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Abstract: The vague graph has found its importance as a closer approximation to real life situations.
A review of the literature in this area reveals that the edge coloring problem for vague graphs has not
been studied until now. Therefore, in this paper, we analyse the concept of vertex and edge coloring
on simple vague graphs. Specifically, two new definitions for vague graphs related to the concept of
the λ-strong-adjacent and ζ-strong-incident of vague graphs are introduced. We consider the color
classes to analyze the coloring on the vertices in vague graphs. The proposed method illustrates the
concept of coloring on vague graphs, using the definition of color class, which depends only on the
truth membership function. Applications of the proposal in solving practical problems related to
traffic flow management and the selection of advertisement spots are mainly discussed.

Keywords: vague graphs; fuzzified vague graphs; vertex coloring; edge coloring; fuzzy graph coloring;
vague graph coloring problem; traffic flow management; advertisement selection spots

1. Introduction

The concept of the fuzzy graph was proposed in the literature [1] with various definitions
pertaining to the cycles, connectivity, and coloring of fuzzy graphs. Subsequently, the vertex strength
and types of fuzzy graphs with operations were studied and investigated in the literature [2–4].
Some other works focused on the fuzzy total coloring and applications to a traffic light were introduced
and studied by Lavanya and Sattanathan [5]; Jaiswal and Rai [6]; Samanta, Pramanik, and Pal [7];
and Kishore and Sunitha [8]. The density of fuzzy graphs, operations, and dual were introduced
in the literature [9–12]. Ghorai and Pal [13] investigated the isomorphic properties of fuzzy graphs,
whereas Ghorai and Pal [14] proposed the concept of regular bipolar fuzzy graphs and studied its
applications. Fuzzy graph theory has also been extended to other extensions of fuzzy sets, such as
vague sets.

In this paper, we study some new concepts related to the edge coloring of vague graphs. The vague
set model was firstly introduced by Gau and Buehrer [15] in 1993, by replacing the membership degree
of an element in a set with a subinterval between 0 and 1. A vague set, A, is described by a true
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membership function, tA(ui), and a false membership function, fA(ui), from the universe of discourse,
U. Thus, the grade of membership of an element, ui, in vague set, A, is bounded to the subinterval,
[tA(ui), 1− fA(ui)] of [ 0, 1 ], and the sum of two degrees, that is, tA(ui) and fA(ui), must be less
than 1.

In fuzzy set theory, the grade of membership of an object to a fuzzy set indicates the belongingness
degree of the object to the fuzzy set, which is a point (single) value selected from the unit interval
[ 0, 1 ]. In real life scenarios, a person may consider that an element belongs to a fuzzy set, but it is
possible that that person is not sure about it. Therefore, hesitation or uncertainty may exist in which
the element can belong to the fuzzy set or not. The traditional fuzzy set is unable to capture this type
of hesitation or uncertainty using only the single membership degrees. A possible solution is to use
an intuitionistic fuzzy set or a vague set [15] to handle this problem. For example, in a traffic control
system of a city, 10 sensors {s1, s2, s3, . . . , s10} can be used to store the waiting time of traffic flow
with 10 corresponding measurements {3, 4, 3, 3, _, 3, 5, _, 3, 3} at a specific time, t. Here, ‘_’ represents
that the information of a sensor is not captured at time, t. We find three for six times, four for one
time, five for one time, and two missing values. This uncertain information can be represented as
a vague set, A, as follows. In the measurement, three occur for six times, but two values (i.e., 4 and
5) are against it and two values are missing values. The true membership degree tA(ui) and false
membership degree fA(ui) are 0.6 and 0.2(1− fA(ui) = 0.8), respectively. The vague membership
degree is computed as [0.6, 0.8] for three. Similarly, the vague membership degree is obtained [0.1, 0.3]
for four, and [0.1, 0.3] for five. The vague set can be represented as A = [0.6,0.8]

3 + [0.1,0.3]
4 + [0.1,0.3]

5 .
The above real-life problem describes that, by using a vague set, it is more capable to manage the
uncertain information than fuzzy set [16].

Some concepts related to vague graphs, such as the Laplacian matrix and spectrum, were introduced
in Borzooei and Rashmanlou [17], whereas the isomorphic properties of vague graphs were studied
in Talebi et al. [18]. Borzooei, Rashmanlou, and Mathew [19] defined the homomorphism of vague
graphs. Samanta et al. [20] studied the behaviour of vague graphs, and presented an investigation
on the strength of vague graphs, which was then further investigated in [21]. Rashmanlou et al. [22]
introduced vague h-morphism. Darabian et al. [23] studied the concepts of regularity and irregularity
in the study of fullerene molecules, wireless multihop networks, and road transport networks.
Borzooei and Rashmanlou [24] introduced further results on vague graphs in the form of three
types of new product operations of vague graphs and verified the rationality of these concepts.
Borzooei et al. [25] introduced the concept of strong domination numbers of vague graphs and
presented methods to determine the strong domination numbers for any complete vague graph.

The edge coloring problem is an important area of study in fuzzy graph theory, which could be
used to solve many real life problems (such as traffic, etc.) [4–8]. The main contribution of this paper is
as follows.

• In the literature, to the best of our knowledge, there is no study on the edge coloring problem
for vague graphs until now. Therefore, in this paper we study the concept of vertex and edge
coloring on simple vague graphs.

• We also demonstrate the utility of these concepts in solving practical problems related to traffic
flow management and selection of advertisement spots that will optimize the visibility of
the advertisements.

• We also introduce the idea of λ-strong-adjacent and ζ-strong-incident of vague graphs.

2. Preliminary

For the remaining part of this paper, the collection of all fuzzy sets on a set, S, shall be denoted by
F(S). The symbol ∧ shall be used to denote a T-norm function (e.g., the minimum), with ∨ being its
respective T-conorm (i.e., S-norm).
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Definition 1 [5]. Let V be a set. Let σ : V → [0, 1] and µ : V ×V → [0, 1] be two functions satisfying
µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ V. We have, the following:

(a) G = 〈V, σ, µ〉 is said to be a fuzzy graph;
(b) V is said to be the vertex set of G. Each x ∈ V is said to be a vertex in G;
(c) V ×V is said to be the edge set of G. Each (x, y) ∈ V ×V is said to be an edge * in G;
(d) σ(x) is said to be the membership value of the vertex x in G;
(e) µ(x, y) is said to be the membership value of the edge *(x, y)in G.

Remark 1. In the literature [5], it was assumed that µ(x, y) = µ(y, x) and µ(x, x) = 0 for all x, y ∈ V.

Definition 2 [5]. Let G = 〈V, σ, µ〉 be a fuzzy graph. Let u, v be two vertices in G. If µ(u, v) ≥
1
2 (σ(u) ∧ σ(v)), then u and v are said to be strong adjacent to each other.

Definition 3 [5]. Let G = 〈V, σ, µ〉 be a fuzzy graph. Let k ∈ N. Let C = {γi ∈ F(V) : 1 ≤ i ≤ k} for which
(i) U1≤i≤kγi = {(x, σ(x)), x ∈ V};
(i.e., V1≤i≤k(γi(x)) = σ(x) for all x ∈ V);
(ii) γi ∩ γj = ∅;
(i.e., γi(x) ∧ γj(x) = 0 for all x ∈ V), for all i 6= j;
(iii) for each pair of strongly adjacent u, v ∈ V, we have he following:

γi(u) ∧ γi(v) = 0 f or alli.

Then, C is said to be a k-fuzzy vertex coloring of G.

Definition 4 [5]. Let G = 〈V, σ, µ〉 be a fuzzy graph. The least value of k ∈ N, for which a k-fuzzy vertex
coloring of G exist, is called the fuzzy vertex chromatic number of G, and shall be denoted by XF(G).

Definition 5 [5]. Let G = 〈V, σ, µ〉 be a fuzzy graph. Let h ∈ N. Let D = {ϕi ∈ F(V ×V) : 1 ≤ i ≤ h}
for which

(i) U1≤i≤h ϕi = {((x, y), µ(x, y)), (x, y) ∈ V ×V}.
(i.e., V1≤i≤h(ϕi(x, y)) = µ(x, y) for all (x, y) ∈ V ×V)
(ii) ϕi ∩ ϕj = ∅(i.e., ϕi(x, y) ∧ ϕj(x, y) = 0 for all (x, y) ∈ V ×V), for all i 6= j.
(iii) for each u ∈ V, and for each (v, u) and (w, u) strong incident towards u:

ϕi(v, u) ∧ ϕj(w, u) = 0 f or alli.

Then, D is said to be a h-fuzzy edge coloringof G.

Definition 6 [5]. Let G = 〈V, σ, µ〉 be a fuzzy graph. The least value of h ∈ N, for which a k-fuzzy edge
coloring of G exists, is called the fuzzy edge chromatic number of G, and shall be denoted by EF(G).

Definition 7 [26]. Let V be a set. Let A = {(x, [tA(x), 1− fA(x)]), x ∈ V}, where tA, fA : V → [0, 1] are
two functions satisfying tA(x) + fA(x) ≤ 1 for all x ∈ V. Then, we have the following:

(a) A is said to be a vague set on V;
(b) tA(x) is said to be the least membership of x in V;
(c) 1− fA(x) is said to be the greatest membership of x in V.

Remark 2. [tA(x), 1− fA(x)] ⊆ [0, 1] for all x.
For the remaining part of this paper, the collection of all vague sets on a set S shall be denoted by U(S).
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Definition 8 [17]. Let V be a set. Let σ̆ = (tσ̆, fσ̆) and µ̆ =
(
tµ̆, fµ̆

)
, where tσ̆, fσ̆ : V → [0, 1] and

tµ̆, fµ̆ : V ×V → [0, 1] are four functions satisfying the following:
(i) tσ̆(x) + fσ̆(x) ≤ 1 and tµ̆(x, y) + fµ̆(x, y) ≤ 1 for all x, y ∈ V;
(ii) tµ̆(x, y) ≤ tσ̆(x) ∧ tσ̆(y) and fµ̆(x, y) ≥ fσ̆(x) ∨ fσ̆(y) for all x, y ∈ V.
Then, we have the following:

(a) G = 〈V, σ̆, µ̆〉 is said to be a vague graph;
(b) V is said to be the vertex set of G. Each x ∈ V is said to be a vertex in G;
(c) V ×V is said to be the edge set of G. Each (x, y) ∈ V ×V is said to be a directed edge in G;
(d) tσ̆(x) is said to be the least membership value of the vertex x in G;
(e) 1− fσ̆(x) is said to be the greatest membership value of the vertex x in G;
(f) tµ̆(x, y) is said to be the least membership value of the directed edge (x, y) in G;
(g) 1− fµ̆(x, y) is said to be the greatest membership value of the directed edge (x, y) in G.

Definition 9 [17]. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let u, v be two distinct vertices in G. If both
tµ̆(v, u) = tµ̆(u, v) and fµ̆(v, u) = fµ̆(u, v) holds, then {u, v} = {(v, u), (u, v)} is said to be an (ordinary)
edge in G.

Definition 10 [17]. Let G = 〈V, σ̆, µ̆〉 be a vague graph. If both tµ̆(y, x) = tµ̆(x, y) and fµ̆(y, x) = fµ̆(x, y)
holds for all x, y ∈ V, then G is said to be ordinary. Otherwise, G is said to be directed.

Definition 11 [17]. Let G = 〈V, σ̆, µ̆〉 be a vague graph. If both tµ̆(x, x) = 0 and fµ̆(x, x) = 1 holds for all
x ∈ V, then G is said to be simple.

To facilitate further discussion, we present two new definitions (Definitions 12 and 13) for vague graphs,
related to the concept of λ-strong-adjacent and ζ-strong-incident of vague graphs.

Definition 12. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let u, v be two vertices in G. Let λ ∈ [0, 1]. If both

tµ̆ (u, v) ≥ λ(tσ̆(u) ∧ tσ̆(v)) and fµ̆(u, v) ≤ (1− λ) + λ( fσ̆(u) ∨ fσ̆(v))

holds, then u is said to be λ-strong adjacent to v. Moreover, if both tµ̆(u, v) ∧ tµ̆(v, u) ≥ λ(tσ̆(u) ∧ tσ̆(v))
and fµ̆(u, v) ∨ fµ̆(v, u) ≤ (1− λ) + λ( fσ̆(u) ∨ fσ̆(v)) holds, then u and v are said to be mutually
λ-strong adjacent.

Remark 3. With regards to the definition, if λ = 1
2 (i.e., 50%), for instance, then u is said to be 1

2 strong
adjacent (or 50% strong adjacent) to v.

Definition 13. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let u, v be two vertices in G. Let ζ ∈ [0, 1]. If both

tµ̆ (u, v) ≥ ζ(tσ̆(v)) and fµ̆(u, v) ≤ (1− ζ) + ζ( fσ̆(v))

holds, then (u, v) is said to be ζ-strong incident towards v.

Remark 4. With this definition, whenever (u, v) is ζ-strong incident towards v, u is also ζ-strong adjacent to v,
because of tσ̆(v) ≥ tσ̆(u) ∧ tσ̆(v) and fσ̆(v) ≤ fσ̆(u) ∨ fσ̆(v). The need for these definitions will be illustrated
in the examples in the subsequent sections.

Definition 14 [22]. Let G = 〈V, σ̆, µ̆〉 be a vague graph. G is said to be complete if tµ̆(x, y) = tσ̆(x) ∧ tσ̆(y)
and fµ̆(x, y) = fσ̆(x) ∨ fσ̆(y) for all x, y ∈ V.

Remark 5. When G is complete, it is ordinary and with all pairs of vertices mutually 100% strong adjacent to
each other.
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Definition 15 [22]. A vague graph is said to be Eulerian if all of the edges in the graph are strongly connected
and have a cycle from any vertex as the origin and terminal.

3. Vertex and Edge Coloring on Simple Vague Graphs

In the previous section, we discussed the concept of level sets for identifying the vertex coloring
on vague graphs. In this section, we consider the color classes to analyze coloring on vertices in vague
graphs. The concept of coloring on vague graphs using the definition of color class depends only on
the truth membership function, which is the lower bound of the vague set. We do not consider the
lower bound of the vague set, which carries the negation of false membership values. The following
definitions are only for the case of the truth membership values of the vague graphs.

Definition 16. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let k ∈ N. Let Cλ,k = {Υi ∈ U(V) : 1 ≤ i ≤ k}
for which

(i) U1≤i≤kΥi = {(x, [tσ̆(x), 1− fσ̆(x)]), x ∈ V};
(i.e., V1≤i≤k(tΥ i(x)) = tσ̆(x) and ∧1≤i≤k( fΥ i(x)) = fσ̆(x) for all x ∈ V)
(ii) Υi ∩ Υj = ∅
(i.e., tΥ i(x) ∧ tΥ j(x) = 0 and fΥ i(x) ∨ fΥ j(x) = 1 for all x ∈ V), for all i 6= j;
(iii) for each pair of mutually λ-strong adjacent u, v ∈ V, we have the following:

tΥ i(u) ∧ tΥ i(v) = 0 and fΥ i(u) ∨ fΥ i(v) = 1 f or alli.

Then, Cλ,k is said to be a λ-strong k vague vertex coloring scheme (abbr. [λ, k]U-VCS) of G.

Definition 17. Let G = 〈V, σ̆, µ̆〉 be a vague graph. The least value of k ∈ N, for which a λ-strong k-vague
vertex coloring of G exist, is called the λ-strong vague vertex chromatic number of G, and shall be denoted by
X [λ]
U (G). Moreover, a Cλ,k0 where k0 = X [λ]

U (G) is said to be a λ-strong minimal-vague vertex coloring scheme
(abbr. [λ, min]U-VCS) of G.

Definition 18. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let Cλ,k = {Υi ∈ U(V) : 1 ≤ i ≤ k} be a [λ, k]U-VCS of
G. Then,

(a) vi(Cλ,k) = ∑x∈V(tΥ i(x)) is said to be the minimum amount of Υiby Cλ,k on G;
(b) V(Cλ,k) = V1≤i≤kvi(Cλ,k) is said to be the lower chromatic weight of Cλ,k;
(c) wi(Cλ,k) = ∑x∈V(1− fΥ i(x)) is said to be the maximum amount of Υiby Cλ,k on G;
(d) W(Cλ,k) = V1≤i≤kwi(Cλ,k) is said to be the upper chromatic weight of Cλ,k.

Definition 19. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let h ∈ N. Let Dζ,h = {Φi ∈ U(V ×V) : 1 ≤ i ≤ h}
for which

(i) U1≤i≤hΦi =
{(

(x, y),
[
tµ̆(x, y), 1− fµ̆(x, y)

])
, (x, y) ∈ V ×V

}
;

(i.e., V1≤i≤h(tΦ i(x, y)) = tµ̆(x, y) and ∧1≤i≤h ( fΦ i(x, y)) = fµ̆(x, y))
for all (x, y) ∈ V ×V)
(ii) Φi ∩Φj = ∅
(i.e., tΦ i(x, y) ∧ tΦ j(x, y) = 0 and fΦ i(x, y) ∨ fΦ j(x, y) = 1 for all (x, y) ∈ V ×V),
for all i 6= j;
(iii) for each u ∈ V, and for each (v, u) and (w, u), both ζ-strong incident towards u are as follows:

tΦ i(v, u) ∧ tΦ i(w, u) = 0 and fΦ i(v, u) ∨ fΦ i(w, u) = 1 f or all i;

(iv) for each u, v ∈ V: tΦ i(v, u) = tΦ i(u, v) and fΦ i(v, u) = fΦ i(u, v) for all i.
Then, Dζ,h is said to be a ζ-strongh-vague edge coloring scheme (abbr. [ζ, h]U-ECS) of G.
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Definition 20. Let G = 〈V, σ̆, µ̆〉 be a vague graph. The least value of h ∈ N, for which a ζ-strongh-vague
edge coloring of G exist, is called the ζ-strong vague edge chromatic number of G, and shall be denoted by
E [ζ]U (G). Moreover, a Dζ,h0 where h0 = E [ζ]U (G) is said to be a ζ-strong minimal-vague edge coloring scheme
(abbr. [ζ, min]U-ECS) of G.

Definition 21. Let G = 〈V, σ̆, µ̆〉 be a vague graph. Let Dζ,h = {Φi ∈ U(V ×V) : 1 ≤ i ≤ h} be a
[ζ, h]U-ECS of G. Then, we have the following:

(a) vi
(

Dζ,h
)
= ∑(x,y)∈V×V(tΦ i(x, y)) is said to be the minimum amount of Φi by Dζ,h on G;

(b) V
(

Dζ,h
)
= V1≤i≤hvi

(
Dζ,h

)
is said to be the lower chromatic weight of Dζ,h;

(c) wi
(

Dζ,h
)
= ∑(x,y)∈V×V(1− fΦ i(x, y)) is said to be the maximum amount of Φi by Dζ,h on G;

(d) W
(

Dζ,h
)
= V1≤i≤hwi

(
Dζ,h

)
is said to be the upper chromatic weight of Dζ,h.

4. Applications

4.1. Formation

Now, the formation of a vague graph in an example related to traffic flow and management in a
fictitious town is given.

4.1.1. The Scenario

A region consists of five towns (not junctions), p, q, r, s, t, where most of the people live and/or
work in. The towns are connected by roads, as shown in Figure 1.

In particular, r is the capital of the region, and there are many companies in r providing delivery
and GrabCar services to the other four towns.

The amount of traffic entering or leaving the region is deemed not significant, because most of
the population who live in the region also work somewhere within it (can be in the same town or
otherwise), and there is nothing in the region thatattracts tourists elsewhere. As a result, the total
traffic amount in the region is assumed to be constant forall days of a year.

The amount of traffic on both sides of a given road are quite close. This is because if a person
leaves his/her house to go to work or go shopping on a day, he/she will most likely return to his/her
house following the same familiar route within the same day, thus contributing to the traffic on both
sides of the road.

Moreover, by observing all of the days (12:00 a.m. to 11:59 p.m. interval) within a 500-day period,
it has been concluded by the regional government and all the companies that the following is true:

• 25% to 40% of the total traffic will drive within or park somewhere in p;
• 15% to 20% of the total traffic will drive within or park somewhere in q;
• 20% to 50% of the total traffic will drive within or park somewhere in r;
• 8% to 20% of the total traffic will drive within or park somewhere in s;
• 12% to 30% of the total traffic will drive within or park somewhere in t.

Hence let (a, b) represent the act of “enteringb through the road connecting a and b” (not to be
confused with “leavinga”, as it takes time for the driver to reach b.

Note that the deduced value of “the amount of traffic passing through any side of a road never
surpass the value at any of its ends . . . (S1)”, this is because the amount of traffic thatstays on a road for
the entire day is deemed insignificant, as there are no people that live/work by those roads. Hence, if a
car does (a, b) in a given day, then it must have driven within or parked somewhere in a sometimes
earlier within the same day and will soon arrive at b. On the other hand, a car may park ina town for
the entire day (because he/she stays and/or works there) without entering any roads to another town.
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Moreover, a car can possibly go through more than one road or even pass through both sides of
the road within a day. As there are many delivery and GrabCar services from r to the other four towns,
most of the traffic doing

{(r, p ), (p, r), (r, q), (q, r), (r, s), (s, r), (r, t), (t, r)}

could be contributed by the same group of cars. As a result, if all of the maximum percentage values
shown in Table 1 are added together, it will surpass 100%, as some of the cars will have been counted
more than once.

Table 1. Percentage of the total traffic doing (a, b).

a
b p q r s t

p 0%, because no
such road. 5–8% 18–35% 5–12% 0%, because no

such road.

q 2–5% 0%, because no
such road. 13–19% 0%, because no

such road. 10–15%

r 15–38% 14–18% 0%, because no
such road. 7–18% 9–25%

s 6–10% 0%, because no
such road. 5–15% 0%, because no

such road. 2–4%

t 0%, because no
such road. 8–13% 10–20% 3–5% 0%, because no

such road.

4.1.2. The Corresponding Solution

We now define the vague graph corresponding to the situation described above as follows:
Let G0 = V0, σ̆0, µ̆0, where
(a) V0 = {p, q, r, s, t};
(b) tσ̆0 , fσ̆0 : V → [0, 1] with
tσ̆0(p) = 0.25, tσ̆0(q) = 0.15, tσ̆0(r) = 0.20, tσ̆0(s) = 0.08, tσ̆0(t) = 0.12,
fσ̆0(p) = 0.60, fσ̆0(q) = 0.80, fσ̆0(r) = 0.50, fσ̆0(s) = 0.80, fσ̆0(t) = 0.70;



Symmetry 2018, 10, 373 8 of 18

(c) tµ̆0 , fµ̆0 : V ×V → [0, 1] .
Also note that,tσ̆0(x) + fσ̆0(x) ≤ 1, tµ̆0(x, y) + fµ̆0(x, y) ≤ 1, tµ̆0(x, y) ≤ tσ̆0(x) ∧ tσ̆0(y) and

fµ̆0(x, y) ≥ fσ̆0(x) ∨ fσ̆0(y) are all true for all x, y ∈ V, because of (S1). G0 = V0, σ̆0, µ̆0 is thus a
vague graph.

4.2. Edge Coloring

Here, an example for the selection of advertisement spots is shown.

4.2.1. The Scenario

The regional government is concerned about the traffic entering a town through the roads, in the
sense that if left unregulated, it can cause traffic jam within the town. As a result, traffic lights are to be
built at the end of each road regulating the traffic entering a town, as shown in Figure 2. Note that
the traffic lights only control the traffic entering a town, and no restriction is imposed by those traffic
lights on those leaving a town, or driving along a road.

For any two roads with sufficiently high traffic entering a town, the traffic lights should be
scheduled to allow for traffic from one road to enter at a time. Moreover, the traffic capacity of the
town itself must be taken into account as well (i.e., larger town can accommodate more traffic).

The regional government understands that the amount of traffic on both sides of a given road is
quite close. Thus, the traffic lights at both sides of a road will be operated simultaneously to provide
an equal traffic flow rate on both sides of the road.

The regional government is taking very serious action to prevent the previous congested traffic
from getting more worse; hence the volume of traffic entering a town will be considered significant
enough, “even if it only reaches a seemingly low percentage . . . (S2)”of the traffic amount within
that town.
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On top of all these, the regional government is concerned about a very serious environmental
issue—if too much traffic is entering a town at any instant, the atmosphere will not be capable of
dispersing the increasing smog from the exhausts, causing air pollution within the town or even the
entire region. The schedule of traffic lights are also intended to keep the total amount of traffic entering
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all of the towns below a threshold, which in turn must be set as low as possible without jeopardizing
the flow of traffic.

4.2.2. The Corresponding Solution

In this example, ζ (see Definition 12) is hereby set to be 1
5 , in light of (S2). We now have the following:

1
5

tσ̆0(p) = 0.05,
1
5

tσ̆0(q) = 0.03,
1
5

tσ̆0(r) = 0.04,
1
5

tσ̆0(s) = 0.016,
1
5

tσ̆.0(t) = 0.024 (1)

4
5 + 1

5 fσ̆0(p) = 0.92, 4
5 + 1

5 fσ̆0(q) = 0.96, 4
5 + 1

5 fσ̆0(r) = 0.90, 4
5 + 1

5 fσ̆0(s) = 0.96,
4
5 + 1

5 fσ̆.0(t) = 0.94
(2)

By applying Definition 13 onto all of the outcomes of Tables 2 and 3, Equations (1) and (2),
we arrive at the output given in Table 4.

Table 2. Value of tµ̆0 (a, b).

a
b p q r s t

p 0 0.05 0.18 0.05 0
q 0.02 0 0.13 0 0.10
r 0.15 0.14 0 0.07 0.09
s 0.06 0 0.05 0 0.02
t 0 0.08 0.10 0.03 0

Table 3. Value of fµ̆0 (a, b).

a
b p q r s t

p 1 0.92 0.65 0.88 1
q 0.95 1 0.81 1 0.85
r 0.62 0.82 1 0.82 0.75
s 0.90 1 0.85 1 0.96
t 1 0.87 0.80 0.95 1

Table 4. 1
5 strong incidence of (a, b) towards b.

a
b p q r s t

p False True True True False
q False False True False True
r True True False True True
s True False True False False
t False True True True False

From the third row of Table 4, it is clear that “at least (even if it can be done) four colors will be
needed . . . (S3)”. We now perform a combinatorial search to find all of the possible

[
1
5 , 4
]
U

-ECS of G0.

Firstly, as (p, r), (q, r), (s, r), (t, r) are all 1
5 strong incident towards r, the roads {p, r}, {q, r},

{s, r}, {t, r}must all be different colors. We shall fix the four colors to be red, greed, blue, and yellow,
respectively, as shown in Figure 3.
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Figure 3. The first four roads painted.

Note that (p, s) and (r, s) are both 1
5 strong incident towards s. Furthermore, (s, p) and (r, p) are

both 1
5 strong incident towards s. The roads {p, r}, {s, r}, {p, s}must all be different colors, this gives

rise to two ways of coloring the road {p, s}, yellow or green (Figure 4).

Symmetry 2018, 10, x 10 of 18 

 

Firstly, as (𝑝𝑝, 𝑓𝑓), (𝑞𝑞, 𝑓𝑓), (𝑠𝑠, 𝑓𝑓), (𝑡𝑡, 𝑓𝑓) are all 1
5
 strong incident towards 𝑓𝑓, the roads {𝑝𝑝, 𝑓𝑓}, {𝑞𝑞, 𝑓𝑓}, 

{𝑠𝑠, 𝑓𝑓}, {𝑡𝑡, 𝑓𝑓} must all be different colors. We shall fix the four colors to be red, greed, blue, and 
yellow, respectively, as shown in Figure 3. 

 
Figure 3. The first four roads painted. 

Note that (𝑝𝑝, 𝑠𝑠)  and  (𝑓𝑓, 𝑠𝑠)  are both 1
5
 strong incident towards 𝑠𝑠 . Furthermore, (𝑠𝑠,𝑝𝑝)  and 

(𝑓𝑓,𝑝𝑝) are both 1
5
 strong incident towards 𝑠𝑠. The roads {𝑝𝑝, 𝑓𝑓}, {𝑠𝑠, 𝑓𝑓}, {𝑝𝑝, 𝑠𝑠} must all be different 

colors, this gives rise to two ways of coloring the road {𝑝𝑝, 𝑠𝑠}, yellow or green (Figure 4). 

 
Figure 4. Two ways to paint {𝑝𝑝, 𝑠𝑠}. 

However, (𝑞𝑞, 𝑡𝑡)  and (𝑓𝑓, 𝑡𝑡)  are both 1
5

 strong incident towards 𝑡𝑡 . Furthermore, (𝑓𝑓, 𝑞𝑞)  and 

(𝑡𝑡, 𝑞𝑞) are both 1
5
 strong incident towards 𝑞𝑞. As a result, the roads {𝑞𝑞, 𝑓𝑓}, {𝑡𝑡, 𝑓𝑓}, {𝑞𝑞, 𝑡𝑡} must all be 

different colors as well, and this gives rise to two ways of coloring the road {𝑞𝑞, 𝑡𝑡}, red or blue. We 
now have four possible combinations thus far, as shown in Figure 5. 

 
Figure 5. Two ways to paint {𝑞𝑞, 𝑡𝑡}, which give rise to four ways to paint the first six roads. 

Note that (𝑡𝑡, 𝑠𝑠) is 1
5
 strong incident towards 𝑠𝑠, but (𝑠𝑠, 𝑡𝑡) is not 1

5
 strong incident towards 𝑡𝑡. 

Likewise, (𝑝𝑝, 𝑞𝑞) is 1
5
 strong incident towards 𝑞𝑞, but (𝑞𝑞,𝑝𝑝) is not 1

5
 strong incident towards 𝑝𝑝. As a 

result, road {𝑝𝑝, 𝑞𝑞} must be different color from both {𝑓𝑓, 𝑞𝑞} and {𝑡𝑡, 𝑞𝑞}, but it may share the same 
color as {𝑝𝑝, 𝑓𝑓} or {𝑝𝑝, 𝑠𝑠}. Likewise, road {𝑠𝑠, 𝑡𝑡} must be different colors from both {𝑓𝑓, 𝑠𝑠} and {𝑝𝑝, 𝑠𝑠}, 

Figure 4. Two ways to paint {p, s}.

However, (q, t) and (r, t) are both 1
5 strong incident towards t. Furthermore, (r, q) and (t, q) are

both 1
5 strong incident towards q. As a result, the roads {q, r}, {t, r}, {q, t}must all be different colors

as well, and this gives rise to two ways of coloring the road {q, t}, red or blue. We now have four
possible combinations thus far, as shown in Figure 5.
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Figure 5. Two ways to paint {q, t}, which give rise to four ways to paint the first six roads.

Note that (t, s) is 1
5 strong incident towards s, but (s, t) is not 1

5 strong incident towards t.
Likewise, (p, q) is 1

5 strong incident towards q, but (q, p) is not 1
5 strong incident towards p. As a result,

road {p, q}must be different color from both {r, q} and {t, q}, but it may share the same color as {p, r}
or {p, s}. Likewise, road {s, t} must be different colors from both {r, s} and {p, s}, but it may share
the same color as {r, t} or {t, q}. As a result, there will always be two ways to paint {p, q}, and there
will also be two ways to paint {s, t}.
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Moreover, {p, q} and {s, t} are not two neighbouring roads, thus {p, q} can have the same color
as {s, t} (i.e., no restriction). The colors that can be used to do so are shown in Figure 6.
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Table 5. Value of 1− fµ̆0 (a, b).

a
b p q r s t

p 0 0.08 0.35 0.12 0
q 0.05 0 0.19 0 0.15
r 0.38 0.18 0 0.18 0.25
s 0.10 0 0.15 0 0.04
t 0 0.13 0.20 0.05 0

The maximum amount of Φi ∈{red, yellow, green, blue} by D 1
5 ,4 ∈{a,b,c, . . . ,p} on G0, and thus

the upper chromatic weight of D 1
5 ,4 ∈{a,b,c, . . . ,p}, iscalculated as in Table 6, in accordance with

Definition 21.

Table 6. The maximum amount of the four colors in the sixteen
[

1
5 , min

]
U

-ECS, and the upper

chromatic weight of the sixteen
[

1
5 , min

]
U

-ECS.

Red Yellow Green Blue Upper Chromatic Weight

A 0.82 0.80 0.37 0.61 0.82
B 0.82 0.58 0.59 0.61 0.82
C 0.95 0.67 0.37 0.61 0.95
D 0.95 0.45 0.59 0.61 0.95
E 1.10 0.80 0.37 0.33 1.10
F 1.10 0.58 0.59 0.33 1.10
G 1.10 0.67 0.37 0.46 1.10
H 1.10 0.45 0.59 0.46 1.10
I 0.73 0.80 0.46 0.61 0.80
J 0.73 0.67 0.59 0.61 0.73
K 0.86 0.67 0.46 0.61 0.86
L 0.86 0.54 0.59 0.61 0.86
M 1.01 0.80 0.46 0.33 1.01
N 1.01 0.67 0.59 0.33 1.01
O 1.01 0.67 0.46 0.46 1.01
P 1.01 0.54 0.59 0.46 1.01

As calculated, j is thus the
[

1
5 , min

]
U

-ECS of G0 with the lowest upper chromatic weight.

4.2.3. A Practical Interpretation of the Results

Theoretically, the regional government can choose j, and by setting the traffic lights in each colored
road taking turns to show green in 5 min. For example,

From 8:00:00 to 8:04:59 traffic lights in blue colored roads show green, others remain red.
From 8:05:00 to 8:09:59 traffic lights in green colored roads show green, others remain red.
From 8:10:00 to 8:14:59 traffic lights in red colored roads show green, others remain red.
From 8:15:00 to 8:19:59 traffic lights in yellow colored roads show green, others remain red.
The process then repeats for all of the subsequent intervals of 20 min. As mentioned, the traffic

lights only control the traffic entering a town, and no restriction is imposed by those traffic lights on
those leaving a town, or driving a long road.

4.3. Vertex Coloring

4.3.1. The Scenario

There is now another company that wants to advertise its product to the entire region. Because of
budget constraint, the company can only afford a single kind of advertisement within a town (Figure 8).
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The company hopes that almost all of the people living in the entire region are able to see the
advertisements, moreover, making more types of advertisement will lead to more job opportunities,
particularly for the marketing and graphic designer team (i.e., cannot be too many types of
advertisement). At the same time, the company still needs to advertise as many products as practically
possible (i.e., cannot be too few types of advertisement) to generate the most venue. Thus, the company
is looking at traffic pattern; if using two different advertisements on two towns, then all of the
transports going between the two towns will still see both of them.

The company therefore decide to advertise two different kind of products in two different
towns “only if a very substantial amount of mutual traffic flow . . . (S4)” exist between them.
Moreover, the company must be sure that at least one of the advertisement can be seen by most,
if not all, the people in the region.
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4.3.2. The Corresponding Solution

In this example, λ (see Definition 12) is hereby set to be 3
4 , in light of (S4).

3
4

tσ̆0(p) = 0.1875,
3
4

tσ̆0(q) = 0.1125,
3
4

tσ̆0(r) = 0.15,
3
4

tσ̆0(s) = 0.06,
3
4

tσ̆.0(t) = 0.09 (3)

1
4 + 3

4 fσ̆0(p) = 0.70, 1
4 + 3

4 fσ̆0(q) = 0.85, 1
4 + 3

4 fσ̆0(r) = 0.625, 1
4 + 3

4 fσ̆0(s) = 0.85,
1
4 + 3

4 fσ̆.0(t) = 0.775
(4)

We then proceed with the computation of tµ̆0(a, b) ∧ tµ̆0(b, a), fµ̆0(a, b) ∨ fµ̆0(b, a),
3
4
(
tσ̆0(a) ∧ tσ̆0(b)

)
, and 1

4 + 3
4
(

fσ̆0(a) ∨ fσ̆0(b)
)
.
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By applying Definition 12 to all of the outcomes of Tables 7–10, we arrive at the output, as shown
in Table 11.

Table 7. Values of tµ̆0 (a, b) ∧ tµ̆0 (b, a).

a
b p q r s t

p 0 0.02 0.15 0.05 0
q 0.02 0 0.13 0 0.08
r 0.15 0.13 0 0.05 0.09
s 0.05 0 0.05 0 0.02
t 0 0.08 0.09 0.02 0

Table 8. Values of fµ̆0 (a, b) ∨ fµ̆0 (b, a).

a
b p q r s t

p 1 0.95 0.65 0.90 1
q 0.95 1 0.82 1 0.87
r 0.65 0.82 1 0.85 0.80
s 0.90 1 0.85 1 0.96
t 1 0.87 0.80 0.96 1

Table 9. Values of 3
4 (tσ̆0 (a) ∧ tσ̆0 (b)).

a
b p q r s t

p 0.1875 0.1125 0.15 0.06 0.09
q 0.1125 0.1125 0.1125 0.06 0.09
r 0.15 0.1125 0.15 0.06 0.09
s 0.06 0.06 0.06 0.06 0.06
t 0.09 0.09 0.09 0.06 0.09

Table 10. Values of 1
4 + 3

4 ( fσ̆0 (a) ∨ fσ̆0 (b)) .

a
b p q r s t

p 0.7 0.85 0.7 0.85 0.775
q 0.85 0.85 0.85 0.85 0.85
r 0.7 0.85 0.635 0.85 0.775
s 0.85 0.85 0.85 0.85 0.85
t 0.775 0.85 0.775 0.85 0.775

Table 11. Mutual 3
4 -strong adjacency of a and b.

a
b p q r s t

p False False True False False
q False False True False False
r True True False False False
s False False False False False
t False False False False False

Thus, it is found that the (r, q), (q, r), (r, p), (p, r) have a very high flow of traffic.
Indeed, compared to p and q, the company should put out a different kind of advertisement in
r. Hence, “at least two advertisements . . . (S5)” should be made.
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We shall now search for all of the
[ 3

4 , 2
]
U

-VCS of G0.We shall use the color red and green.
Firstly, we shall fix r red and p, q to be green. As there are no restrictions on the color of s and t,

there are thus four ways of painting the vertices. As a result, there are altogether four
[ 3

4 , 2
]
U

-VCS of
G0, as illustrated in Figure 9.
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4.3.3. Practical Interpretation of the Results

Thus, with the very high and mutual traffic flow between p and q with r, many people who
live/work at r will still notice the green advertisement “GREAT SALE 70% DISCOUNT” as they drive
to p or q.
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Thus, even in the case of zero traffic between r and any of the other four towns within a given day,
50–80% of the drivers will still notice the green advertisement, the remaining 20–50% of the drivers
will still see the red advertisement “BEST SMARTPHONE FOR ONLY $xxx”. This is a worst-case
scenario, and such a scenario is extremely unlikely, as 0% is out of the range of the values in Table 1,
which is the result of an observation from 500 consecutive days, not to mention the abundance of the
delivery and GrabCar service from r.

Therefore, more profit can be expected than using only one advertisement for all of the towns,
as some people get to see two different advertisements instead of one, increasing their chances of
buying the company’s products.

In this paper, we have used the concept of vague graphs to represent real-life problems,
and we also introduce some novel definitions of vertex and edge coloring for simple vague graphs.
Those concepts are used to solve traffic flow management and the selection of advertisement spots that
will optimize the visibility of the advertisements. The major strength of the paper is that the proposed
vertex and edge coloring model of vague graph, while being practically simple, has the flexibility to
manage the uncertainty of real-life problems and effectively solve traffic flow management and the
selection of advertisement spots problems. The effectiveness of our proposed model was described
by working out an illustrating application. However, in the future, some theorems and corollaries
interpreting the significance of edge coloring could be written, and we also try to apply our proposed
idea to solve other real life problems [27–40].

5. Conclusions

This paper introduced some novel definitions of vertex and edge coloring for simple vague graphs.
The concepts that were introduced include the strong vertex chromatic number, and the λ-strong
and λ-strong minimal vague vertex coloring scheme, as well as the strong edge chromatic number,
and λ-strong and λ-strong minimal edge coloring scheme. The vertex membership values of the vague
graphs were used together with the different coloring methods, based on the membership values.
The applicability and practical aspects of all of the concepts and definitions introduced here were
demonstrated using two scenarios related to traffic flow and advertising. The edge coloring for vague
graphs were used to model traffic light positioning and scheduling to optimize the traffic flow in a
town setting, whereas the vertex coloring were used to model a problem involving the selection of the
best place for a company to place its advertisement. It was clearly demonstrated that our proposed
methods of vertex and edge coloring for vague graphs are able to model these commonly encountered
daily problems in an efficient manner. It was clearly demonstrated that our proposed methods of vertex
and edge coloring for vague graphs are able to model these commonly encountered daily problems in
an efficient manner.
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