2) be any two q-ROFNs, then the Minkowski-type
distance between ã1 and ã2 is given by

d(ã1, ã2) =

(
1
2
|µ1 − µ2|p +

1
2
|v1 − v2|p

)1/p
(p > 1) (2)

Example 1. Assume that ã1 = (0.8, 0.3), ã2 = (0.6, 0.4) be two q-ROFNs and the parameter p is equal to
three. Based on the Definition 4, we can obtain the Minkowski-type distance measure

d((0.8, 0.3), (0.6, 0.4)) =
(

1
2
|0.8− 0.6|3 + 1

2
|0.3− 0.4|3

)1/3
= 0.1651

3.2. PA Operator and MSM Operator

The power average (PA), introduced by Yager [1], can assign lower weights for arguments by
calculating the support degree between arguments so that they can reduce the bad influence of the
unduly high or unduly low arguments on the aggregation result. The original form of PA is presented
as follows:

Definition 5 [1]. Let ai(i = 1, 2, . . . , n) be a collection of non-negative real numbers, if

PA(a1, a2, . . . , an) =
n

∑
i=1

(
(1 + T(ai))ai/

n

∑
j=1

(
1 + T

(
aj
)))

(3)

then the PA is called the power average operator, where

T(ai) =
n

∑
j=1,j 6=i

Sup(ai, aj) (4)

and the Sup(a, b) is denoted as the support degree for a from b, which satisfies following properties:

1. Sup(a, b) ∈ [0, 1];
2. Sup(a, b) = Sup(b, a);
3. Sup(a, b) ≥ Sup(x, y), if |a− b|≤|x− y|

The Maclaurin symmetric mean (MSM) is firstly proposed by Maclaurin [3] and developed by
Detemple and Robertson [39]. It can depict the interrelationship among any arguments by setting
different values for parameter k. The mathematical form is defined as follows:
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Definition 6 [39]. Let ai (i = 1, 2, . . . , n) be a collection of non-negative real numbers and k = 1, 2, . . . , n, if

MSM(k)(a1, a2, . . . , an) =

(
∑

1≤ii<···<ik≤n

k

∏
j=1

aij /Ck
n

)1/k

(5)

where (i1, i2, . . . , ik) traverses all the k-tuple combination of (1, 2, . . . , n) and Ck
n = n!/k!(n− k)! is the

binomial coefficient. Then the MSM(k) is called the Maclaurin symmetric mean (MSM) operator.

4. Some q-Rung Orthopair Fuzzy Power Partitioned Maclaurin Symmetric Mean Operators

In this section, we firstly extend the traditional MSM and propose the PMSM operator to
handle this situation in which the input arguments are divided into several parts and there are
interrelationships among multiple arguments in each part. Then, we extend the PMSM in q-ROFS and
define two q-ROFPMSM operators to deal with the aggregation information in the form of q-ROFNs.
Finally, we introduce a q-ROFPPMSM operator and the weighted form of the q-ROFPPMSM operator
based on PMSM and PA, which not only take advantage of PMSM, but also reduce the negative
influence of unduly high or unduly low evaluating values of attributes on the decision result.

4.1. PMSM Operator

In many practical MAGDM problems, we may encounter a situation where the input arguments
can be divided into several classes and there are interrelationships among multiple arguments in each
class, whereas the attributes in different classes are not related. These situations can be mathematically
depicted as follows:

Let T = {a1, a2, . . . , an} be a collection of nonnegative real numbers that are corresponding to the
performance value of each attribute, respectively. On the basis of the aforementioned interrelationship
pattern, suppose that the arguments ai (i = 1, 2, . . . , n) are divided into d different classes P1, P2, . . . , Pd,
satisfying Pi ∩ Pj = ∅ and ∪d

h=1Ph = T. Furthermore, suppose that there is an interrelationship among
any kh arguments in each class Ph (h = 1, 2, . . . , d) and there is no relationship among arguments
of classes Pi and Pj. Then the partitioned Maclaurin symmetric mean (PMSM) operator, which can
aggregate the input arguments with above relationship structure, is defined as follows:

Definition 7. Let ai (i = 1, 2, . . . , n) be a collection of nonnegative real numbers, which are divided into
different classes P1, P2, . . . , Pd. For the parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph|
being the cardinality of Ph (h = 1, 2, . . . , d), if

PMSM(k1,k2,...,kd)(a1, a2, . . . , an) =
1
d


d

∑
h=1


1

Ckh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh

∏
j=1

aij





1
kh


(6)

then the PMSM(k1,k2,...,kd) is called the partitioned Maclaurin symmetric mean (PMSM) operator, where
(i1, i2, . . . , ikh

) traverses all the kh-tuple combination of (1, 2, . . . , |Ph|) and the Ckh
|Ph |

is the binomial coefficient
satisfying following formula:

Ckh
|Ph |

=
|Ph|!

kh!(|Ph| − kh)!
(7)

From Equation (6), we can know that the PMSM firstly models the interrelationship of attributes
belonged to class Ph (h = 1, 2, . . . , d) and provides the satisfaction degree of interrelated attributes
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of each class by the expression (1/Ckh
|Ph |∑ i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

∏kh
j=1 aij)

1/kh , it is noted that the PMSM

can model this case where the relationship type of attributes belonged to class Pi and Pj are different
by setting different values for parameter ki and k j. Then, the PMSM(k1,k2,...,kd)(a1, a2, . . . , an) gives
the average satisfaction degree of all attributes, which are belonging to class P1, P2, . . . , Pd. Therefore,
the PMSM is a more reasonable method to solve this situation, where the arguments are divided into
several classes and there are interrelationships among multiple arguments in each class.

For the sake of illustrating the calculation procedure of the PMSM operator, a numerical example
is provided and depicted as follows:

Example 2. Let Ai (i = 1, 2, . . . , 7) represent a collection of attributes, which are divided into two classes
P1 = {A1, A3, A4, A6} and P2 = {A2, A5, A7} according to the attribute characteristic. Moreover, assume
that each attribute is interrelated to any other two attributes in class P1 and each attribute in class P2 is
interrelated to each other, that is to say, the parameter k1 = 3 and k2 = 2. The actual value of arguments ai
(i = 1, 2, . . . , 7) corresponding to the attributes is as follows: a1 = 0.4, a2 = 0.7, a3 = 0.5, a4 = 0.6, a5 = 0.3,
a6 = 0.8 and a7 = 0.2.

On the basis of Definition 7, the aggregated result of the arguments in class P1 is given as follows: 1
C

k1
|P1 |

 ∑
i1, i2, · · · , ik1 ∈ P1

i1 < i2 < · · · < ik1

k1
∏
j=1

aij




1/k1

=

 1
C3

4

 ∑
i1, i2, i3 ∈ P1

i1 < i2 < i3

3
∏
j=1

aij




1/3

=
(
1/C3

4((0.4× 0.5× 0.6) + (0.4× 0.5× 0.8) +(0.4× 0.6× 0.8) + (0.5× 0.6× 0.8)))1/3 = 0.5625

Then, the aggregated result of arguments in class P2 is 1
Ck2
|P2 |

 ∑
i1, i2, · · · , ik2 ∈ P2

i1 < i2 < · · · < ik2

k2
∏
j=1

aij




1/k2

=

 1
C2

3

 ∑
i1, i2 ∈ P2

i1 < i2

2
∏
j=1

aij




1/2

=

(
1

C2
3
((0.7× 0.3) + (0.7× 0.2) + (0.3× 0.2))

)1/2
= 0.3697

Finally, the degree of satisfaction over all arguments can be obtained

PMSM(3,2)(a1, a2, . . . , a7) =
1
2


2

∑
h=1


1

Ckh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh

∏
j=1

aij





1
kh


= 0.4661

Meanwhile, the MSM operator is used to solve the aforementioned example and the aggregated
results under the condition of the parameter k taking two or three are obtained as follows:
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MSM2(a1, a2, . . . , a7) =


∑

1≤i1<i2≤7

2
∏
j=1

aij

C2
7


1/2

= 0.4933,

MSM3(a1, a2, . . . , a7) =


∑

1≤i1<i2<i3≤7

3
∏
j=1

aij

C3
7


1/3

= 0.4863.

The calculation result obtained by the PMSM is different from the results of the MSM. This
difference is a result of the former partitioning the argument set into different classes and considering
various relationship types among the arguments in each class, whereas the later only assumes that
there is an interrelationship among any k arguments.

Some special cases with respect to the cardinality of class and the parameter vector of the PMSM
operator are investigated.

Remark 1. When all arguments belong to same class and the types of the interrelationship among arguments
are also the same, namely, the cardinality of |P1| = n and k1 = k = 1, 2, . . . , n, then the PMSM reduces to the
MSM [3] operator as follows:

PMSMk1(a1, a2, . . . , an) =

 1
C

k1
|P1 |

 ∑
i1, i2, · · · , ik1 ∈ P1

i1 < i2 < · · · < ik1

k1
∏
j=1

aij





1
k1

=


∑

1≤i1<i2<···<ik≤n

k
∏
j=1

aij

Ck
n


1
k

(8)

Remark 2. In some practical decision making situations, the attributes can be divided into different classes
P1, P2, . . . , Pd and the type of relationship structure is consistent in each class Ph (h = 1, 2, . . . , d), that is to
say, k1 = k2 = · · · kd = k and k = 1, 2, . . . , min{|Ph|} for h = 1, 2, . . . , d. Then Equation (6), can be modified
as follows:

PMSM(k)(a1, a2, . . . , an) =
1
d


d

∑
h=1


1

Ck
|Ph |

 ∑
i1, i2, · · · , ik ∈ Ph
i1 < i2 < · · · < ik

k

∏
j=1

aij





1
k


(9)

Remark 3. It is noted that the PMSM can be reduced to a special case of the partitioned Bonferroni mean
operator [4], with the parameters s and t being equal to one, when the attributes can be divided into different classes
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P1, P2, . . . , Pd and there is an interrelationship between any two attributes in each class Ph (h = 1, 2, . . . , d),
that is to say, k1 = k2 = · · · kd = k = 2 for h = 1, 2, . . . , d.

PMSM(2)(a1, a2, . . . , an)

= 1
d


d
∑

h=1

 1
C2
|Ph |

 ∑
i1, i2 ∈ Ph

i1 < i2

2
∏
j=1

aij





1
2
 = 1

d


d
∑

h=1

 2
|Ph |(|Ph |−1) ×

1
2

 ∑
i1, i2 ∈ Ph

i1 6= i2

2
∏
j=1

aij





1
2


= 1
d


d
∑

h=1

 1
|Ph |(|Ph |−1)

 ∑
i1, i2 ∈ Ph

i1 6= i2

ai1 × ai2





1
2
 = 1

d


d
∑

h=1

 1
|Ph | ∑

i∈Ph

ai

 1
|Ph |−1 ∑

j ∈ Ph
i 6= j

aj





1
2


(Let i1 = i and i2 = j) = PBM1,1(a1, a2, . . . , an)

(10)

Remark 4. In some practical decision making situations, it may happen that some attributes have no relationship
with any of the rest of the attributes, namely, they do not belong to any classes. In order to solve this case, we can
divide the attributes into two sets. Meanwhile, we put these attributes, which are not related to any attributes in
a single set denoted by C1 and put other attributes in another set denoted by C2. Assume that the attributes in
C2 are divided based on a previous relationship structure. Equation (6) can be modified as follows:

PMSM(k1,k2,··· ,kd)(a1, a2, . . . , an) =
n−|C1|

n


1
d


d
∑

h=1

 1
C

kh
|ph |

∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh
∏
j=1

aij



1
kh



+ |C1|
n

(
1
|C1| ∑

i∈C1

ai

)
(11)

In the following, some properties of PMSM operator are discussed as follows:

Theorem 1 (Idempotency). Let ai (i = 1, 2, . . . , n) be a collection of nonnegative real numbers. For the
parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d),
if a1 = a2 = · · · = an = a, then we can get

PMSM(k1,k2,...,kd)(a1, a2, . . . , an) = a (12)

Proof. Based on the assumption that ai are equal to a for all i = 1, 2, . . . , n, then we can get

PMSM(k1,k2,...,kd)(a, a, . . . , a) = 1
d


d
∑

h=1

 1
C

kh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh
∏
j=1

a





1
kh

 = 1
d


d
∑

h=1

 1
C

kh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

akh





1
kh



=
1
d

 d

∑
h=1

 1

Ckh
|ph |

(Ckh
|ph |
× akk )

 1
kh

 = a

�
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Theorem 2 (Monotonicity). Let ai and bi be two collections of nonnegative real numbers. For the parameter
vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d), if ai ≤ bi
for all i = 1, 2, . . . , n, then

PMSM(k1,k2,··· ,kd)(a1, a2, . . . , an) ≤ PMSM(k1,k2,··· ,kd)(b1, b2, . . . , bn) (13)

Proof. Based on the assumption that ai ≤ bi for all i = 1, 2, . . . , n, then we can obtain

kh
∏
j=1

aij ≤
kh
∏
j=1

bij ⇒ ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
∏
j=1

aij ≤ ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
∏
j=1

bij

⇒

 1
C

kh
|Ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
∏
j=1

aij





1
kh

≤

 1
C

kh
|Ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
∏
j=1

bij





1
kh

⇒ 1
d


d
∑

h=1

 1
C

kh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh
∏
j=1

aij





1
kh

 ≤
1
d


d
∑

h=1

 1
C

kh
|ph |

 ∑
i1, i2, · · · , ikh

∈ Ph
i1 < i2 · · · < ikh

kh
∏
j=1

bij





1
kh


�

Theorem 3 (Boundedness). Let ai (i = 1, 2, . . . , n) be a collection of nonnegative real numbers. For the
parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d),
if a− = min

i
{ai} and a+ = max

i
{ai}, then

a− ≤ PMSM(k1,k2,··· ,kd)(a1, a2, . . . , an) ≤ a+ (14)

Proof. Based on the Theorem 2, we can obtain

PMSM(k1,k2,...,kd)(a−, a−, . . . , a−) ≤ PMSM(k1,k2,...,kd)(a1, a2, . . . , an)

And
PMSM(k1,k2,...,kd)(a1, a2, . . . , an) ≤ PMSM(k1,k2,...,kd)(a+, a+, . . . , a+)

Furthermore, based on the Theorem 1, we can obtain

PMSM(k1,k2,...,kd)(a−, a−, . . . , a−) = a− and PMSM(k1,k2,...,kd)(a+, a+, . . . , a+) = a+

Hence, we can obtain

a− ≤ PMSM(k1,k2,··· ,kd)(a1, a2, . . . , an) ≤ a+

�
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4.2. q-ROFPMSM Operator and q-ROFWPMSM Operator

The PMSM can only deal with evaluation values in the form of nonnegative real numbers, but
it is not valid to the information that is expressed by the q-ROFNs. In this section, we shall apply
the PMSM operator in q-rung orthopair fuzzy environment and propose the q-rung orthopair fuzzy
partitioned Maclaurin symmetric mean (q-ROFPMSM) operator and q-rung orthopair fuzzy weighted
partitioned Maclaurin symmetric mean (q-ROFPMSM) operator

Definition 8. Let ãi (i = 1, 2, . . . , n) be a collection of q-ROFNs which are divided into d different classes
P1, P2, . . . , Pd. For parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of
Ph (h = 1, 2, . . . , d), if

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1


1

Ckh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
ii < i2 < · · · < ikh

kh
⊗

j=1
ãij





1
kh

 (15)

where the (i1, i2, . . . , ikh
) traverses all the kh-tuple combination of (i = 1, 2, . . . , |Ph|) and Ckh

|Ph |
is the binomial

coefficient. Then the q− ROFPMSM(k1,k2,··· ,kd) is called the q-rung orthopair fuzzy partitioned Maclaurin
symmetric mean (q-ROFPMSM) operator.

Theorem 4. Let ãi (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter vector k1, k2, . . . , kd with
kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d), then the aggregating result
obtained by Equation (15) is still a q-ROFN and presented as follows:

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =


1−


d

∏
h=1


1−

1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

(
kh
∏
j=1

µij

)q)


1

C
kh
|Ph |



1
kh





1
d


1
q

,


d

∏
h=1


1−

1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− vq

ij

))


1

C
kh
|Ph |



1
kh



1
q


1
d


(16)

The proof of Theorem 4 is provided in Appendix A.
Considering the influence of the partition number of the argument set and the relationship

structure of the argument on q-ROFPMSM, some special cases of the q-ROFPMSM operator are put as
the remark below:

Remark 5. When all arguments belong to the same class and the types of the interrelationship among arguments
are also the same, that is to say, the number of the class d = 1, the cardinality of |P1| = n and the k1 =
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k = 1, 2, . . . , n, then the q-ROFPMSM reduces to the q-rung orthopair fuzzy Maclaurin symmetric mean
(q-ROFMSM) operator as follow:

q− ROFPMSM(k)(ã1, ã2, . . . , ãn) =

 1
C

k1
|P1 |

 ⊕
i1, i2, · · · , ik1 ∈ P1

ii < i2 < · · · < ik1

k1
⊗

j=1
ãij





1
k1

=


⊕

1≤i1<i2<···<ik≤n

k
⊗

j=1
ãij

Ck
n


1
k

(17)

Remark 6. When there is no partition among argument sets and the types of the interrelationship among
arguments are same, namely, the cardinality |P1| = n and the parameter k1 = k = 1, 2, . . . , n. Under the above
conditions, we further investigate some special cases of q-ROFPMSM with parameter k taking some particular
values.

Case 1: If k = 1, then Equation (16) reduces to q-rung orthopair fuzzy average mean (q-ROFA)
operator as follows:

q− ROFPMSM(1)(ã1, ã2, . . . , ãn)

=



1−

(
∏

1≤i1<i2<···<ik≤n

(
1−

(
k

∏
j=1

µij

)q))1/Ck
n
1/k

1/q

,

1−

1−
(

∏
1≤i1<i2<···<ik≤n

(
1−

k
∏
j=1

(
1− vq

ij

)))1/Ck
n
1/k

1/q
,

=


1−

(
∏

1≤i1≤n

(
1−

(
1

∏
j=1

µij

)q))1/C1
n
1/q

,

( ∏
1≤i1≤n

(
1−

1
∏
j=1

(
1− vq

ij

)))1/C1
n
1/q

,

=


1−

(
n
∏

i1=1

(
1−

(
µii
)q
))1/n

1/q

,

( n
∏

i1=1

(
vi1
)q
)1/n

1/q
 Let i1 = i

=

(1−
(

n
∏
i=1

(
1− (µi)

q))1/n
)1/q

,
(

n
∏
i=1

vi

)1/n


(18)

which is a special case of the q-rung orthopair fuzzy weighted average mean (q-ROFWA) operator
defined by Liu and Wang [31].

Case 2: If k = 2, then Equation (16) reduces to the q-rung orthopair fuzzy Bonferroni mean
(q-ROFBM) operator introduced by Liu and Liu [32].

q− ROFMSM(2)(ã1, ã2, . . . , ãn)

=



1−

(
∏

1≤i1<i2≤n

(
1−

(
2

∏
j=1

µij

)q))2/n(n−1)
1/2


1/q

,

1−

1−
(

∏
1≤i1<i2≤n

(
1−

2
∏
j=1

(
1− vq

ij

)))2/n(n−1)
1/2


1/q


=






1−




n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
2

∏
j=1

µij

)q)


1/2


2
n(n−1)



1/2

1
q

,


1−


1−




n
∏

i1, i2 = 1
i1 6= i2

(
1−

2
∏
j=1

(
1− vq

ij

))


1/


2
n(n−1)



1/2

1
q


=





1−


n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
2

∏
j=1

µij

)q)


1/n(n−1)


1/2


1/q

,


1−

1−


n
∏

i1, i2 = 1
i1 6= i2

(
1−

2
∏
j=1

(
1− vq

ij

))


1/n(n−1)


1/2


1/q


=





1−


n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
µi1 µi2

)q
)


1/n(n−1)


1/2


1/q

,


1−

1−


n
∏

i1, i2 = 1
i1 6= i2

(
vq

i1
+ vq

i2
− vq

i1
vq

i2

)


1/n(n−1)


1/2


1/q


(19)

which is a special case of the q-ROFBM operator with the parameters s and t being equal to 1.
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Case 3: If k = n, then Equation (16) reduces to the q-rung orthopair fuzzy geometric (q-ROFG)
operator as follows:

q− ROFPMSM(n)(ã1, ã2, . . . , ãn)

=



1−

(
∏

1≤i1<i2<···<ik≤n

(
1−

(
k

∏
j=1

µij

)q)) 1
Ck

n


1/k


1/q

,

1−

1−
(

∏
1≤i1<i2<···<ik≤n

(
1−

k
∏
j=1

(
1− vq

ij

))) 1
Ck

n

1/k
1/q


=


(1− ∏

1≤i1<i2<···<in≤n

(
1−

(
n
∏
j=1

µij

)q))1/n
1/q

,

1−
(

1− ∏
1≤i1<i2<···<ik≤n

(
1−

n
∏
j=1

(
1− vq

ij

)))1/n
1/q


=

( n
∏
j=1

µij

)1/n

,

1−
(

n
∏
j=1

(
1− vq

ij

))1/n
1/q



(20)

which is a special case of the q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator proposed
by Liu and Wang [31].

Theorem 5 (Idempotency). Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter
vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d), if
ãi = ã = (µ, v) for all i = 1, 2, . . . , n, then

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) = ã (21)

Theorem 6 (Monotonicity). Let be ãi = (µãi
, vãi

) and b̃i = (µb̃i
, vb̃i

) two collections of q-ROFNs. For the
parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d),
if µãi

≤ µb̃i
and vãi

≥ vb̃i
, then

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ q− ROFPMSM(k1,k2,··· ,kd)(b̃1, b̃2, . . . , b̃n) (22)

Theorem 7 (Boundedness). Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter
vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d), if
ã− = min

i
{ãi} and ã+ = max

i
{ãi}, then

ã− ≤ q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ ã+ (23)

The proof of Theorems 5–7 are provided in Appendix A.
Note that the argument weights can produce a great impact on aggregated results, so we take into

account the importance of the argument itself and propose the q-ROFWPMSM operator to overcome
the drawbacks of q-ROFPMSM.

Definition 9. Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs which are divided into d different
classes P1, P2, . . . , Pd. For parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the
cardinality of Ph (h = 1, 2, . . . , d), if

q− ROFWPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
wij ⊗ ãij

)




1
kh

 (24)

where the (i1, i2, . . . , ikh
) traverses all the kh-tuple combination of (i = 1, 2, . . . , |Ph|) and Ckh

|Ph |
is the binomial

coefficient. The wi denotes the weight information of ãi with wi ∈ [0, 1] (i = 1, 2, . . . , n) and ∑n
i=1 wi = 1.
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Then the q− ROFWPMSM(k1,k2,··· ,kd) is called the q-rung orthopair fuzzy weighted partitioned Maclaurin
symmetric mean (q-ROFPMSM) operator.

Theorem 8. Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs and wi denote the weight information
of ãi with wi ∈ [0, 1] (i = 1, 2, . . . , n) and ∑n

i=1 wi = 1. For the parameter vector k1, k2, . . . , kd with
kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d), then the aggregating result
obtained by Equation (24) is still a q-ROFN and presented as follows:

q− ROFWPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =

=




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− µ

q
ij

)wij
)) 1

C
kh
|Ph |



1
kh



1
d


1
q

,


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
vij

)qwij
)) 1

C
kh
|Ph |



1
kh



1
q


1
d


(25)

The proof of this theorem is similar to Theorem 4, so it is omitted here.
Meanwhile, it is easily proved that the q-ROFWPMSM satisfies the Monotonicity and

Boundedness properties.

Remark 7. When the arguments can be divided into d different class P1, P2, . . . , Pd and each member of class
Ph (h = 1, 2, . . . , d) is interrelated to each other, namely, kh = k = 2 for all h = 1, 2, . . . , d. Then the
q-ROFWPMSM reduces to a special case of q-rung orthopair fuzzy weighted partitioned Bonferroni mean
(q-ROFWPBM) operator with the parameters s and t being equal to one.

q− ROFWPMSM(2,2,··· ,2)(ã1, ã2, . . . , ãn)

= 1
d


d
⊕

h=1

 1
C2
|Ph |

 ⊕
i1, i2 ∈ Ph

i1 < i2

2
⊗

j=1

(
wij ⊗ ãij

)




1
2
 = 1

d


d
⊕

h=1

 2
|Ph |(|Ph |−1) ×

1
2

 ⊕
i1, i2 ∈ Ph

i1 6= i2

2
⊗

j=1

(
wij ⊗ ãij

)




1
2


= 1
d


d
⊕

h=1

 1
|Ph |(|Ph |−1)

 ⊕
i1, i2 ∈ Ph

i1 6= i2

(
wi1 ãi1 ⊗ wi2 ãi2

)




1
2
 = 1

d


d
⊕

h=1

 1
|Ph |(|Ph |−1)

 ⊕
i, j ∈ Ph

i 6= j

(
wi ãi ⊗ wj ãj

)




1
2


(26)

4.3. q-ROFPPMSM Operator and q-ROFWPPMSM Operator

In a practical decision making process, the decision maker may provide unduly high or unduly
low evaluation values for attributes due to the lack of time and the difference of knowledge. The
PA can reduce the bad influence of unreasonable argument on aggregation result by calculating
the support measure between arguments. Thus, we propose the q-rung orthopair fuzzy power
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partitioned Maclaurin symmetric mean (q-ROFPPMSM) and the q-rung orthopair fuzzy weighted
power partitioned Maclaurin symmetric mean (q-ROFPPMSM) operators that take advantage of PMSM
and PA.

Definition 10. Let ãi (i = 1, 2, . . . , n) be a collection of q-ROFNs which are divided into d different classes
P1, P2, . . . , Pd. For parameter vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of
Ph, if

q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
n
(

1+T(ãij
)
)

∑n
l=1(1+T(ãl))

⊗ ãij

)



1
kh

, (27)

then q − ROFPPMSM(k1,k2,··· ,kd) the is called the q-rung orthopair fuzzy power partitioned Maclaurin
symmetric mean (q-ROFPPMSM) operator, where the (i1, i2, . . . , ikh

) traverses all the kh-tuple combination

of (i = 1, 2, . . . , |Ph|) and Ckh
|Ph |

is the binomial coefficient. Meanwhile, the T(pi) = ∑n
l=1,l 6=i Sup(ãi, ãl) and

Sup(ãi, ãl) is the support for ãi and ãl which satisfies following properties:

(1) Sup(ãi, ãl) ∈ [0, 1];
(2) Sup(ãi, ãj) > Sup(ãr, ãl);

(3) if d(ãi, ãj) < d(ãr, ãl), the d(ãi, ãj) is the distance of q-ROFNs

In order to simplify Equation (27), we define

vi = (1 + T(ãi))/
n

∑
l=1

(1 + T(ãl)) (28)

And v = (v1, v2, . . . , vn). The v is called as the power weighting vector which satisfies vi ∈
[0, 1] and ∑n

i=1 vi = 1. Therefore Equation (27) can be expressed as follows:

q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
ii < i2 < · · · < ikh

kh
⊗

j=1

(
nvij ⊗ ãij

)




1
kh

 (29)
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Theorem 9. Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter vector
k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d), then the
aggregating result obtained by Equation (29) is still a q-ROFN and is presented as follows:

q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn)

=




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− µ

q
ij

)nvij

)) 1

C
kh
|Ph |



1
kh



1
d


1
q

,


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
vij

)qnvij

)) 1

C
kh
|Ph |



1
kh



1
q


1
d


(30)

The proof of this theorem is similar to Theorem 4, so it is omitted here.

Theorem 10 (Idempotency). Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter
vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d), if
ãi = ã = (µ, v) for all i = 1, 2, . . . , n, then

q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) = ã (31)

Theorem 11 (Boundedness). Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs. For the parameter
vector k1, k2, . . . , kd with kh = 1, 2, . . . , |Ph| and the |Ph| being the cardinality of Ph (h = 1, 2, . . . , d), if
ã− = min

i
{ãi} and ã+ = max

i
{ãi}, then

x̃ ≤ q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ ỹ (32)

where

x̃ =




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− (µ−)

q)nvij
))1/C

kh
|Ph |


1/kh



1/d


1/q

,


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− (v−)

qnwij
))1/C

kh
|Ph |


1/kh



1/q


1/d

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and

ỹ =




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− (µ+)

q)nvij
))1/C

kh
|Ph |


1/kh



1/d


1/q

,


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− (v+)

qnwij
))1/C

kh
|Ph |


1/kh



1/q


1/d


The proof of these theorems is provided in Appendix B.
In the following, we provide the weighted form of q-ROFPPMSM operator.

Definition 11. Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs which are divided into d different
class P1, P2, . . . , Pd and the |Ph| represent the cardinality of Ph. The w = (w1, w2, · · · , wn)

T is the weighted
vector with wi ∈ [0, 1] (i = 1, 2, . . . , n) and ∑n

i=1 wi = 1. For the parameter vector r k1, k2, . . . , kd with
kh = 1, 2, . . . , |Ph| for all h = 1, 2, . . . , d, if

q− ROFWPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
nwij

(1+T(ãij
))

∑n
l=1 wl(1+T(ãl))

⊗ ãij

)




1
kh

 (33)

then the q − ROFWPPMSM(k1,k2,··· ,kd) is called the q-rung orthopair fuzzy weighted power partitioned
Maclaurin symmetric mean (q-ROFWPPMSM) operator, where the (i1, i2, . . . , ikh

) traverses all the kh-tuple

combination of (i = 1, 2, . . . , |Ph|) and Ckh
|Ph |

is the binomial coefficient. Meanwhile, the T(pi) =

∑n
l=1,l 6=i Sup(ãi, ãl) and Sup(ãi, ãl) is the support for ãi and ãl which satisfies following properties:

(1) Sup(ãi, ãl) ∈ [0, 1];
(2) Sup(ãi, ãl) = Sup(ãl , ãi);
(3) Sup(ãi, ãj) > Sup(ãr, ãl), the d(ãi, ãj) is the distance of q-ROFNs

In order to simplify Equation (33), we define

vi = (1 + T(ãi))/
n

∑
l=1

(1 + T(ãl)) (34)

and v = (v1, v2, . . . , vn). The v is called as the power weighting vector which satisfies vi ∈ [0, 1]
and ∑n

i=1 vi = 1. Therefore Equation (33) can be expressed as follows:

q− ROFWPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) =
1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
nwij

vij

∑n
l=1 wl vl

⊗ ãij

)




1
kh

 (35)
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Theorem 12. Let ãi = (µi, vi) (i = 1, 2, . . . , n) be a collection of q-ROFNs and wi denote the weight
information of ãi with wi ∈ [0, 1] (i = 1, 2, . . . , n) and ∑n

i=1 wi = 1. For parameter vector k1, k2, . . . , kd
with kh = 1, 2, . . . , |Ph| and |Ph| the being the cardinality of Ph (h = 1, 2, . . . , d), then the aggregating result
obtained by Equation (35) is still a q-ROFN and presented as follows:

q− ROFWPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn)

=




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

1−
kh
∏
j=1

1−
(

1− µ
q
ij

) nwij
vij

∑n
l=1 wl vl

1/C
kh
|Ph |


1/kh



1/d


1/q


,


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

1−
kh
∏
j=1

1−
(

vq
ij

) nwij
vij

∑n
l=1 wl vl

1/C
kh
|Ph |


1/kh



1/q


1/d


(36)

The proof of the theorem is similar to the Theorem 4, which is omitted here.

5. A Novel Approach of MAGDM Based on q-ROFWPPMSM Operator

In order to solve MAGDM problems, a new approach based on a q-ROFWPPMSM operator
is proposed.

A typical MAGDM is the process that the most desirable alternative is selected from a set of
alternatives X = {X1, X2, . . . , Xm} based on a collection of attributes C = {C1, C2, . . . , Cn}. The
process is carried out by a group of decision makers D = {D1, D2, . . . , Dt} whose weight vector is
γ = (γ1, γ2, . . . , γt) satisfying γk ∈ [0, 1] (k = 1, 2, . . . , t) and ∑t

k=1 γk = 1. Meanwhile, the attribute
weight vector w = (w1, w2, . . . , wn), which satisfies wi ∈ [0, 1] (i = 1, 2, . . . , n) and ∑n

i=1 wi = 1,
represents the importance of attribute Aj (j = 1, 2, . . . , n) in the decision making process. Suppose
that the attributes are divided into d different classes P1, P2, . . . , Pd and there is an interrelationship
among any kh attributes in each class Ph (h = 1, 2, . . . , d) whereas the attributes in different classes
are not related. Due to the existence of uncertainty in a MAGDM problem, the performance value of
alternative Xi with respect to the attribute Aj given by decision maker Dk is provided in the form of
q-ROFN and is summarized in the decision matrix R̃k = [r̃k

ij]m×n
.

For the sake of select the best alternative, an algorithm based on q-ROFWPPMSM operator is
provided and the key steps of the algorithm are given as follows:

Step 1: To ensure the consistence of the type of each attribute, we transform the given decision
matrix R̃k = [r̃k

ij]m×n
into normalized q-rung orthopair fuzzy decision matrix Rk = [rk

ij]m×n
by the

following method:

rk
ij =

{
r̃k

ij, for benefit attribute of Cj

(r̃k
ij)

c
, for cost attribute of Cj

(37)

where the (r̃k
ij)

c
= (νk

ij, µk
ij).

Step 2: Calculate the support between the q-ROFN rk
ij with other q-ROFNs rl

ij (k, l = 1, 2, . . . , t).

Sup(rk
ij, rl

ij) = 1− d(rk
ij, rl

ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (38)

where the d(rk
ij, rl

ij) is the distance of q-ROFNs based on Definition 4.
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Step 3: Calculate the T(rk
ij) of the q-ROFN rk

ij (k = 1, 2, . . . , t).

T(rk
ij) =

t

∑
l = 1
l 6= k

Sup(rk
ij, rl

ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (39)

Step 4: Calculate the power weights vk
ij corresponding to the q-ROFNs rk

ij (k = 1, 2, . . . , t).

vk
ij =

(
1 + T

(
rk

ij

))
/

t

∑
l=1

(
1 + T

(
rl

ij

))
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (40)

Step 5: For the alternative Xi, aggregate the evaluation of attributes Aj provided by decision
makers Dk (k = 1, 2, . . . , t) based on q-ROFWPPMSM operator.

rij = q− ROFWPPMSM(r1
ij, r2

ij, . . . , rt
ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (41)

and obtain the comprehensive decision matrix R = [rij]m×n.
Step 6: Calculate the supports Sup(rij, ril) (j, l = 1, 2, . . . , n).

Sup(rij, ril) = 1− d(rij, ril), i = 1, 2, . . . , m (42)

Step 7: Calculate the T(rij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

T(rij) =
n

∑
l=1,j 6=l

Sup(rij, ril) (43)

Step 8: Calculate the power weights vij which are corresponded to attributes Aj (j =

1, 2, . . . , n), respectively.

vij =
(
1 + T(rij)

)
/

n

∑
l=1

(1 + T(ril)), i = 1, 2, . . . , n (44)

Step 9: Calculate the overall performance value of alternatives Xi (i = 1, 2, . . . , m) over
all attributes.

ri = q− ROFWPPMSM(ri1, ri2, . . . , rin) (45)

Step 10: Calculate the score function of alternatives and rank the alternatives based on the
comparison rule presented in Definition 3

6. Numerical Instance

In this section, a MAGDM problem about company location selection is provided to illustrate the
application of the proposed approach (cited from Liu et al. [12]).

Example 3. A corporation needs to select a best location to build new company building from five alternatives
denoted by Xi (i = 1, 2, . . . , 5). Considering the company’s strategic benefits, the company decides to evaluate the
alternatives based on the following four factors, including: the cost of rent C1, the convenience of transportation
C2, the cost of labor C3, and the influence of surrounding environment C4. The corresponding attribute weighting
vector is w = (0.25, 0.1, 0.3, 0.35). Assume that the attributes are divided into two classes P1 = {C1, C3}
and P = {C2, C4}, there is interrelationship between any two attributes in each class, that is to say, the
k1 = k2 = 2. Three experts Dl (l = 1, 2, 3), whose weight vector is γ = (0.35, 0.45, 0.2), are invited to evaluate
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five alternatives by taking form of q-ROFNs according to the above four attributes and the decision matrices
R̃l = [rl

ij]5×4
(l = 1, 2, 3) are presented in Tables 2–4.

Table 2. The q-rung orthopair fuzzy decision matrix R1 provided by D1.

C1 C2 C3 C4

X1 (0.5,0.4) (0.5,0.3) (0.2,0.6) (0.5,0.4)
X2 (0.6,0.2) (0.6,0.3) (0.6,0.2) (0.6,0.3)
X3 (0.5,0.4) (0.2,0.6) (0.6,0.2) (0.4,0.4)
X4 (0.6,0.2) (0.6,0.2) (0.4,0.2) (0.3,0.6)
X5 (0.4,0.3) (0.7,0.2) (0.4,0.5) (0.4,0.5)

Table 3. The q-rung orthopair fuzzy decision matrix R2 provided by D2.

C1 C2 C3 C4

X1 (0.4,0.2) (0.6,0.2) (0.4,0.4) (0.5,0.3)
X2 (0.5,0.3) (0.6,0.2) (0.6,0.2) (0.5,0.4)
X3 (0.4,0.4) (0.3,0.5) (0.5,0.3) (0.7,0.2)
X4 (0.5,0.4) (0.7,0.2) (0.5,0.2) (0.7,0.2)
X5 (0.6,0.3) (0.7,0.2) (0.4,0.2) (0.4,0.2)

Table 4. The q-rung orthopair fuzzy decision matrix R3 provided by D3.

C1 C2 C3 C4

X1 (0.4,0.5) (0.5,0.2) (0.5,0.3) (0.5,0.2)
X2 (0.5,0.4) (0.5,0.3) (0.6,0.2) (0.7,0.2)
X3 (0.4,0.5) (0.3,0.4) (0.4,0.3) (0.3,0.3)
X4 (0.5,0.3) (0.5,0.3) (0.3,0.5) (0.5,0.2)
X5 (0.6,0.2) (0.6,0.3) (0.4,0.4) (0.6,0.3)

6.1. The Decision-Making Process

Step 1: It is noted that the same type of each attribute is consistent, then we can get the rk
ij = r̃k

ij

(k = 1, 2, 3) based on Equation (37) and the normalized the decision matrix Rk = R̃k = [r̃k
ij]5×4

;

Step 2: Calculate the support Sup(rk
ij, rk

ij) (i = 1, 2, . . . , 5; j = 1, 2, 3, 4; k, l = 1, 2, 3) based on

Equation (38). To simplify,
(

Sup(rk
ij, rl

ij)
)

5×4
is denoted as Supkl and presented as follows:

Sup12 = Sup21 =


0.8349 0.9000 0.8000 0.9206
0.9000 0.9206 1 0.9000
0.9206 0.9000 0.9000 0.7404
0.8349 0.9206 0.9206 0.6000
0.8413 1 0.7619 0.7619

; Sup13 = Sup31 =


0.9000 0.9206 0.7000 0.8413
0.8349 0.9206 1 0.9000
0.9000 0.8349 0.8349 0.9000
0.9000 0.9000 0.7590 0.6698
0.8349 0.9000 0.9026 0.8000

;

Sup23 = Sup32 =


0.7619 0.9206 0.9000 0.9206
0.9206 0.9000 1 0.8000
0.9206 0.9206 0.9206 0.6809
0.9206 0.8349 0.7404 0.8413
0.9206 0.9000 0.8413 0.8349

;
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Step 3: Calculate the T(rk
ij) (i = 1, 2, . . . , 5; j = 1, 2, 3, 4; k = 1, 2, 3) based on Equation (39). For

simplify,
(

T(rk
ij)
)

5×4
is denoted as Tk and presented as follows:

T1 =


1.7349 1.8206 1.5000 1.7619
1.7349 1.8413 2 1.8000
1, 8206 1.7349 1.7349 1.6404
1.7349 1.8206 1.6796 1.2698
1.6762 1.9000 1.6825 1.5619

; T2 =


1.5968 1.8206 1.7000 1.8413
1.8206 1.8206 2 1.7000
1.8413 1.8206 1.8206 1.4213
1.7555 1.7555 1.6610 1.4413
1.7619 1.9000 1.6031 1.5968

;

T3 =


1.6619 1.8413 1.6000 1.7619
1.7555 1.8206 2 1.7000
1.8206 1.7555 1.7555 1.5809
1.8206 1.7349 1.4994 1.5111
1.7555 1.8000 1.7619 1.6349

;

Step 4: Calculate the power weights vk
ij (i = 1, 2, . . . , 5; j = 1, 2, 3, 4; k = 1, 2, 3) based on Equation

(40). For simplify,
(

vk
ij

)
5×4

is denoted as Wk and presented as follows:

W1 =


0.3601 0.3495 0.3352 0.3455
0.3446 0.3517 0.3500 0.3583
0.3489 0.3446 0.3446 0.3653
0.3467 0.3559 0.3559 0.3317
0.3430 0.3524 0.3526 0.3459

; W2 =


0.4396 0.4493 0.4655 0.4570
0.4570 0.4489 0.4500 0.4442
0.4518 0.4570 0.4570 0.4307
0.4491 0.4470 0.4544 0.4587
0.4552 0.4531 0.4399 0.4508

;

W3 =


0.2003 0.2012 0.1992 0.1974
0.1984 0.1995 0.200 0.1974
0.1993 0.1984 0.1984 0.2040
0.2043 0.1972 0.1897 0.2097
0.2018 0.1944 0.2075 0.2033


Step 5: For alternative Xi, we aggregate the evaluation of attributes Aj given by decision makers

Dk (k = 1, 2, 3) based on Equation (41) and the comprehensive decision matrix is presented in Table 5
(Suppose k1 = 1).

Table 5. Comprehensive q-rung orthopair fuzzy decision matrix.

C1 C2 C3 C4

A1 (0.3096, 0.6756) (0.3896, 0.6131) (0.2707, 0.7564) (0.3518, 0.6738)
A2 (0.3815, 0.6512) (0.4144, 0.6300) (0.4271, 0.5848) (0.4191, 0.6802)
A3 (0.3088, 0.7478) (0.1902, 0.7986) (0.3716, 0.6390) (0.4078, 0.6541)
A4 (0.3817, 0.6669) (0.4569, 0.6006) (0.3085, 0.6197) (0.4193, 0.6603)
A5 (0.3894, 0.6514) (0.4941, 0.6004) (0.2794, 0.6833) (0.3223, 0.6681)

Step 6: Calculate the Sup(rij, ril) (i = 1, 2, . . . , 5; j, l = 1, 2, 3, 4) based on Equation (42). To
simplify,

(
Sup(rij, ril)

)
5×4 is denoted as Supjl and obtain

Sup12 = Sup21 =


0.9277
0.9717
0.9035
0.9290
0.9138

; Sup13 = Sup31 =


0.9336
0.9421
0.9084
0.9371
0.9120

; Sup14 = Sup41 =


0.9662
0.9433
0.9036
0.9701
0.9465

;
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Sup23 = Sup32 =


0.8678
0.9638
0.8288
0.8822
0.8263

; Sup24 = Sup42 =


0.9482
0.9602
0.8118
0.9489
0.8609

; Sup34 = Sup43 =


0.9181
0.9243
0.9706
0.9106
0.9654

;

Step 7: Calculate the T(rij) (i = 1, 2, . . . , 5; j = 1, 2, 3, 4) based on Equation (43). To simplify,(
T(rij)

)
5×4 is denoted as T and obtain

T =


2.8278 2.7437 2.7195 2.8329
2.8800 2.8958 2.8302 2.8506
2.7154 2.5441 2.7078 2.6860
2.8362 2.7601 2.7299 2.8296
2.7722 2.6010 2.7038 2.7728


Step 8: Calculate the power weight vector of alternative Xi(i = 1, 2, . . . , 5) with respect to the

attributes Aj(j = 1, 2, 3, 4) based on Equation (44) and obtain

v1 = (0.2526, 0.0988, 0.2945, 0.3541); v2 = (0.2515, 0.1010, 0.2980, 0.3495);
v3 = (0.2520, 0.0962, 0.3018, 0.3500); v4 = (0.2518, 0.0991, 0.2949, 0.3533);

v5 = (0.2525, 0.0964, 0.2975, 0.3536);

Step 9: Calculate the overall performance of alternative Xi(i = 1, 2, . . . , 5) over all attributes based
on Equation (45).

r1 = (0.2015, 0.9181); r2 = (0.2532, 0.9009); r3 = (0.1953, 0.9263)
r4 = (0.2394, 0.9029); r5 = (0.2228, 0.9080)

Step 10: Calculate the score function of alternative Xi(i = 1, 2, . . . , 5) based on Definition 4.

S(r1) = −0.7657; S(r2) = −0.7150; S(r3) = −0.7874; S(r4) = −0.7223; S(r5) = −0.7377

and on the basis the value of the score function of alternative, we rank the alternatives by using the
comparison and get X2 � X4 � X5 � X1 � X3

6.2. The Influence of the Parameters on the Results

It is noted that the parameter q and the parameter vector (k1, k2) have great impacts on the
aggregated result of alternatives in Example 3. Firstly, the influence of parameter q on aggregation
results of alternatives is investigated by calculating the score functions of alternatives under the
condition of parameter q taking different values. The results are presented in Figure 1.
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From Figure 1, we can know that the aggregation results depend on the parameter q, the score
values of alternatives Xi (i = 1, 2, . . . , 5) become greater as the parameter q increases. However, it is
noted that the ranking result of alternatives is still X2 � X4 � X5 � X1 � X3 no matter what values
the parameter q takes. That means the parameter q is robust. The parameter q represents the space of
acceptable orthopairs, that is to say, the decision maker can set an appropriate value of parameter q to
model the uncertainty and fuzzy information in decision making.

In the following, under the condition of parameter vector (k1, k2) taking some special values, the
score functions of alternatives are calculated and the calculation results are showed in Table 6.

Table 6. Score values of alternatives with different values of parameter vector.

(k1, k2) S(r1) S(r2) S(r3) S(r4) S(r5) Ranking

(1,1) −0.7492 −0.6960 −0.7407 −0.7036 −0.7219 X2 � X4 � X5 � X3 � X1
(2,1) −0.7497 −0.6996 −0.7473 −0.7058 −0.7224 X2 � X4 � X5 � X3 � X1
(1,2) −0.7651 −0.7113 −0.7806 −0.7201 −0.7372 X2 � X4 � X5 � X1 � X3
(2,2) −0.7657 −0.7150 −0.7874 −0.7223 −0.7377 X2 � X4 � X5 � X1 � X3

It is known from Table 6 that the ranking order of X2, X4, and, X5 remain unchanged no matter
what values the parameter vector takes, whereas the ranking order of alternatives X3 and X1 is
X3 � X1 when the parameter vector takes (1,1) or (2,1) and the ranking order of alternatives X3 and
X1 is X1 � X3 when the parameter vector takes (1,2) or (2,2). The difference is due to the relationship
structure of the attributes has changed when the parameter vector takes different values. The parameter
vector models the types of interrelationships among attributes, therefore, a decision maker can set the
appropriate values of a parameter vector to model any kind of interrelationship among attributes in
decision making. Meanwhile, we can observe that the more interrelationships of attributes in each
class we consider, the smaller the score values will become.

6.3. Comparative Analysis

In the following, some comparisons of the proposed approach with existing approaches are
conducted to illustrate the validity and advantage of the q-ROFWPPMSM operator. We select
following approaches to solve aforementioned example, including: the approach proposed by Wei and
Lu [26] based on the Pythagorean fuzzy power weighted averaging (PFPWA) operators, the approach
introduced by Wei and Lu [40] based on Pythagorean fuzzy weighted Maclaurin symmetric mean
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(PFWMSM) operator, and the approach defined by Liu et al. [16] based on intuitionistic fuzzy weighted
interaction partitioned Bonferroni mean (IFWIPBM) operator. The aggregated results of the alternatives
obtained by the reference approaches and the proposed approach are presented in Table 7.

Table 7. Score values and ranking results by different approaches in Example 3.

Operator Score Values of ri (i = 1, 2, 3, 4) Ranking Result

PFPWA [26] S(r1) = 0.5510, S(r2) = 0.6347, S(r3) = 0.5170,
S(r4) = 0.6065, S(r5) = 0.5829; X2 � X4 � X5 � X3 � X1

PFWMSM [40]
(Suppose k = 2)

S(r1) = 0.0914, S(r2) = 0.1135, S(r3) = 0.0919,
S(r4) = 0.1091, S(r5) = 0.1029; X2 � X4 � X5 � X3 � X1

IFWIPBM [16]
(Suppose p = q = 2)

S(r1) = −0.0294, S(r2) = −0.0046, S(r3) = −0.0213
S(r4) = −0.0115, S(r5) = −0.0252; X2 � X4 � X3 � X5 � X1

q-ROFWPPMSM
(Suppose k1 = k2 = 2)

S(r1) = −0.7657, S(r2) = −0.7150, S(r3) = −0.7874
S(r4) = −0.7223, S(r5) = −0.7377; X2 � X4 � X5 � X1 � X3

It is can be observed from Table 7 that the alternatives X2 and X4 are respectively identified as
the best alternative and second best alternative by all approaches, though the ranking orders of the
rest of alternatives X1, X3, and, X5 are slightly different. Thus, the validity of the proposed approach
is verified.

In Example 3, the attributes are divided into two classes and the attributes of each class are
interrelated to each other. In order to further demonstrate the advantage of the proposed approach,
a new example with more complicated scenarios is provided and it is depicted as follows:

Example 4. A corporation wants to select a new investment area from four alternatives Xi (i = 1, 2, 3, 4). After
preliminary screening, there are the following five factors denoted by Cj (j = 1, 2, . . . , 5), which are selected
as evaluation attributes, including: C1: the risk of losing capital sum, C2: the amount of interest received,
C3: the vulnerability of capital sum to modification by inflation, C4: the market potential and, C5: the growth
potential. The corresponding attribute weight vector is w = (0.3, 0.1, 0.25, 0.15, 0.2). Considering the attribute
characteristics, the attributes are divided into two class P1 = {C1, C2, C3} and P2 = {C4, C5}. Moreover, there is
interrelationship among any three attributes in P1 and there is interrelationship between any two attributes in
P2, that is to say, the k1 = 3 and k2 = 2. The evaluating values of alternatives Xi (i = 1, 2, 3, 4) with respect to
attributes Cj are given in form of q-ROFNs and the decision matrix is present in Table 8

Table 8. The q-rung orthopair fuzzy decision matrix.

C1 C2 C3 C4 C5

X1 (0.3, 0.6) (0.7, 0.2) (0.2, 0.8) (0.8, 0.1) (0.7, 0.3)
X2 (0.1, 0.8) (0.8, 0.2) (0.2, 0.6) (0.7, 0.2) (0.8, 0.1)
X3 (0.1, 0.85) (0.6, 0.2) (0.2, 0.75) (0.8, 0.2) (0.8, 0.2)
X4 (0.2, 0.7) (0.9, 0.1) (0.2, 0.7) (0.6, 0.3) (0.8, 0.1)

We utilize the aforementioned approaches to solve Example 4. The score value of alternatives
over all attributes and ranking order obtained by different approaches are presented in Table 9.

It is known from Table 9 that the ranking order obtained by the proposed approach is significantly
different from the results given by the three existing approaches. The difference is due to none of the
above three approaches can exactly model the relationship structure where attributes are divided into
several classes and there is interrelationship among the arguments of each class.

In the following, we compare the differences of the ranking orders of alternatives obtained by the
aforementioned approaches in detail and analyze the principal cause of the above discrepancy from
the perspective of the model structure.
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Table 9. Score values and ranking results by different approaches in Example 4.

Method Score Values Ranking Result

PFPWA [26] S(r1) = 0.6708; S(r2) = 0.6949; S(r3) = 0.6710;
S(r4) = 0.7086; X4 � X2 � X3 � X1

PFWMSM [40]
(Suppose k = 2)

S(r1) = 0.2201; S(r2) = 0.2315; S(r3) = 0.2061;
S(r4) = 0.2384; X4 � X2 � X1 � X3

IFWIPBM [16]
(Suppose p = q= 1)

S(r1) = −0.5967; S(r2) = −0.4690;
S(r3) = −0.3541; S(r4) = −0.3835; X3 � X4 � X2 � X1

q-ROFWPPMSM
(Suppose k1 = 3, k2 = 2)

S(r1) = −0.4101; S(r2) = −0.3609;
S(r3) = −0.4052; S(r4) = −0.4189; X2 � X3 � X1 � X4

(1) Comparing the approach introduced by Wei and Lu [26] with the proposed approach,
the alternative X4 is respectively identified as the best alternative and worst alternative and
the alternative X2 is respectively identified as the second best alternative and the best alternative
by the approach of Wei and Lu [26] and the proposed approach. The difference is due to the
former only using the power aggregation operator, which can calculate the support degree
between arguments whereas the later not only includes the power aggregation operation,
but also considers the interrelationship among arguments. In Example 4, it is obvious that
the interrelationship exists among attributes, so the proposed approach may be more reasonable
than Wei and Lu’s approach [22].

(2) Similar to the ranking order of alternatives given by the PFPWA operator, the approach of Wei
and Lu [40] also respectively identified the alternatives X4 and X2 as the best alternative and the
second best alternative, whereas the proposed approach identifies the X4 and X2 as the worst
alternative and best alternative, respectively. The ranking order of the rest alternatives X1 and X3

obtained by Wei and Lu’s [40] approach and the proposed approach is X1 � X3 and X3 � X1,
respectively. The difference is due to the approach of Wei and Lu [40], which can capture the
interrelationships among attributes by using a MSM operator, which can calculate the average of
the sum of satisfaction among any k attributes. However, the proposed approach considers this
situation where the attributes can be divided into different classes and there is an interrelationship
among any attribute in each class, whereas there is no interrelationship among attributes of any
two classes.

(3) The ranking orders obtained by the approach of Liu et al. [16] and the proposed approach are
significantly different. The alternative X3 and the alternative X2 are respectively identified as
the best alternative by the approach of Liu et al. [16] and the proposed approach. The approach
of Liu et al. [16], based on the IFIPBM operator, divides attributes into different classes and
assumes attributes in each class are interrelated to each other. But in Example 4, each attribute is
interrelated to any other two attributes in class P1 and each attribute in class P2 is interrelated to
each other, that is to say, the type of interrelationship of attributes in each class are different. It is
obvious that the proposed approach can model the above situation better than the approach of
Liu et al. [16]. Therefore the proposed approach may be more reasonable than Liu et al. [16].

7. Conclusions

In this paper, a new approach is proposed for dealing with q-rung orthopair fuzzy MAGDM
problems. The contribution of this paper includes three phases. Firstly, a new aggregation operator,
which is called the partitioned PMSM operator, is proposed for dealing with a situation where the
attributes are divided into several parts and there is interrelationship among any attributes in each
part whereas the attributes in different parts are not related. The mathematical form of the PMSM is
introduced and some special cases and desirable properties of a PMSM operator are also investigated.
Secondly, in order to aggregate the q-rung orthopair fuzzy information, the PMSM operator is extended
in a q-ROFS and q-rung orthopair fuzzy partitioned Maclaurin symmetric mean (q-ROFPMSM) and
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q-rung orthopair fuzzy weighted partitioned Maclaurin symmetric mean (q-ROFWPMSM) operators
are proposed. Finally, to eliminate the negative effects of unreasonable assessment values obtained by
the decision maker on the decision results, we take advantage of the PA operator and propose a q-rung
orthopair fuzzy power partitioned Maclaurin symmetric mean (q-ROFPPMSM) and q-rung orthopair
fuzzy weighted power partitioned Maclaurin symmetric mean (q-ROFWPPMSM) operators, which
combine the advantages of PMSM and PA operators. A new approach based on the q-ROFWPPMSM
operator is proposed for solving q-rung orthopair fuzzy MAGDM problems. A numerical example
and some comparative analysis are also conducted.

Based on the results of the comparative analysis, the main advantages of the proposed approach
include: (1) the proposed PMSM can reflect the relationship structure of attributes that attributes are
partitioned into several parts, and there is interrelationship among any attributes in each part; (2) the
proposed PMSM can reduce MSM or PBM operator by adjusting the cardinality of set and setting
different values of parameter vector; (3) the q-ROFPPMSM operator can reduce the influence of the
unduly high and low arguments on ranking results. In future works, we will apply the proposed
approach in other practical decision making problems, such as low carbon supplier selection, risk
management, medical diagnosis, and resource evaluation, etc.
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Appendix A

Proof of Theorem 4. Based on the operational laws of q-ROFNs described in Definition 2, we can get
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thus, the proof of Theorem 4 is completed. �
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Proof of Theorem 5. Since q-ROFNs ãi are equal to ã for all i = 1, 2, . . . , n, then we can get
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

1/q

,


d

∏
h=1


1−


1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(1− vq)

)
1/C

kh
|Ph |



1/kh


1/q


1/d


=


1−

 d
∏

h=1

1−

1−
((

1− µqkh
)C

kh
|Ph |

) 1

C
kh
|Ph |

1/kh



1/d
1
q
,

 d
∏

h=1

1−

1−
((

1− (1− vq)kh
)C

kh
|Ph |

) 1

C
kh
|Ph |

1/kh


1/q
1
d


=

(1−
(

d
∏

h=1

(
1−

(
µqkh

)1/kh
))1/d)1/q

,

(
d

∏
h=1

(
1−

(
(1− vq)kh

)1/kh
)1/q

)1/d


=

(1−
(

d
∏

h=1
(1− µq)

)1/d)1/q

,
(

d
∏

h=1
(vq)1/q

)1/d
 = (µ, v)

thus, the proof of Theorem 5 is completed. �

Proof of Theorem 6.

kh
∏
j=1

µãij
≤

kh
∏
j=1

µb̃ij
⇒ 1−

(
kh
∏
j=1

µãij

)q

≥ 1−
(

kh
∏
j=1

µb̃ij

)q

⇒ 1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

(
kh
∏
j=1

µãij

)q)1/C
kh
|Ph |

 ≤ 1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

(
kh
∏
j=1

µãij

)q)1/C
kh
|Ph |



⇒


1−


d

∏
h=1


1−


1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

(
kh
∏
j=1

µ(ãij)

)q)


1/C
kh
|Ph |



1/kh




1/d


1/q

,

≤


1−


d

∏
h=1


1−


1−

 ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

(
kh
∏
j=1

µ(b̃ij)

)q)


1/C
kh
|Ph |



1/kh




1/d


1/q

which means the µã ≤ µb̃. So we can obtain µ
q
ã ≤ µ

q
b̃
. Similar, we can obtain νã ≥ νb̃ and ν

q
ã ≥ ν

q
b̃
.

If µ
q
ã < µ

q
b̃

and ν
q
ã ≥ ν

q
b̃
, then

q− ROFPMSM(k1,k2,···kd)(ã1, ã2, . . . , ãn) < q− ROFPMSM(k1,k2,···kd)(b̃1, b̃2, . . . , b̃n)

If µ
q
ã = µ

q
b̃

and ν
q
ã > ν

q
b̃
, then

q− ROFPMSM(k1,k2,···kd)(ã1, ã2, . . . , ãn) < q− ROFPMSM(k1,k2,···kd)(b̃1, b̃2, . . . , b̃n)
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If µ
q
ã = µ

q
b̃

and ν
q
ã = ν

q
b̃
, then

q− ROFPMSM(k1,k2,···kd)(ã1, ã2, . . . , ãn) = q− ROFPMSM(k1,k2,···kd)(b̃1, b̃2, . . . , b̃n)

thus, the proof of Theorem 6 is completed. �

Proof of Theorem 7. Based on the Theorem 5 and Theorem 6, we can obtain that

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≥ q− ROFPMSM(k1,k2,··· ,kd)(ã−, ã−, . . . , ã−) = ã−

and

q− ROFPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ q− ROFPMSM(k1,k2,··· ,kd)(ã+, ã+, . . . , ã+) = ã+

Thus, the proof of Theorem 7 is completed. �

Appendix B

Proof of Theorem 10. Since all q-ROFNs ãi (i = 1, 2, . . . , n) are equal to ã = (µ, v), we can get
Sup(ãi, ãj) = 1 for i, j = 1, 2, . . . , n. Based on Equation (28), we can get vi = 1/n (i = 1, 2, . . . , n), then

q− ROFPPMSM(k1,k2,··· ,kd)(ã, ã, . . . , ã)

=


1−

d
∏

h=1

1−

1−

(1− (µq)kh
) 1

C
kh
|Ph |

C
kh
|Ph |


1/kh


1/d

1/q

,


d

∏
h=1

1−

1−

(1− (1− vq)kh
) 1

C
kh
|Ph |

C
kh
|Ph |


1/kh


1/q

1/d


=

(1−
d

∏
h=1

(
1−

(
(µq)kh

)1/kh
)1/d

)1/q

,

(
d

∏
h=1

(
1−

(
(1− vq)kh

)1/kh
)1/q

)1/d


=

((
1−

d
∏

h=1
(1− µq)1/d

)1/q

,
(

d
∏

h=1
(vq)1/q

)1/d)
= (µ, v)

thus, the proof of Theorem 7 is completed. �

Proof of Theorem 11.

nvij ⊗ ãij =

((
1−

(
1− µ

q
ij

)nvij

)1/q
, v

nvij
ij

)
≥
((

1−
(

1−
(
µ−
)q
)nvij

)1/q
,
(
v−
)nvij

)

kh
⊗

j=1

(
nvij ⊗ ãij

)
= kh

∏
j=1

(
1−

(
1− µ

q
ij

)nvij

)1/q
,

(
1−

kh
∏
j=1

(
1− v

qnvij
ij

))1/q
 ≥

 kh
∏
j=1

(
1−

(
1− (µ−)

q)nvij
)1/q

,

(
1−

kh
∏
j=1

(
1− (v−)

qnvij
))1/q


Further, we can obtain

⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
nvij ⊗ ãij

)
=



1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− µ

q
ij

)nvij

))


1/q

, ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− v

qnvij
ij

))1/q



≥



1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− (µ−)

q)nvij
))


1/q

, ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− (v−)

qnvij
))1/q


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 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
nvij ⊗ ãij

)



1/kh

=



1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− µ

q
ij

)nvij

))1/C
kh
|Ph |


1/qkh

,

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− v

qnvij
ij

))1/C
kh
|Ph |


1/kh



1/q


≥



1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− (µ−)q)nvij

))1/C
kh
|Ph |


1/qkh

,

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− (v−)

qnvij
))1/C

kh
|Ph |


1/kh



1/q


Finally, we can get

1
d


d
⊕

h=1

 1
C

kh
|Ph |

 ⊕
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

kh
⊗

j=1

(
nvij ⊗ ãij

)



1/kh

 =




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− µ

q
ij

)nvij

)) 1

C
kh
|Ph |


1/kh



1/d


1/q


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
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(
1− v

qnvij
ij

)) 1

C
kh
|Ph |


1/kh



1/q


1/d


≥




1−

d
∏

h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1−

(
1− (µ−)

q)nvij
))1/C

kh
|Ph |


1/kh



1/d


1/q


d

∏
h=1

1−

1− ∏
i1, i2, · · · , ikh

∈ Ph
i1 < i2 < · · · < ikh

(
1−

kh
∏
j=1

(
1− (v−)

qnvij
))1/C

kh
|Ph |


1/kh



1/q


1/d


Similarly, we can easily prove that q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ ỹ.
Therefore, we can obtain x̃ ≤ q− ROFPPMSM(k1,k2,··· ,kd)(ã1, ã2, . . . , ãn) ≤ ỹ. �
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