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Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell.
We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin
map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of
a 600-cell by applying the Coxeter–Dynkin diagram of H4.
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1. Introduction

The classification of finite subgroups in SLn(C) derives attention from various research
areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE
singularity theory [1].

The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups
corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to
regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic
solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron),
but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups,
there are only three binary polyhedral groups (binary tetrahedral group 2T, binary octahedral group
2O, binary icosahedral group 2I) related to regular polyhedrons. Moreover, it is a well-known fact that
there is a correspondence between binary polyhedral groups and vertices of 4-polytopes as follows:

2T ↔ vertices of 24-cell,
2O ↔ vertices of dual compound of 24-cell,
2I ↔ vertices of 600-cell,

where the dual compound of 24-cell means by the compound polytopes obtained from 24-cell and its
dual polytope, which is also a 24-cell [2–5].

As the symmetries of polyhedrons are isometries, the related finite subgroups are also considered
as the subgroups of SU(2). As SU(2) = Sp(1) is a spin group of SO(3), we can regard 2T, 2O, and 2I
as subgroups of quaternions H. From this point of view, it is also well known that the vertices of 24 cell
correspond to roots of D4, and the set of vertices of the dual compound of 24-cell, which is the union of
a 24-cell and a dual 24-cell forms a roots of F4. The 600-cell is a complicated case of a reflection group
of H4-type [3,6].

The aim of this article is to provide explicit description of a binary icosahedron group 2I as a
600-cell. By applying spin covering map from Sp(1) to SO(3), we introduce a method to construct
the binary polyhedral groups in terms of quaternions from the symmetries of regular polyhedrons.
Then, by applying the theory of reflection groups along the Coxeter–Dynkin diagram, we show that
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the subgroup 2I in H is indeed the set of vertices of a 600-cell. We also discuss 2T related to 24-cell,
but, because the dual compound of a 24-cell is not regular, its relation to 2O will be discussed in
another article.

2. Binary Polyhedral Groups in Quaternions

Every finite subgroup of SL2(C) is conjugate to a finite subgroup of SU(2) so that the classification
of the finite subgroup of SL2(C) including binary polyhedral groups corresponds to the classification
of the finite subgroup of SU(2). As SU(2) ' Sp(1), we can identify the binary polyhedral groups as
certain subsets in quaternions H. In fact, Sp(1) is not only a unit sphere in H but also the spin group
Spin(3), which is a 2-covering map of SO(3). In this section, we explain how an element in SO(3) lifts
to quaternions in Sp(1).

The algebra of quaternions H is the four-dimensional vector space over R defined by

H := {a + bi + cj + dk | a, b, c, d ∈ R}

satisfying relations i2 = j2 = k2 = ijk = −1. The quaternionic conjugate of q = a + bi + cj + dk is
defined by

q̄ := a− bi− cj− dk

and the corresponding norm |q| is also defined by |q| :=
√

qq̄ =
√

a2 + b2 + c2 + d2. Along this
norm, quaternions satisfy |pg| = |p| |g|, which implies that it is one of the normed algebras whose
classification consists of real numbers R, complex numbers C, quaternions H, and octonions O.
A quaternion q is called real if q̄ = q and is called imaginary if q̄ = −q. According to these facts, we
can divide H into a real part and an imaginary part:

H ' R4 ' Re(H)⊕ Im(H) = R⊕R3.

It is well known that the set of unit sphere S3 = {q ∈ H | |q| = 1} in H is a Lie group Sp(1), which
is also isomorphic to SU(2) as follows:

Sp(1) ' SU(2) =

{(
a b
−b̄ ā

)∣∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}
,

q = a + bj ←→
(

a b
−b̄ ā

)
.

Below, we use the identification between R3 and Im(H). Along this, a vector v = (v1, v2, v3)

in R3 (resp. a quaternion q = a1i + a2 j + a3k in Im(H)) is corresponded to a quaternion
(v)# = v1i + v2 j + v3k in Im(H) (resp. a vector~q = (a1, a2, a3) in R3).

Now, we define a map Φ,which is given by an action of Sp(1) on Im(H) ∼= R3

Φ : Sp(1) → SO(3),
x 7→ Φ (x) := ρx : Im(H) → Im(H)

v 7→ xvx̄.
,

As a matter of fact, the map ρx must be defined as

ρx : R3 → R3

v 7→
−−−−→(
xv# x̄

)
so that ρx is in SO(3). However, we use a simpler definition instead. It is well known that Φ is a
2-covering map, which is also a group homomorphism.
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In the next section, we will consider the preimage of Φ to define the lifting of symmetry groups of
polyhedrons in R3, which are subgroups of SO(3). For this purpose, we consider ρx further in below.

We observe that the multiplication of two pure quaternions p, q in Im(H) can be written by the
cross product × and the standard inner product · on R3:

pq = −~p ·~q + (~p×~q)# .

After we denote x = x0 + x+ ( x0 ∈ Re(H), x+ ∈ Im(H) ), ρx(v) can be written as

ρx(v) = xvx̄ = (x0 + x+)v(x0 − x+)

=
(

x0v−~v · −→x+ +
(−→x+ ×~v

)#
)
(x0 − x+)

= (x2
0 − |
−→x+|2)v + 2

(−→x+ · −→v ) x+ + 2x0
(−→x+ ×~v

)# .

Here, since |x|2 = x2
0 + |
−→x+|2, we denote x = cos θ + sin θ x+

|x+ | where cos θ = x0 and sin θ = |−→x+|2

for some θ ∈ [0, π).
Now, to understand the meaning of ρx(v), we consider two cases for −→v case (1) −→v ⊥ −→x+ and

case (2) −→v //−→x+.

(1) (Case −→v ⊥ −→x+ ) Since −→v · −→x+ = 0, we have

ρx(v) = (x2
0 − |
−→x+|2)v + 2x0

(−→x+ ×~v
)#

= (x2
0 − |
−→x+|2)v + 2x0|−→x+|

( −→x+
|−→x+|

× −→v
)#

= cos 2θ v + sin 2θ

( −→x+
|−→x+|

× −→v
)#

.

(2) (Case −→v //−→x+ ) After we denote −→v = t −→x+ for some t ∈ R,

ρx(v) = (x2
0 − |
−→x+|2)tx+ + 2

(−→x+ · t −→x+) x+

=
(

t (x2
0 − |
−→x+|2) + 2

(−→x+ · t −→x+)) x+

= t (x2
0 + |
−→x+|2)x+ = tx+ = v.

By the two cases above, we conclude ρx(v) presents the rotation of vector −→v in R3 with respect to
the axis −→x+ by 2 cos−1 x0 ∈ [0, 2π).

By applying the above, we have the following lemma.

Lemma 1. For each element A in SO(3) presenting a rotation with respect to a unit vector ~a for angle
α ∈ [0, 2π), the preimage of Φ : Sp(1)→ SO(3) is given as

Φ−1 (A) =
{
±
(

cos
α

2
+ sin

α

2
(~a)#

)}
⊂ H.

Note if we choose unit vector −~a instead~a in the lemma, then the rotation performed for angle
−α. Therefore, the related lifting is given by cos

(
− α

2
)
+ sin

(
− α

2
)
(−~a)# = cos α

2 + sin α
2 (~a)#. Hence

Φ−1 (A) is well defined.
By applying Lemma 1, we can consider the preimage of any subset G in SO(3). We call the

preimage Φ−1 (G) the lift of G in Sp(1) ⊂ H. When G is one of the symmetry groups of regular
polyhedrons, the lift Φ−1 (G) is called binary polyhedral group. In particular, we consider binary
tetrahedral group 2T, binary octahedral group 2O, and binary icosahedral group 2I , which are lifts of
symmetry groups of tetrahedron, octahedron and icosahedron with order 24, 48, 120, respectively.
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2.1. Symmetry Groups of Regular Polyhedrons

A polyhedron considered here is convex and regular. According to convention, we denote a
regular polyhedron by {p, q}, which means that the polyhedron has only one type of face which is
a p-gon, and each vertex is contained in q faces. It is well known that there are only five regular
polyhedrons, which are also called Platonic solids. Up to duality, we consider three classes of regular
polyhedrons as follows:

Tetrahedron ↔ Tetrahedron(self-dual),
Octahedron ↔ Cube,
Icosahedron ↔ Dodecahedron.

As the special linear group SO(3) is generated by rotations on R3, we consider rotations of
R3 preserving a regular polyhedron to study the symmetry group of it. When the axis of the rotation
crosses a vertex (the barycenter of an edge, the barycenter or a face resp.), we call the rotation vertex
symmetry (edge symmetry, face symmetry resp.). For instance, the tetrahedron has two different types
of axes of rotations. One is the line passing through a vertex and the barycenter of the opposite face,
and the other is the line connecting barycenters of the edges at the opposite position. We also say that
a symmetry has order n if the order of the corresponding rotation is n. Note that the order of each edge
symmetry is 2. One can figure all the possible orders of each type of symmetry for regular polyhedrons,
as shown in Table 1.

Table 1. Order of symmetries.

Polyhedron Tetrahedron Octahedron Icosahedron

Point Symmetry 3 4, 2 5
Edge Symmetry 2 2 2
Face Symmetry 3 3 3

Construction of binary polyhedral groups

Now, we will introduce a construction which provides a way to find the elements of binary
polyhedral groups related to regular polyhedrons when the set of vertices of regular polyhedrons
are given.

Assume we have a regular polyhedron {p, q} whose barycenter is the origin of R3 and let {Pi} be
the set of vertices of the regular polyhedron:

(1) Find the barycenters of vertices, edges and faces (The barycenter of each vertex is itself).
(2) For each barycenter, derive all the related symmetries in SO(3) by identifying corresponding axis

of rotations and its order.
(3) For each symmetry obtained from step 2, we get related lifts in H by applying Lemma 1. It is

useful to observe that we obtain the axis of rotation and its order instead of related angle where
there can be more than one related angle.

(4) The union of lifts is a subset of binary polyhedral groups. In fact, its union with {±1} is the
binary polyhedral group by counting elements.

Note: From the above, it is clear that two regular polyhedrons which are dual to each other are
associated with the same binary polyhedral groups.

For example, let B be a barycenter of order 3. Then, there are two related angles
π

3
and

2π

3
.

Thus, the corresponding lift is{
±
(

cos
π

3
+ sin

π

3
B
|B|

)
,±
(

cos
2π

3
+ sin

2π

3
B
|B|

)}
.
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Here, we also observe that, if we begin with −B instead of B, the corresponding lifts are still
the same.

Binary tetrahedral group

We consider a tetrahedron consisting of vertices {P1, P2, P3, P4}.

s����












P1

s
HHHH
P4

s
J
J
J
J
J
J

P3

s
P2

Tetrahedron

(1) Since vertex symmetry has order 3, each vertex symmetry has two angles
π

3
and

2π

3
and the union

of lifts of vertex symmetries is

VT :=
⋃
i

{
±
(

cos
π

3
+ sin

π

3
Pi
|Pi|

)
, ±

(
cos

2π

3
+ sin

2π

3
Pi
|Pi|

)}
.

Thus, we have
|VT | = |vertices of a tetrahedron| × 4 = 16.

(2) As the edge symmetry has order 2, each edge symmetry has only one angle
π

2
so that the related

lift is ±
cos

π

2
+ sin

π

2

Pi + Pj

2∣∣∣∣Pi + Pj

2

∣∣∣∣



and the union is given as

ET :=
⋃

i 6=j

{
±
(

Pi + Pj∣∣Pi + Pj
∣∣
)}

.

Since P1 + P2 + P3 + P4 = 0, two barycenters
1
2
(P1 + P2) and

1
2
(P3 + P4) of edges have the same

lifts of edge symmetries. Similarly, the pairs of edges produce the same lifts of edge symmetries, and
we get

|ET | =
|edges of a tetrahedron|

2
× 2 = 6.

(3) For a barycenter of face consisting of {P1, P2, P3}, we have a relation

P1 + P2 + P3

3
= −P4

3

since P1 + P2 + P3 + P4 = 0. Thus, the related lift of face symmetry is the same as the lift of vertex lift
for a vertex P4. Similarly, each lift of face symmetry corresponds to the lift of vertex symmetry.

Finally, the union VT ∪ ET of lifts of symmetries of a tetrahedron is a subset binary tetrahedral
group 2T in Sp(1). Since

|VT ∪ ET ∪ {±1}| = 16 + 6 + 2 = 24 = |2T| ,
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the union VT ∪ ET ∪ {±1} is a binary tetrahedral group, namely

2T = VT ∪ ET ∪ {±1}.

If we choose vertices {P1, P2, P3, P4} of a tetrahedron as{
P1 =

i + j + k
2

, P2 =
i− j− k

2
, P3 =

−i + j− k
2

, P4 =
−i− j + k

2

}
,

the corresponding binary tetrahedral group is obtained as

2T̂ =:
{
±1, ±i, ±j, ±k,

1
2
(±1± i± j± k)

}
.

Remark: The subset 2T̂ is the unit integral quaternions which is also known as Hurwitz integral
quaternions. ([7,8])

Binary Octahedral Group

We consider an octahedron consisting of vertices {Pi i = 1, ..., 8} as below.

r
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�
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JJ
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�
�
�
��

A
A
AA

rP4

@
@
@
@
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r
P6
XXXXXXX

�
�
��

r
P2

Octahedron

(1) The possible orders of vertex symmetry are 2 and 4. The vertex symmetry with order 4 has two

angles
π

4
and

3π

4
and one with order 2 has one angle

π

2
. Thus, the union of lifts of vertex symmetries is

VO :=
⋃
i

{
±
(

cos
π

4
+ sin

π

4
Pi
|Pi|

)
, ±

(
cos

3π

4
+ sin

3π

4
Pi
|Pi|

)
, ±

(
cos

π

2
+ sin

π

2
Pi
|Pi|

)}
.

Since two antipodal vertices produce the same lifts of vertex symmetries, we obtain that

|VO| =
|vertices of an octahedron|

2
× 6 = 18.

(2) As the edge symmetry has order 2, each edge symmetry has only one angle
π

2
so that the union of

the related lift is

EO :=
⋃{±( Pi + Pj∣∣Pi + Pj

∣∣
)}

,

where the union is performed for all the pairs of Pi and Pj form an edge. For the barycenter of an edge

given by
1
2
(

Pi + Pj
)
, there is exactly one edge whose barycenter is antipodal to

1
2
(

Pi + Pj
)
. Moreover,

the pair of edges produce the same lifts of edge symmetries. Therefore, we get

|EO| =
|edges of an octahedron|

2
× 2 = 12.
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(3) For a barycenter of face given as
Pi + Pj + Pk

3
, the face symmetry has order 3 and it is related to

two angles
π

3
and

2π

3
. Thus, the lifts of a face symmetry is

±
cos

π

3
+ sin

π

3

Pi + Pj + Pk

3∣∣∣∣Pi + Pj + Pk

3

∣∣∣∣
 ,±

cos
2π

3
+ sin

2π

3

Pi + Pj + Pk

3∣∣∣∣Pi + Pj + Pk

3

∣∣∣∣



and the union of lifting of face symmetries is

FO :=
⋃{±(cos

π

3
+ sin

π

3
Pi + Pj + Pk

|Pi + Pj + Pk|

)
,±
(

cos
2π

3
+ sin

2π

3
Pi + Pj + Pk

|Pi + Pj + Pk|

)}
.

Since the octahedron is symmetric for origin, for the barycenter of a face given by
1
3
(

Pi + Pj + Pk
)
,

there is exactly one face whose barycenter is antipodal to
1
3
(

Pi + Pj + Pk
)
, and the pair of faces produce

the same lifts of face symmetries. Therefore, we deduce

|FO| =
|faces of an octahedron|

2
× 4 = 16.

Finally, the union VO ∪ EO ∪FO of lifts of symmetries of an octahedron is a subset of the binary
octahedral group 2O in Sp(1). Since

|VO ∪ EO ∪ FO ∪ {±1}| = 18 + 12 + 16 + 2 = 48 = |2O| ,

the union VO ∪ EO ∪ FO ∪ {±1} is a binary octahedral group, namely

2O = VO ∪ EO ∪ FO ∪ {±1}.

One can take Pis as follows:

P1 = i, P2 = j, P3 = k, P4 = −i, P5 = −j, P6 = −k

so as to obtain

2Ô :=

{
±1, ±i, ±j, ±k, 1

2 (±1± i± j± k) ,
1√
2
(±1± i) , 1√

2
(±1± j) , 1√

2
(±1± k) , 1√

2
(±i± j) , 1√

2
(±i± k) , 1√

2
(±j± k)

}
.

Binary Icosahedral Group

Since both the regular icosahedron and its dual regular dodecahedron produce the binary
icosahedral group, we consider a regular dodecahedron in R3 instead of a regular icosahedron.
Moreover, for the sake of convenience, one can choose specific coordinates of vertices of a dodecahedron
in R3 such as {

(±1,±1,±1), (±τ,± 1
τ

, 0), (0,±τ,± 1
τ
), (± 1

τ
, 0,±τ)

}
,

where τ =

√
5 + 1
2

= 2 cos
π

5
and

1
τ

=

√
5− 1
2

= −2 cos
2π

5
. It is also useful to know

sin
π

5
=

√
10− 2

√
5

4
and sin

2π

5
=

√
10 + 2

√
5

4
.
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In the following diagram, we consider the given set of vertices as a subset in ImH = R3 and
depict the configuration among the vertices.

u
−τi− 1

τ j

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

u −i− j + k�
�
�
�
�
�
�
��

@
@
@
@
@
@

u
−τi + 1

τ j
�
�
�
�
�
�

u
− 1

τ i + τk
�
��

�
��

A
A
A
A
A
Au−i + j + k ��

�
��
�

u−τj + 1
τ k �

�
�
�
�
�

@
@
@

u1
τ i + τk

@
@
@

ui− j + k

u
τj + 1

τ k

H
HHH

HH

ui + j + k �
�
�

u−τj− 1
τ k
@
@
@
@
@
@

u−i− j− k
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

u τi + 1
τ jH

HHH
HH

u τi− 1
τ j�

�
�

u τj− 1
τ k�

�
�
�
�
�

A
A
A
A
A
A

u i− j− k
Q
Q
Q
Q
Q
Q
Q
QQ

u
i + j− k
�
�
�
�
�
�

u
−i + j− k




































u1
τ i− τk u

− 1
τ i− τk

dodecahedron

For the above dodecahedron, we denote the set of vertices as {Pi i = 1, ..., 20} without a specific
choice of order.

(1) Since the possible order of each vertex symmetry is 3, the vertex symmetry has two angles
π

3
and

2π

3
. Thus, the union of lifts of vertex symmetries is

VI :=
⋃
i

{
±
(

cos
π

3
+ sin

π

3
Pi
|Pi|

)
, ±

(
cos

2π

3
+ sin

2π

3
Pi
|Pi|

)}
.

Since the dodecahedron is symmetric for origin, each vertex and its antipodal vertex produce the
same lifts of vertex symmetries. Thus, we obtain that

|VI | =
|vertices of a dodecahedron|

2
× 4 = 40.
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(2) As before, the edge symmetry has order 2, and each edge symmetry has only one angle
π

2
so that

the union of the related lifts is

EI :=
⋃{±( Pi + Pj∣∣Pi + Pj

∣∣
)}

,

where the union is performed for all the pairs of Pi and Pj form an edge. Just like the lifts of edge
symmetries for an octahedron, the pair of antipodal edges produce the same lifts of edge symmetries.
Therefore, we get

|EI | =
|edges of a dodecahedron|

2
× 2 = 30.

(3) For a barycenter of face given as
1
5
(

Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)

where Pil (l = 1, 2, 3, 4, 5) forms

a face, the face symmetry has order 5 and it is related to four angles
aπ

5
(a = 1, 2, 3, 4). Thus, the lifts

of a face symmetry are±
cos

aπ

5
+ sin

aπ

5

1
5
(

Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)∣∣∣∣15 (Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)∣∣∣∣
 (a = 1, 2, 3, 4)


and the union of lifts of face symmetries is

FI :=
⋃{±(cos

aπ

5
+ sin

aπ

5
Pi1 + Pi2 + Pi3 + Pi4 + Pi5
|Pi1 + Pi2 + Pi3 + Pi4 + Pi5 |

)
(a = 1, 2, 3, 4)

}
.

Since a pair of antipodal faces produce the same lifts of face symmetries, we deduce

|FI | =
|faces of a dodecahedron|

2
× 8 = 48.

Finally, the union VI ∪ EI ∪ FI of lifts of symmetries of a dodecahedron is a subset of a binary
icosahedral group 2I in Sp(1). Since

|VI ∪ EI ∪ FI ∪ {±1}| = 40 + 30 + 48 + 2 = 120 = |2I| ,

the union VI ∪ EI ∪ FI ∪ {±1} is a binary icosahedral group, namely

2I = VI ∪ EI ∪ FI ∪ {±1}.

For the given vertices we have, we can obtain

VI =

{
1
2
(±1± i± j± k) ,

1
2

(
±1± τ j± 1

τ
k
)

,
1
2

(
±1± 1

τ
i± τk

)
,

1
2

(
±1± τi± 1

τ
j
)}

EI =

{
±i, ±j, ±k,

1
2

(
±i± 1

τ
j± τk

)
,

1
2

(
± 1

τ
i± τ j± k

)
,

1
2

(
±τi± j± 1

τ
k
)}

FI =


1
2

(
± 1

τ
± τi± k

)
, 1

2

(
±τ ± 1

τ
i± j

)
, 1

2

(
±τ ± 1

τ
j± k

)
,

1
2

(
±τ ± i± 1

τ
k
)

, 1
2

(
± 1

τ
± i± τ j

)
, 1

2

(
± 1

τ
± j± τk

)
 .
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As a result, we can identify all the elements of the binary icosahedral group as

2 Î :=



±1, ±i, ±j, ±k,
1
2
(±1± i± j± k)

1
2

(
±i± 1

τ
j± τk

)
, 1

2

(
±1± τ j± 1

τ
k
)

, 1
2

(
± 1

τ
± τi± k

)
, 1

2

(
±τ ± 1

τ
i± j

)
,

1
2

(
± 1

τ
i± τ j± k

)
, 1

2

(
±τ ± 1

τ
j± k

)
, 1

2

(
±τ ± i± 1

τ
k
)

, 1
2

(
± 1

τ
± i± τ j

)
,

1
2

(
±τi± j± 1

τ
k
)

, 1
2

(
± 1

τ
± j± τk

)
, 1

2

(
±1± 1

τ
i± τk

)
, 1

2

(
±1± τi± 1

τ
j
)


.

Theorem 1. The finite subsets 2T̂, 2Ô and 2 Î in H defined as above are a binary tetrahedral group, a binary
octahedral group, and a binary icosahedral group, respectively.

Note that it is well known that the a subset
{
±1,±i,±j,±k,

1
2
(±1± i± j± k)

}
in 2I is the

vertices of 24-cell and the complementary subset in 2I is the vertices of a snub 24-cell.

3. 600-Cell

The Coxeter–Dynkin diagrams are the way of describing the group generated by reflections.
For each graph, node represents a mirror (or a reflection hypersurface) and the label m attached to
a branch between nodes marks the dihedral angle π

m between two mirrors. By convention, no label
is attached to a branch if the corresponding dihedral angle is π

3 . When all the dihedral angles are
π
3 , the diagram is called simply laced. Ringed nodes present so called active mirrors where there is a
point P not to sit in the hyperplanes of reflections corresponded to the mirrors. By successive applying
the reflections in the diagram to the point P, we obtain a polytope whose symmetry group is the
Weyl group generated by the Coxeter–Dynkin diagram. Moreover, the combinatorics of subpolytopes
can also be decoded by the Coxeter–Dynkin diagram when it is simply laced with one ringed node
(see [7,9,10]). In fact, a similar method can be applied for the diagram, which is not simply laced or has
more than one ringed node.

The Coxeter–Dynkin diagram of 24-cell is an example of simply laced with one ringed node.

u
α1

u
α2

h u
α4

u α3

Coxeter–Dynkin diagram of 24-cell

The Weyl group associated with this diagram is D4-type. In [7], the subpolytopes of 24-cell as
shown in Table 2 are described by using the Coxeter–Dynkin diagram.

Table 2. Subpolytopes of 24-cell.

Subpolytope Vertices Edges Faces Cells

total number 24 96 96 ({3}) 24 ({3, 3})

The Coxeter–Dynkin diagram of 600-cell is given by
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uα1
5 uα2 uα3 uα4h

Coxeter–Dynkin diagram of 600-cell

whose Weyl group is H4-type. Thus, the diagram is not simply laced and has one ringed node.

(1) Vertices

s 5 s s ce
By removing a ringed node, we obtain the isotropy subgroup in the Weyl group of H4 which fixed

a vertex in the 600-cell. Here, the corresponding isotropy group is H3 and we can compute the total
number of vertices as

|H4|
|H3|

=
14400
120

= 120.

For the remaining diagram above, we ring a node connected to the removed node. Then, we obtain
the Coxeter–Dynkin diagram of an Icosahedron, which implies that the vertex figure of 600 cell is an
icosahedron.

(2) Edges

For edges, we consider the ringed node that performs one reflection corresponding to an edge.

s 5 s c se
For the isotropy subgroup of the edge, we remove the unringed node connected to the ringed

node. In addition, the remaining diagram generates the isotropy subgroup H2× A1. Thus, we compute
the total number of edges as

|H4|
|H2||A1|

=
14400
10 · 2 = 720.

(3) Faces

For faces, we consider the ringed node and extend the diagram to unringed nodes so as to obtain
a subdiagram of A2-type. The subdiagram of A2 with one ringed node generate {3}, namely a triangle.
Thus, the faces of 600-cell are all triangles.

s c s se
For the isotropy subgroup of a face, we remove any unringed node connected to the subdiagram

of a face. The remaining subdiagram generates the isotropy subgroup of a face, which is A1 × A2.
Thus, we compute the total number of faces as

|H4|
|A1||A2|

=
14400
2!3̇!

= 1200.
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(4) Cells

To obtain a cell in a 600-cell, we consider an extended diagram from the ringed nodes to unringed
nodes so as to obtain a subdiagram of A3. The diagram of type A3 with one ringed node on one side
represents a tetrahedron.

c s s se
For the isotropy subgroup of a cell, we consider that any unringed node connected to the

subdiagram of A3, and the subdiagram given by removing the node generates the isotropy subgroup,
which is A3. Thus, we compute the total number of cells, Table 3 shows the subpolytopes of 600:

|H4|
|A3|

=
14400

4!
= 600.

Table 3. Subpolytopes of 600-cell.

Subpolytopes Vertices Edges Faces Cells

total number 120 720 1200 ({3}) 600 ({3, 3})

4. Binary Polyhedral Groups as Polytopes

In this section, we show that the binary icosahedral group 2I in H is the set of vertices of a 600-cell.
Thus, the convex hull of 2I in H is a 600-cell.

For each α in H with |α| = 1, we define a reflection on H as

σα : H −→ H,
x 7→ σα(x) := x− 2 (~x ·~α) α.

Since H is a normed division algebra, σα(x) is also written as σa(x) = −a x̄ a via quaternionic
multiplication (see Ref. [7]). Since σa is a reflection for a vector α, σa has eigenvalues ±1 where α is an
eigenvector of −1 and the hyperplane perpendicular to α is the eigenspace of 1. Moreover, it is not an
element in SO(3).

Binary tetrahedral group 2T̂ in H and 24-cell

For 24-cell, we consider the Coxeter–Dynkin diagram of type D4 given in Section 3, where

α1 = i, α2 =
1
2
(1 + i + j + k), α3 = j, α4 = k.

In Ref. [7], the Weyl group generated by the Coxeter–Dynkin diagram acts on the binary
tetrahedral group 2T̂. Moreover, it is shown that 2T̂ is the set of vertices of a 24-cell. In fact, it
is also the subset of unit integral quaternions.

Binary icosahedral group 2 Î in H and 600-cell

Similarly, for 600-cell, we consider the Coxeter–Dynkin diagram of Type H4 given in
Section 3, where

α1 = i, α2 =
1
2

(
τi + j− 1

τ
k
)

, α3 = j, α4 =
1
2

(
− 1

τ
+ j + τk

)
.
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The Weyl group generated by the reflections {σαi i = 1, 2, 3, 4} is denoted by WH . In below, we
want to show that (1) the Weyl group WH acts on the binary icosahedral group 2 Î, and (2) 2 Î is a single
orbit, where it corresponds to the set of vertices of 600-cell.

Lemma 2. The Weyl group WH acts on the binary icosahedral group 2 Î in H.

Proof. Since the Weyl group WH is generated by the reflections σαi (i = 1, 2, 3, 4), we show that each
σαi acts on 2I. For an arbitrary element a + bi + cj + dk ∈ H, the reflections are written as follows:

σα1(a + bi + cj + dk) = a− bi + cj + dk,

σα2(a + bi + cj + dk) = a +
(
− 1

2τ
b− τ

2
c +

1
2

d
)

i

+

(
−τ

2
b +

1
2

c +
1

2τ
d
)

j +
(

1
2

b +
1

2τ
c +

τ

2
d
)

k,

σα3(a + bi + cj + dk) = a + bi− cj + dk,

σα4(a + bi + cj + dk) =
(

τ

2
a +

1
2τ

c +
1
2

d
)
+ bi

+

(
1

2τ
a +

1
2

c− τ

2
d
)

j +
(

1
2

a− τ

2
c− 1

2τ
d
)

k.

It is easy to see that σα1 and σα3 act on 2 Î. By choosing {1, i, j, k} as an ordered orthonormal basis
of H, σα2 and σα4 can be written as

σα2 =


1 0 0 0
0 − 1

2τ − τ
2

1
2

0 − τ
2

1
2

1
2τ

0 1
2

1
2τ

τ
2

 and σα4 =


τ
2 0 1

2τ
1
2

0 1 0 0
1

2τ 0 1
2 − τ

2
1
2 0 − τ

2 − 1
2τ

 .

In addition, these are similar because σα4 = Stσα2 S, where S is an orthogonal matrix
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

In fact, S is an element in SO(4) defined by

1→ k, i→ 1, j→ j, k→ i

and one can check that S acts on 2 Î by simple calculation. Thus, it suffices to show that σα2 acts on 2I
to check σα2 and σα4 act on 2 Î. For σα2 , we consider 3× 3 submatrix A of σα2 defined as

A :=

 − 1
2τ − τ

2
1
2

− τ
2

1
2

1
2τ

1
2

1
2τ

τ
2

 .

This is a automorphism of ImH which satisfies At A = Id and det A = −1. Moreover, A also
acts on {

(±1,±1,±1), (±τ,± 1
τ

, 0), (0,±τ,± 1
τ
), (± 1

τ
, 0,±τ)

}
,

which is our choice of the vertices of a dodecahedron. Since A is a reflection, it is also a symmetry
of the dodecahedron so that it also acts on the set of edges and the set of faces. According to the



Symmetry 2018, 10, 326 14 of 14

construction of binary icosahedral group 2 Î in Section 2.1, the action of A on the icosahedron induces
the action of σα2 on 2 Î. For example, an edge symmetry given by an edge Pi + Pj is sent to another
given by APi + APj because

σα2

(
Pi + Pj∣∣Pi + Pj

∣∣
)

=
APi + APj∣∣Pi + Pj

∣∣ =
APi + APj∣∣APi + APj

∣∣ .
Similarly, we conclude that σα2 acts on 2 Î.

By applying the above lemma, we obtain the following theorem.

Theorem 2. The set 2 Î of a binary icosahedral group is an orbit of the Weyl group WH , and it is the set of
vertices of a 600-cell.

Proof. By Lemma 2, the Weyl group WH acts on 2I. Now, we consider an element 1 in 2 Î and

its orbit WH {1} ⊂ 2 Î. Since 1 is perpendicular to α1 = i, α2 =
1
2

(
τi + j− 1

τ k
)

, α3 = j and

1 · α4 = (1, 0, 0, 0) ·
(
− 1

2τ , 0, 1
2 , τ

2

)
6= 0, the orbit WH {1} is given by the following Coxeter–Dynkin

diagram 3 of 600-cell. By Section 3, we have |WH {1}| = 120 =
∣∣2 Î
∣∣. Therefore, we conclude

WH {1} = 2 Î and this gives the theorem.
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