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Abstract: Decaying Dark Energy models modify the background evolution of the most
common observables, such as the Hubble function, the luminosity distance and the Cosmic
Microwave Background temperature–redshift scaling relation. We use the most recent
observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data,
along with H(z) and Cosmic Microwave Background temperature versus z data and the reduced
Cosmic Microwave Background parameters, to improve the previous constraints on these models.
We perform a Monte Carlo Markov Chain analysis to constrain the parameter space, on the basis of
two distinct methods. In view of the first method, the Hubble constant and the matter density are left
to vary freely. In this case, our results are compatible with previous analyses associated with decaying
Dark Energy models, as well as with the most recent description of the cosmological background. In
view of the second method, we set the Hubble constant and the matter density to their best fit values
obtained by the Planck satellite, reducing the parameter space to two dimensions, and improving the
existent constraints on the model’s parameters. Our results suggest that the accelerated expansion
of the Universe is well described by the cosmological constant, and we argue that forthcoming
observations will play a determinant role to constrain/rule out decaying Dark Energy.

Keywords: Dark Energy; statistical analysis; Baryon Acoustic Oscillation (BAO); Supernovae;
cosmological model; Hubble constant; Cosmic Microwave Background (CMB) temperature

1. Introduction

In the last decades, several observations have pointed out that the Universe is in an ongoing period
of accelerated expansion that is driven by the presence of an exotic fluid with negative pressure [1–12].
Its simplest form is a cosmological constant Λ, having an equation of state w = −1. More complicated
prescriptions lead to the so-called Dark Energy (DE). Although several models have been proposed
to explain DE [13–27], the observations have only determined that it accounts for ∼ 68% of the total
energy-density budget of the Universe, while its fundamental nature is still unknown (see, for instance,
the reviews [28,29]). In addition, we should mention that the accelerated expansion of the Universe
could be explained by several modifications of the gravitational action. For example, introducing
higher order terms of the Ricci curvature in the Hilbert–Einstein Lagrangian, gives rise to an effective
matter stress–energy tensor which could drive the current accelerated expansion (see, for example,
the reviews [12,30–35]). Another alternative for reproducing the dark energy effects is by introducing
non-derivative terms interactions in the action, in addition to the Einstein–Hilbert action term, such that
it creates the effect of a massive graviton [36–38].

We are interested in exploring a specific decaying DE model, Λ(z) ∝ (1 + z)m, leading to
creation/annihilation of photons and Dark Matter (DM) particles. The model is based on the
theoretical framework developed in [39–43], while the thermodynamic features have been developed
in [44,45]. Since DE continuously decays into photons and/or DM particles along the cosmic evolution,
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the relation between the temperature of the Cosmic Microwave Background (CMB) radiation and the
redshift is modified.

In the framework of the standard cosmological model, the Universe expands adiabatically and, as
consequence of the entropy and photon number conservation, the temperature of the CMB radiation
scales linearly with redshift, ∝ (1 + z). Nevertheless, in those models where conservation laws are
violated, the creation or annihilation of photons can lead to distortions in the blackbody spectrum
of the CMB and, consequently, to deviations of the standard CMB temperature–redshift scaling
relation. Such deviations are usually explored with a phenomenological parameterization, such as
TCMB(z) = T0(1 + z)1−β proposed in [41], where β is a constant parameter (β = 0 means adiabatic
evolution), and T0 is the CMB temperature at z = 0, which has been strongly constrained with
COBE-FIRAS experiment, T0 = 2.7260± 0.0013 K [46]. The parameter β has been constrained using
two methodologies: (a) the fine structure lines corresponding to the transition energies of atoms or
molecules, present in quasar spectra, and excited by the CMB photon [47]; and (b) the multi-frequency
measurements of the Sunyaev-Zel’dovich (SZ) effect [48–50]. Recent results based on data released by
the Planck satellite and the South Pole Telescope (SPT) have led to sub-percent constraints on β which
results to be compatible with zero at 1σ level (more details can be found in [11,51–56]).

In this paper, we start with the theoretical results obtained in [44,45]. Such a model has been
constrained using luminosity distance measurements from Supernovae Type Ia (SNIa), differential
age data, Baryonic Acoustic Oscillation (BAO), the CMB temperature–redshift relation, and the CMB
shift parameter. Since the latter depends on the redshift of the last surface scattering, zCMB ∼ 1000,
it represents a very high redshift probe. On the contrary, other datasets were used to probe the Universe
at low redshift, z . 3.0. We aim to improve those constraints performing two different analysis: first,
we constrain the whole parameter space to study the possibility of the model to alleviate the tension in
the Hubble constant (see Section 5.4 in [10] for the latest results on the subject); and, second, we adopt
the Planck cosmology to improve the constraint on the remaining parameters. Thus, we retain the SNIa,
and use the most recent measurements the differential age, BAO, and the CMB temperature–redshift
data. In addition, we use luminosity distances data of Gamma Ray Burst (GRB), which allow us to
extend the redshift range till z ∼ 8. Finally, we also use the reduced (compressed) set of parameters
from CMB constraints [10].

The paper is organized as follows. In Section 2, we summarize the theoretical framework starting
from the general Friedman–Robertson–Walker (FRW) metric, and point out the modification to the
cosmological background arising from the violation of the conservation laws. In Section 3, we present
the datasets used in the analysis, and the methodology implemented to explore the parameter space.
The results are shown and discussed in Section 4 and, finally, in Section 5, we give our conclusions.

2. Theoretical Framework

The starting point is the well-known FRW metric

ds2 = c2dt2 − a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)

where a(t) is the scale factor and k is the curvature of the space time [57]. In General Relativity (GR),
one obtains the following Friedman equations:

8πG(ρm,tot + ρx) + Λ0c2 = 3
(

ȧ
a

)2

+ 3
kc2

a2 , (2)

8πG
c2 (pm,tot + px)−Λ0c2 = −2

ä
a
− ȧ2

a2 −
kc2

a2 , (3)
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where the total pressure is pm,tot = pγ, the total density is ρm,tot = ρm + ργ, and ρx and px are the
density and pressure of DE, respectively. Following [44,45], we set both the “bare” cosmological
constant Λ0 and the curvature k equal to 0.

In the standard cosmology, the Bianchi identities hold and the stress–energy momentum Tµν is
locally conserved

∇µTµν = 0 . (4)

Adopting a perfect fluid, the previous relation can recast as

ρ̇ + 3(ρ + p)H = 0 , (5)

where H ≡ ȧ/a is the definition of the Hubble parameter. Thus, each component is conserved.
Nevertheless, due to the photon/matter creation/annihilation happening in the case of decaying DE,
the conservation equation is recast in the following relations:

ρ̇m + 3ρm H = (1− ε) Cx , (6)

ρ̇γ + 3γργH = ε Cx , (7)

ρ̇x + 3(px + ρx)H = −Cx , (8)

where γ is a free parameter determining the equation of state of radiation pγ = (γ− 1)ργ and, Cx and ε

account for the decay of DE. Cx describe the physical mechanism leading to the production of particles
(see, for instance, the thermogravitational quantum creation theory [40] or the quintessence scalar
field cosmology [14]), and ε must be small enough in order to have the current density of radiation
matching the observational constraints. Assuming px = −ρx, and defining

ρx =
Λ(t)
8πG

, (9)

the parameter Cx can be obtained from the Equation (8)

Cx = − Λ̇(t)
8πG

. (10)

Following [44,45], one can adopt a power law model

Λ(t) = B
(

a(t)
a(0)

)−m

= B(1 + z)m , (11)

then, writing Equation (2) at the present epoch, one can obtain B = 3H2
0(1−Ωm,0), where Ωm,0 is

the matter density fraction at z = 0. It is very straightforward to verify that setting the power law
index m = 0 leads to the cosmological constant. From Equation (8), it is also possible to write down an
effective equation of state for the DE [45]:

we f f =
m
3
− 1 . (12)

Finally, using Equations (2) and (6)–(8), the Hubble parameter can be obtained [43–45]:

H(z) ' 8πG
3

(ρm + ρx) = H0

[
3(1−Ωm,0)

3−m
(1 + z)m +

(3Ωm,0 −m)

3−m
(1 + z)3

]1/2

. (13)



Symmetry 2018, 10, 372 4 of 15

Let us note that the standard Hubble parameter is recovered by setting m = 0 in Equation (13).
Having the Hubble parameter allows us to compute the luminosity distance as follows

DL =
(1 + z)c

H0

∫ z

0

dz′

E(z′)
, (14)

where we have defined E(z) ≡ H(z)/H0.
Finally, following the approach originally proposed in [39], combining the Equations (6)–(8), with

the equation for the number density conservation

ṅγ + 3nγH = ψγ , (15)

where ψγ is the photon source, and the Gibbs Law

nγTγdσγ = dργ −
ργ + pγ

nγ
dnγ , (16)

one obtains, through the use of thermodynamic identities, the following CMB temperature redshift
relation (see for more details [43,45]):

TCMB(z) = T0(1 + z)3(γ−1) ×
(
(m− 3Ωm,0) + m(1 + z)m−3(Ωm,0 − 1)

(m− 3)Ωm,0

)(γ−1)

. (17)

Again, setting m = 0 gives the standard relation TCMB(z) = T0(1 + z). Equations (13), (14) and
(17) can be easily implemented to test the decaying DE scenario. To show the effectiveness of these
observables in constraining the cosmological model, we depict in Figure 1 their scalings as a function
of the redshift for different value of the parameters γ and m, while we set H0 and Ω0 to their best
fit from Planck satellite. In Figure 1a–c, we fix γ = 4/3 (which represents its standard value) while
varying m in the range [−0.5, 0.5] to show its impact on the Hubble constant, the luminosity distance
and the CMB temperature. On the contrary, in Figure 1d, we set m = 0 (standard value) and vary
γ illustrating how much the TCMB-redshift relation is affected. The redshift ranges in the panels are
set to the ones of the datasets. Looking at the plots, it is clear that the data will be really sensible to
a variation of γ, while m will be more difficult to constrain.
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Figure 1. The figure shows as function of redshift the Hubble constant in panel (a), the luminosity
distance in panel (b), and the CMB temperature in panels (c) and (d). Colors and lines indicate the
different values assigned to the parameters m and γ to illustrate their impact on the observables.

3. Methodology and Data

We use measurements of H(z), luminosity distances from SNIa and GRBs, BAO, and the CMB
temperature–redshift relation. Then, we predict the theoretical counterparts using Equations (13), (14),
and (17), and fit each one to the corresponding dataset computing the likelihood −2 logL = χ2(p),
where p = [H0, Ωm,0, m, γ] are the parameters of the model. The parameter space is explored using a
Monte Carlo Markov Chain (MCMC) based on the Metropolis–Hastings [58,59] sampling algorithm
with an adaptive step size to guarantee an optimal acceptance rate between 20% and 50% [60,61],
while the convergence is ensured by the Gelman–Rubin criteria [62]. Once the convergence criteria
is satisfied, the different chains are merged to compute the marginalized likelihood L(p) = ΠkL(p),
where k indicates the different datasets, and to constrain the model’s parameters. The priors are
specified in Table 1.

Table 1. Parameter space explored by the MCMC algorithm.

Parameter Priors

H0 [50.0, 100.0]
Ωm,0 [0.0, 1.0]

m [−1, 1]
γ [1.0, 2.0]
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Finally, the expectation value (〈pi〉) of the 1D marginalized likelihood distribution and the
corresponding variance are computed as follows [63]

〈pi〉 =
∫

dNs pL(p)pi, (18)

σ2
i =

∫
dNs pL(p)(pi − 〈pi〉)2, (19)

where Ns is the dimension of the parameter space.
Finally, the joint likelihood of the independent observables is used to compare decaying DE model

with ΛCDM employing the Akaike Information Criteria (AIC) [64]:

AIC = −2 logLmax + 2Np , (20)

where Np is the number of parameters. A negative variation of the AIC indicator with respect to the
reference model, ∆(AIC) = AICdec.DE − AICΛCDM, would indicate the model performs better than
ΛCDM.

3.1. Supernovae Type Ia

We use a dataset of 557 Supernovae Type Ia (SNIa) in the redshift range z = [0, 1.4] extracted
from the UnionII catalogue ( more details can be found in [65]). The observable is the so-called
distance modulus µobs, which is the difference of the apparent and absolute magnitudes. Its theoretical
counterpart can be computed starting from the luminosity distance in Equation (14), and it is given by

µth(z) = 5 log10 D̂L(z) + µ0 , (21)

where µ0 = 42.38− 5 log10 h, with h ≡ H0/100, and D̂L(z) is given by

D̂L(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (22)

Then, we can define the χ2 function as

− 2 logLSN(p) = χ2
SN(p) =

557

∑
i=1

(
µth(zi, p)− µobs(zi)

σµ(zi)

)2

, (23)

where σµ(z) is the error on µobs(z). Let us note that the parameter µ0 encodes the dependence by
the Hubble constant. Whenever one is not interest in fitting H0, the marginalized χ2 function can be
defined as [66–69]:

χ̃2
SN(p) = Ã− B̃2

C̃
, (24)

where

Ã =
557

∑
i=1

(
µth(zi, p, µ0 = 0)− µobs(zi)

σµ(zi)

)2

, (25)

B̃ =
557

∑
i=1

µth(zi, p, µ0 = 0)− µobs(zi)

σ2
µ(zi)

, (26)

C̃ =
557

∑
i=1

1
σ2

µ(zi)
. (27)



Symmetry 2018, 10, 372 7 of 15

3.2. Differential Ages, H(z)

Following [70], we use 30 uncorrelated measurements of expansion rate, H(z), that have been
obtained using the differential age method [71–78]. Thus, we define the corresponding χ2 as

− 2 logLH(p) = χ2
H(p) =

30

∑
i=1

(
H(zi, p)− Hobs,(zi)

σH(zi)

)2

, (28)

where σH(z) is the error on Hobs(z). As stated in Section 3.1, the marginalized χ2 with respect to H0

can be also defined using Equation (24), where, for the H(z) dataset, we have

Ã =
30

∑
i=1

(
(H(zi, p, H0 = 1)− Hobs(zi)

σH(zi)

)2

, (29)

B̃ =
30

∑
i=1

H(zi, p, H0 = 1)− Hobs(zi)

σ2
H(zi)

, (30)

C̃ =
30

∑
i=1

1
σ2

H(zi)
. (31)

3.3. Baryonic Acoustic Oscillation

It is customary to define the BAO’s observable as the following ratio: Ξ̂ ≡ rd/DV(z), where rd is
the sound horizon at the drag epoch zd [79]:

rd =
∫ ∞

zd

cs(z)
H(z)

dz , (32)

and DV the spherically averaged distance measure [80]

DV(z) ≡
[
(1 + z)2d2

A(z)
cz

H(z)

]1/3
. (33)

Following [70], we use data from the 6dFGS [81], the SDSS DR7 [82], the BOSS DR11 [83–85],
which are reported in Table I of [70]. Such a dataset is uncorrelated, therefore the likelihood can be
straightforwardly computed as

− 2 logLBAO(p) = χ2
BAO(p) =

6

∑
i=1

(
Ξ̂(p, zi)− Ξobs(zi)

σΞ(zi)

)2

, (34)

where σΞ(z) is the error on Ξ(z).

3.4. Gamma Ray Burst

We use a dataset of 109 GRB given in [86] which have been already used in other cosmological
analysis (see for example [87]). The dataset was compiled using the Amati relation [88–90], and
it is formed by 50 GRBs at z < 1.4 and 59 GRBs spanning the range of redshift [0.1, 8.1]. As it is for
SNIa, the observable is the distance modulus, which in the case of GRBs is related to peak energy and
the bolometric fluence (for more details, see [86,87]). The theoretical counterpart is computed using
Equation (21), and the χ2 function is defined as follows

− 2 logLGRB(p) = χ2
GRB(p) =

109

∑
i=1

(
µth(zi, p)− µobs(zi)

σµ(zi)

)2

. (35)
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3.5. TCMB–Redshift Relation

The last dataset is represented by the measurements of the CMB temperature at different redshifts.
We use 12 data points obtained by using multi-frequency measurements of the Sunyaev–Zel’dovich
effect produced by 813 galaxy clusters stacked on the CMB maps of the Planck satellite [54]. To those
data, we add 10 high redshift measurements obtained through the study of quasar absorption line
spectra [47]. The full dataset includes 22 data points spanning the redshift range [0.0, 3.0], and they
are listed in Table I of [51]. Finally, we predict the theoretical counterpart using Equation (17), and we
compute the likelihood as

− 2 logLTCMB(p) = χ2
TCMB

(p) =
22

∑
i=1

(
TCMB,th(zi, p)− TCMB,obs(zi)

σTCMB(zi)

)2

. (36)

3.6. PlanckTT + LowP

The CMB power spectrum is the most powerful tools used to constrain cosmological parameters.
However, the calculation of the power spectrum is time consuming, and it is common to use the
so-called reduced parameters. It is possible to compress the whole information of the CMB power
spectrum into a set of four parameters [91,92]: the CMB shift parameter (R), the angular scale (lA) of
the sound horizon at the redshift of the last scattering surface (z∗), the baryon density, and the scalar
spectral index. Here, we rely only on R and lA which can be compute as follows:

R =
√

Ωm,0

∫ z∗

0

dz′

E(z′)
, (37)

lA =
πDA(z∗)

rs(z∗)
, (38)

where rs is the sound horizon at z∗. In the 2015 data release of Planck satellite, the observational values
of those parameters are: [R, lA] = [1.7488; 301.76]± [0.0074; 0.14] (for more details see Section 5.1.6 in
[93]). Thus, the likelihood can be straightforwardly computed as

− 2 logLCMB(p) = χ2
CMB(p) =

(
Robs − Rth(p)

σR

)2

+

(
lA,obs − lA,th(p)

σlA

)2

. (39)

4. Results and Discussions

Following the aforementioned methodology, we carried out two sets of analysis: (A) we fit the
whole parameter space composed by the Hubble constant H0, the matter density parameter Ωm,0, γ

and m; and (B) we set H0 = 67.37± 0.54 and Ωm,0 = 0.3147± 0.0074 which are the best fit values
of joint analysis of the CMB power spectrum and other probes [10], while m and γ stay free to vary.
All results are summarized in Table 2, and some comments are deserved.

In Analysis (A), we show that the best fit values of [H0, Ωm,0] are consistent with the most common
cosmological analysis at low redshift, and [m, γ] are compatible with the ones from [44,45] and their
standard values at 1σ meaning that DE is well described by a cosmological constant. Interestingly,
although our parameter space is larger than previous analysis, we get a comparable precision in m.
This fact expresses the constraining powerful of this dataset with respect to the one used in previous
analysis. The matter density is always compatible with current constraint from Planck 2018 results
[10] at ∼ 2σ. Nevertheless, there are two cases in which the central value of Ωm,0 gets closer to the
one from Planck at ∼ 1σ: (i) when using only H(z) and CMB temperature data; and (ii) when using
all datasets. In addition, the central value of the Hubble constant deserves some comments. When
we used only H(z) and TCMB datasets, we obtained a lower central value of H0 that is compatible at
1σ with Planck 2018 constraints and at 3σ with recent constraint from SNIa [94,95]. On the contrary,
when introducing luminosity distances measurements, the best fits values of H0 increases showing a
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tension with Planck 2018 results. The agreement of H0 from the expansion rate data is rather expected
since it has been found in other recent analysis [96–98].

Table 2. Maximum likelihood parameters and 1σ uncertainties from the MCMC algorithm and for the
following datasets.

Dataset [H0, Ωm,0] Free

H0 Ωm,0 m γ

H(z)+TCMB 66.9+2.56
−2.34 0.314+0.055

−0.045 0.07+0.16
−0.14 1.34± 0.02

SNIa+H(z)+TCMB 71.02+0.85
−0.91 0.26± 0.03 0.01± 0.11 1.34± 0.02

SNIa+GRB+H(z)+TCMB 71.46+0.84
−0.85 0.25± 0.03 0.03+0.10

−0.11 1.34± 0.02
SNIa+GRB+H(z)+BAO+TCMB 70.31+0.66

−0.62 0.30± 0.01 0.18± 0.06 1.36± 0.01
SNIa+GRB+H(z)+BAO+TCMB+CMB 69.8± 0.6 0.29± 0.01 0.01± 0.02 1.335± 0.005

[H0, Ωm,0] = [67.37, 0.315]

H(z)+TCMB 0.08± 0.07 1.34± 0.01
SNIa+H(z)+TCMB 0.05± 0.07 1.34± 0.01
SNIa+GRB+H(z)+TCMB 0.04+0.07

−0.08 1.34± 0.01
SNIa+GRB+H(z)+BAO+TCMB 0.05± 0.06 1.339± 0.009
SNIa+GRB+H(z)+BAO+TCMB+CMB 0.01± 0.02 1.332± 0.005

Interestingly, the central value of m in the analysis including all the background observables is
higher and it is compatible with zero only at 3σ. In such case, the power law index is m = 0.18± 0.06
which can be recast in term of the equation of state parameter using Equation (12) and obtaining
we f f = −0.94± 0.02, which is in tension with latest results from Planck satellite (w = −1.04± 0.1 [10]).
This fact demands a deeper analysis to be done with forthcoming datasets such as LSST, Euclid
and WFIRST which will explore the Universe until redshift z ∼ 6 providing high redshift SNIa
and BAO data, and growth factor data with unprecedented precision [99–102]. Finally, in the full
analysis including also the CMB constraints, we found a lower value of m which can be translated in
we f f = −0.996± 0.007, which is perfectly compatible with a cosmological constant. To compare the
decaying DE model with ΛCMD, we applied the AIC criteria obtaining ∆(AIC) = 1.53 which slightly
favors the standard cosmological model over the decaying DE one.

In the second analysis, H0 and Ωm,0 are fixed to the Planck 2018 best fit values, and the parameters
m and γ are fully in agreement with their expected values. Our best constraint of the power law index
is m = 0.01± 0.02 which means we f f = −0.996± 0.007 fully compatible with Planck 2018 results, and
with a cosmological constant at 1σ. Moreover, to directly compare our results with the ones in [44,45],
we carried out another analysis setting γ = 4/3 and leaving only m as free parameter. The constrained
values of m with 1σ error is: m = 0.004± 0.006, which represents a factor of ∼ 5 improvement in σm

over previous constraints.
Finally, in Figures 2 and 3, we show the 68% and 95% confidence levels of the whole and reduced

parameter space constrained with the full dataset. To avoid overcrowding, in Figure 2, we do not
overplot the contours from the several combinations of the datasets listed in Table 2.
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Figure 2. 2D marginalized contours of the model parameters [H0, Ω0, m, γ] obtained from the MCMC
analysis. The 68% (dark grey) and 95% (light grey) confidence levels are shown for each pair of
parameters. In each row, the marginalized likelihood distribution is also shown.

Figure 3. 2D marginalized 68% (solid line) and 95% (dashed line) contours of the model parameters
[m, γ] obtained from the MCMC analysis.

5. Conclusions

We have studied the decaying DE model introduced in [43–45]. In this model, photons and
DM particles can be created or disrupted violating the conservation laws and altering the CMB
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temperature–redshift scaling relation. The model has been studied using the latest dataset of SNIa,
GRB, BAO, H(z), TCMB(z) and PlanckTT + lowP data, which are described in Section 3.

First, we have explored the whole parameter space composed by the Hubble constant, the matter
density fraction, and the parameters m and γ introduced in [44]. In this configuration, when using all
the background observables, we obtain that the parameter m, which is the power law index of the DE
decay law, is compatible with a cosmological constant only at 3σ. Therefore, forthcoming dataset could
find a statistically relevant departure from standard cosmology, or alleviate this tension. Nevertheless,
it is worth noting that, by adding the CMB constraints, such a tension disappears. Second, we have
also studied a reduced parameter space composed by only m and γ, and setting the Hubble constant
and the matter density parameter to their best fit values obtained recently by Planck satellite [10]. In
this case, both parameters are always compatible at 1σ level with standard cosmology. Third, varying
only m as in [44,45], we have improved the previous constraints of a factor ∼ 5.

Finally, on the one side, we have demonstrated the improved constraining power of current
dataset with respect to previous analysis, while, on the other side, we expect that forthcoming higher
precision measurements of the CMB temperature at the location of high redshift galaxy clusters and
Quasars, high redshift SNIa, improved measurements of BAO and of luminosity distance of GRBs,
will be able to confirm or rule out decaying DE models [99–102].

Funding: This research received no external funding.

Acknowledgments: This article is based upon work from COST Action CA1511 Cosmology and Astrophysics
Network for Theoretical Advances and Training Actions (CANTATA), supported by COST (European Cooperation
in Science and Technology).

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BAO Baryon Acoustic Oscillation
DE Dark Energy
DM Dark Matter
FRW Friedman–Robertson–Walker
GR General Relativity
GRB Gamma Ray Burst
MCMC Monte Carlo Markov Chain
SNIa Supernovae Type Ia
SPT South Pole Telescope
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