Article

On Special Kinds of Involute and Evolute Curves in 4-Dimensional Minkowski Space

Muhammad Hanif $\mathbf{1 , *}^{*}\left(\mathbb{D}\right.$, Zhong Hua Hou ${ }^{1}$ and Kottakkaran Sooppy Nisar ${ }^{2}$ (D)
1 School of Mathematical Science, Dalian University of Technology, Dalian 116024, China; zhhou@dlut.edu.cn
2 Department of Mathematics, Prince Sattam Bin Abdulaziz University, 11991 Alkharj, Saudi Arabia; n.sooppy@psau.edu.sa
* Correspondence: hanif@mail.dlut.edu.cn; Tel.: +86-150-0411-0375

Received: 18 June 2018; Accepted: 22 July 2018; Published: 2 August 2018
Abstract: Recently, extensive research has been done on evolute curves in Minkowski space-time However, the special characteristics of curves demand advanced level observations that are lacking in existing well-known literature. In this study, a special kind of generalized evolute and involute curve is considered in four-dimensional Minkowski space. We consider (1,3)-evolute curves with respect to the casual characteristics of the (1,3)-normal plane that are spanned by the principal normal and the second binormal of the vector fields and the $(0,2)$-evolute curve that is spanned by the tangent and first binormal of the given curve. We restrict our investigation of $(1,3)$-evolute curves to the $(1,3)$-normal plane in four-dimensional Minkowski space. This research contribution obtains a necessary and sufficient condition for the curve possessing the generalized evolute as well as the involute curve. Furthermore, the Cartan null curve is also discussed in detail.

Keywords: evolute; involute curves; mate curves; minkowski space

MSC: 53A04; 53A35

1. Introduction

In the theory of curves, one of the important and interesting problems is the characterization of regular curves, in particular, the involute-evolute of a given curve. Evolutes and involutes (also known as evolvents) were studied by C. Huygens [1]. According to D. Fuchs [2], an involute of a given curve is a curve to which all tangents of the given curve are normal. He also defined the equation for an enveloping curve of the family of normal planes for a space curve. Suleyman and Seyda [3] determined the concept of parallel curves, which means that if the evolute exists, then the evolute of the parallel arc will also exist and the involute will coincide with the evolute. Brewster and David [4] stated that a curve is composed of two arcs with a common evolute, and the common evolute of two arcs must be a curve with only one tangent in each direction. In general, the evolute of a regular curve has singularities, and these points correspond to vertices. Emin and Suha [5] determined that an evolute Frenet apparatus can be formed by an involute apparatus in four dimensional Euclidean space, so, in this way, another orthonormal of the same space can be obtained. Shyuichi Izumiya [6] defined evolutes as the loci of singularities of space-like parallels and geometric properties of non-singular space-like hyper surfaces corresponding to the singularities of space-like parallels or evolutes. Takami Sato [7] investigated the singularities and geometric properties of pseudo-spherical evolutes of curves on a space-like surface in three-dimensional Minkowski-space. Marcos Craizer [8] stated that the iteration of involutes generates a pair of sequences of curves with respect to the Minkowski metric and its dual.

According to Boaventura Nolasco and Rui Pacheco [9], correspondence between plane curves and null curves in Minkowski three-space exists. He also described the geometry of null curves in terms of
the curvature of the corresponding plane curves. M. Turgut and S. Yilmaz [10] obtained the Frenet apparatus of a given curve by defining the space-like involute-evolute curve couple in Minkowski space-time. Some researchers have investigated evolute curves and their characterization in Minkowski space [11-16] as well as in Euclidean space. Many researchers have dealt with evolute-involute curves, but no research has been carried out on the Cartan null curve. In this study, a special kind of generalized evolute and involute curve is considered in four-dimensional Minkowski space. We obtained necessary and sufficient conditions for the curve possessing a generalized evolute as well as an involute.

2. Preliminaries

Consider the Minkowski space-time, $\left(E_{1}^{4}, G\right)$, where $E_{1}^{4}=\left\{y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mid y_{i} \in R\right\}$ and $G=-d y_{1}^{2}+d y_{2}^{2}+d y_{3}^{2}+d y_{4}^{2}$. For any $M=\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ and $N=\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \in T_{y} E$. We denote $M \cdot N=G(M, N)=m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}+m_{4} n_{4}$. Let I be an open interval in R and $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve in E_{1}^{4} that is parameterized by the arc length parameter, s, and $\left\{T, N, B_{1}, B_{2}\right\}$ is the moving Frenet frame along α, consisting of the tangent vector, T; the principal normal vector, N; the first binormal vector, B_{1}, and the second binormal vector, B_{2}, respectively, so that $T \wedge N \wedge B_{1} \wedge B_{2}$ coincides with the standard orientation of E_{1}^{4}. Then, $T \cdot T=\epsilon_{1}, N \cdot N=\epsilon_{2}, B_{1} \cdot B_{1}=\epsilon_{3}, B_{2} \cdot B_{2}=\epsilon_{4}, \epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=-1, \epsilon_{i} \in\{1,-1\}, i \in\{1,2,3,4\}$.

In particular, the following conditions hold: $T \cdot N=T \cdot B_{1}=T \cdot B_{2}=N \cdot B_{1}=N \cdot B_{2}=B_{1} \cdot B_{2}=0$.
In accordance with reference [17], the Frenet-Serret formula for α in E_{1}^{4} is given by

$$
\left[\begin{array}{c}
T^{\prime} \tag{1}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \epsilon_{2} k_{1} & 0 & 0 \\
-\epsilon_{1} k_{1} & 0 & \epsilon_{3} k_{2} & 0 \\
0 & -\epsilon_{2} k_{2} & 0 & -\epsilon_{1} \epsilon_{2} \epsilon_{3} k_{3} \\
0 & 0 & -\epsilon_{3} k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right] .
$$

We introduce some methodologies in this paper. At any point of α, the plane spanned by $\left\{T, B_{1}\right\}$ is called the (0,2)-tangent plane of α. The plane spanned by $\left\{N, B_{2}\right\}$ is called the (1,3)-normal plane of α.

Let $\alpha: I \rightarrow E_{1}^{4}$ and $\alpha^{*}: I \rightarrow E_{1}^{4}$ be two regular curves in E_{1}^{4}, where s is the arc-length parameter of α. Denote $s^{*}=f(s)$ to be the arc-length parameters of α^{*}. For any $s \in I$, if the $(0,2)$-tangent plane of α at $\alpha(s)$ coincides with the $(1,3)$-normal plane at $\alpha^{*}(s)$ of α^{*}, then α^{*} is called the $(0,2)$-involute curve of α in E_{1}^{4} and α is called the $(1,3)$-evolute curve of α^{*} in E_{1}^{4}.

An arbitrary curve, $\alpha(s)$ in E_{1}^{4}, can locally be space-like, time-like, or null (light-like) if all of its velocity vectors, $\alpha^{\prime}(s)$, are respectively space-like, time-like, or null [18]. A null curve, α, is parametrized by the pseudo-arc s if $g\left(\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right)=1$ [19]. On the other hand, a nonnull curve, α, is parametrized by the arc-length parameter, s, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$. In accordance with references [19,20], if α is null Cartan curve, the Cartan Frenet frame is given by

$$
\left[\begin{array}{c}
T^{\prime} \tag{2}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{2} & 0 & -k_{1} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
-k_{3} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right],
$$

where $k_{1}(s)=0$ if $\alpha(s)$ is a null straight line or $k_{1}(s)=1$ in all other cases. In this case, the next conditions hold: $T \cdot T=B_{1} \cdot B_{1}=0, N \cdot N=B_{2} \cdot B_{2}=1, T \cdot N=T \cdot B_{2}=N \cdot B_{1}=N \cdot B_{2}=B_{1} \cdot B_{2}=0$, $T \cdot B_{1}=1$.

3. The (0,2)-Involute Curve of a Given Curve in E_{1}^{4}

In this section, we proceed to study the existence and expression of the (0,2)-involute curve of a given curve in E_{1}^{4}.

Theorem 1. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve parameterized by arc-length s so that k_{1}, k_{2} and k_{3} are not zero. If α possesses the (0,2)-involute mate curve, $\alpha^{*}(s)=\alpha(s)+\left(\phi_{0}-s\right) T(s)+\varphi B_{1}(s)$, with $\varphi \neq 0$, then k_{1}, k_{2} and k_{3} satisfy

$$
\frac{k_{2}}{k_{1}}=\tau, \frac{k_{3}}{k_{1}}=t_{1}\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right), \tau=\frac{\phi_{0}-s+\varphi t_{1}^{2} t_{2}}{\varphi\left(1-\epsilon_{1} \epsilon_{3} t_{1}^{2}\right)}
$$

where ϕ_{0}, φ, t_{1} and t_{2} are given constants. Moreover, the three curvatures of α^{*} are given by

$$
k_{1}^{*}=-\frac{\epsilon_{1} \epsilon_{4} \epsilon_{2}^{*} f t_{3}^{2}}{\varphi\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right)}, k_{2}^{*}=\frac{f\left(\epsilon_{4} \epsilon_{3}^{*} t_{2} \tau-\epsilon_{2} \epsilon_{3}^{*} t_{2}^{2}-\epsilon_{1} \epsilon_{4}^{*} t_{3}^{2}\right)}{\varphi t_{1}\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right)}, k_{3}^{*}=-\frac{\epsilon_{4} \epsilon_{4}^{*} f}{\varphi t_{1}}
$$

where $f \neq 0$. The associated Frenet frame are given by

$$
T^{*}=f t_{3}\left(t_{1} N+B_{2}\right), N^{*}=f\left(T+t_{2} B_{1}\right), B_{1}^{*}=g t_{3}\left(-N+t_{1} B_{2}\right), B_{2}^{*}=f\left(-t_{2} T+B_{1}\right)
$$

Proof. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve with arc-length parameter s so that k_{1}, k_{2} and k_{3} are not zero. Suppose that $\alpha^{*}: I \rightarrow E_{1}^{4}$ is the (0,2)-involute curve of $\alpha .\left\{T^{*}, N^{*}, B_{1}^{*}, B_{2}^{*}\right\}$ is the Frenet frame along α^{*} and k_{1}^{*}, k_{2}^{*} and k_{3}^{*} are the curvatures of β^{*}. Then
span $\left\{T, B_{1}\right\}=\operatorname{span}\left\{N^{*}, B_{2}^{*}\right\}$, span $\left\{N, B_{2}\right\}=\operatorname{span}\left\{T^{*}, B_{1}^{*}\right\}$.
Moreover, α^{*} can be expressed as

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+\phi(s) T(s)+\varphi(s) B_{1} \tag{3}
\end{equation*}
$$

where $\phi(s)$ and $\varphi(s)$ are C^{∞} functions on I.
By differentiating (3) with respect to s and using the Frenet formula (1), we get

$$
\begin{equation*}
f^{\prime} T^{*}=\left(1+\phi^{\prime}\right) T(s)+\varphi^{\prime}(s) B_{1}+\epsilon_{2}\left(\phi k_{1}-\varphi k_{2}\right) N-\epsilon_{1} \epsilon_{2} \epsilon_{3} \varphi k_{3} B_{2} \tag{4}
\end{equation*}
$$

Taking the inner product on both sides of (4) with T and B_{1}, respectively, we get $1+\phi^{\prime}=0$ and $\varphi^{\prime}=0$, which implies that φ is constant and $\phi=\varphi_{0}-s$, where ϕ_{0} is the integration constant. So, (4) turns into

$$
\begin{equation*}
f^{\prime} T^{*}=\epsilon_{2}\left(\phi k_{1}-\varphi k_{2}\right) N-\epsilon_{1} \epsilon_{2} \epsilon_{3} \varphi k_{3} B_{2} \tag{5}
\end{equation*}
$$

If we denote

$$
\begin{equation*}
\mu=\frac{\epsilon_{2}\left(\phi k_{1}-\varphi k_{2}\right)}{f^{\prime}}, v=\frac{-\epsilon_{1} \epsilon_{2} \epsilon_{3} \varphi k_{3}}{f^{\prime}} \tag{6}
\end{equation*}
$$

then (5) turns into

$$
\begin{equation*}
T^{*}=\mu N+v B_{2}, \mu^{2}+v^{2}=1 \tag{7}
\end{equation*}
$$

Case 1: $\varphi \neq 0$. In this case, $v \neq 0 \cdot \frac{\mu}{v}=t_{1}$ implies that $\mu=t_{1} v$ and

$$
\begin{equation*}
\epsilon_{2}\left(\phi k_{1}-\varphi k_{2}\right)=-\epsilon_{1} \epsilon_{2} \epsilon_{3} \varphi t_{1} k_{3}, f^{\prime}=-\epsilon_{1} \epsilon_{2} \epsilon_{3} \varphi v^{-1} k_{3}, v^{2}=\frac{1}{1+t_{1}^{2}} \tag{8}
\end{equation*}
$$

By differentiating (7) with respect to s and using the Frenet formula (1), we get

$$
\begin{equation*}
\epsilon_{2}^{*} f^{\prime} k_{1}^{*} N^{*}=\mu^{\prime} N-\epsilon_{1} \mu k_{1} T+v^{\prime} B_{2}+\epsilon_{3}\left(\mu k_{2}-v k_{3}\right) B_{1} \tag{9}
\end{equation*}
$$

By taking the inner product from both sides of (9) with N and B_{2}, respectively, we get $\mu^{\prime}=0$ and $v^{\prime}=0$, which implies that μ and v are constants. So, (9) turns into

$$
\begin{equation*}
\epsilon_{2}^{*} f^{\prime} k_{1}^{*} N^{*}=-\epsilon_{1} \mu k_{1} T+\epsilon_{3}\left(\mu k_{2}-v k_{3}\right) B_{1} . \tag{10}
\end{equation*}
$$

Denote

$$
\begin{equation*}
f=-\frac{\epsilon_{1} v t_{1} k_{1}}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}}, g=\frac{\epsilon_{3} v\left(t_{1} k_{2}-k_{3}\right)}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}} \tag{11}
\end{equation*}
$$

then (10) turns into

$$
\begin{equation*}
N^{*}=f T+g B_{1}, f^{2}+g^{2}=1 \tag{12}
\end{equation*}
$$

$\frac{g}{f}=t_{2}$ implies that $g=t_{2} f$ and

$$
\begin{equation*}
t_{1} t_{2} k_{1}=-\epsilon_{1} \epsilon_{3}\left(t_{1} k_{2}-k_{3}\right), f^{2}=\frac{1}{1+t_{2}^{2}} \tag{13}
\end{equation*}
$$

From Equations (8) and (13), we have

$$
\begin{equation*}
\tau:=\frac{k_{2}}{k_{1}}=\frac{\frac{\phi}{\varphi}+t_{1}^{2} t_{2}}{1-\epsilon_{1} \epsilon_{3} t_{1}^{2}}, \frac{k_{3}}{k_{1}}=t_{1}\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right) \tag{14}
\end{equation*}
$$

$\frac{v}{f}=t_{3}$ implies that $v=t_{3} f$. From (11), we get

$$
\begin{equation*}
f^{\prime} k_{1}^{*}=-\epsilon_{1} \epsilon_{2}^{*} t_{1} t_{3} k_{1}, t_{3}^{2}=\frac{1+t_{2}^{2}}{1+t_{1}^{2}} \tag{15}
\end{equation*}
$$

By differentiating (12) with respect to s using the Frenet formula (1), we get

$$
\begin{equation*}
-\epsilon_{1}^{*} f^{\prime} k_{1}^{*} T^{*}+\epsilon_{3}^{*} f^{\prime} k_{2}^{*} B_{1}^{*}=f^{\prime} T+\epsilon_{2}\left(f k_{1}-g k_{2}\right) N+g^{\prime} B_{1}-\epsilon_{1} \epsilon_{2} \epsilon_{3} g k_{3} B_{2} \tag{16}
\end{equation*}
$$

By taking inner product on both side of (16) by T and B_{1} respectively, we get $f^{\prime}=0$ and $g^{\prime}=0$, which implies that f and g are constants. In this case, (16) turns into

$$
\begin{equation*}
\epsilon_{3}^{*} f^{\prime} k_{2}^{*} B_{1}^{*}=\epsilon_{1}^{*} f^{\prime} k_{1}^{*} T^{*}+\epsilon_{2} f\left(k_{1}-t_{2} k_{2}\right) N-\epsilon_{1} \epsilon_{2} \epsilon_{3} g t_{2} k_{3} B_{2} \tag{17}
\end{equation*}
$$

By substituting (7) and (15) into (17), we get

$$
\begin{equation*}
f^{\prime} k_{2}^{*} B_{1}^{*}=f k_{1}\left(\epsilon_{4} \epsilon_{3}^{*} t_{2} \tau-\epsilon_{2} \epsilon_{3}^{*} t_{2}^{2}-\epsilon_{1} \epsilon_{4}^{*} t_{3}^{2}\right)\left(-N+t_{1} B_{2}\right) \tag{18}
\end{equation*}
$$

From (18), we may choose that

$$
\begin{equation*}
B_{1}^{*}=-\epsilon_{4} v N+\epsilon_{2} \mu B_{2}, f^{\prime} k_{2}^{*}=t_{3}^{-1} k_{1}\left(\epsilon_{4} \epsilon_{3}^{*} t_{2} \tau-\epsilon_{2} \epsilon_{3}^{*} t_{2}^{2}-\epsilon_{1} \epsilon_{4}^{*} t_{3}^{2}\right) \tag{19}
\end{equation*}
$$

By differentiating (19) about s and using the Frenet formula (1), we get

$$
\begin{equation*}
-\epsilon_{2}^{*} f^{\prime} k_{2}^{*} N^{*}-\epsilon_{1}^{*} \epsilon_{2}^{*} \epsilon_{3}^{*} f^{\prime} k_{3}^{*} B_{2}^{*}=\epsilon_{1} \epsilon_{4} v k_{1} T-\left(\epsilon_{3} \epsilon_{4} v k_{2}+\epsilon_{2} \epsilon_{3} \mu k_{3}\right) B_{1} \tag{20}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\epsilon_{4}^{*} f^{\prime} k_{3}^{*} B_{2}^{*}=\left(\epsilon_{2}^{*} f f^{\prime} k_{2}^{*}+\epsilon_{1} \epsilon_{4} v k_{1}\right) T+\left(\epsilon_{2}^{*} g f^{\prime} k_{2}^{*}-\epsilon_{3} \epsilon_{4} v k_{2}-\epsilon_{2} \epsilon_{3} \mu k_{3}\right) B_{1}=-t_{3}^{-1} k_{1}\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right)\left(-g T+f B_{1}\right) . \tag{21}
\end{equation*}
$$

From (21), we may choose that

$$
\begin{equation*}
B_{2}^{*}=-g T+f B_{1}, f^{\prime} k_{3}^{*}=-\epsilon_{4}^{*} t_{3}^{-1} k_{1}\left(\tau+\epsilon_{1} \epsilon_{3} t_{2}\right) \tag{22}
\end{equation*}
$$

From Equations (14), (15), (18) and (22), we can easily acquire our theorem.

Case 2: If $\varphi=0$, we have the following theorem.

Theorem 2. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve with arc-length parameter so that k_{1}, k_{2} and k_{3} are not zero. If α possesses the (0,2)-involute mate curve $\alpha^{*}=\alpha(s)+\left(\phi_{0}-s\right) T(s)$, then k_{1} and k_{2} satisfy

$$
\begin{equation*}
g k_{1}+f k_{2}=0 \tag{23}
\end{equation*}
$$

where ϕ_{0}, f, and g are given constants.
Moreover, the three curvatures of α^{*} are given by

$$
k_{1}^{*}=\frac{1}{\epsilon_{1} \epsilon_{2} \epsilon_{2}^{*} f\left(s-\phi_{0}\right)}, k_{2}^{*}=\frac{-\epsilon_{4} \epsilon_{3}^{*} g k_{3}}{\epsilon_{2}\left(s-\phi_{0}\right) k_{1}}, k_{3}^{*}=\frac{\epsilon_{1}^{*} \epsilon_{4} f k_{3}}{\epsilon_{2}\left(s-\phi_{0}\right) k_{1}} .
$$

The associated Frenet frames are given by

$$
T^{*}=-N, N^{*}=f T+g B_{1}, B_{1}^{*}=-B_{2}, B_{2}^{*}=-g T+f B_{1}
$$

In this case, (4) turns into

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+\left(\phi_{0}-s\right) T(s) \tag{24}
\end{equation*}
$$

By differentiating (24) with respect to s and using the Frenet Formula (1), we get

$$
\begin{equation*}
f^{\prime} T^{*}=\epsilon_{2}\left(\phi_{0}-s\right) k_{1} N \tag{25}
\end{equation*}
$$

from which we may assume that

$$
\begin{equation*}
f^{\prime}=\epsilon_{2}\left(s-\phi_{0}\right) k_{1}, T^{*}=-N \tag{26}
\end{equation*}
$$

By differentiating the second equation of (26) about s and using the Frenet Formula (1), we get

$$
\epsilon_{2}^{*} f^{\prime} k_{1}^{*} N^{*}=\epsilon_{1} k_{1} T-\epsilon_{3} k_{2} B_{1}
$$

Suppose that

$$
\begin{equation*}
N^{*}=f T+g B_{1}, f=\frac{\epsilon_{1} k_{1}}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}}, g=-\frac{\epsilon_{3} k_{2}}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}}, f^{2}+g^{2}=1 . \tag{27}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{k_{2}}{k_{1}}=-\frac{g}{f} \epsilon_{1} \epsilon_{3} . \tag{28}
\end{equation*}
$$

By differentiating (27) about s, we obtain that f and g are constants:

$$
\begin{equation*}
\epsilon_{3}^{*} f^{\prime} k_{2}^{*} B_{1}^{*}=\epsilon_{1}^{*} f^{\prime} k_{1}^{*} T^{*}+\epsilon_{2}\left(f k_{1}-g k_{2}\right) N-\epsilon_{1} \epsilon_{2} \epsilon_{3} g k_{3} B_{2}=-\epsilon_{2} g\left(\frac{g}{f} k_{1}+k_{2}\right) N+\epsilon_{4} g k_{3} B_{2}=\epsilon_{4} g k_{3} B_{2} \tag{29}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
B_{1}^{*}=-B_{2}, f^{\prime} k_{2}^{*}=-\epsilon_{4} \epsilon_{3}^{*} g k_{3} \tag{30}
\end{equation*}
$$

By differentiating (30) about s, we obtain

$$
\begin{equation*}
\epsilon_{4}^{*} f^{\prime} k_{3}^{*} B_{2}^{*}=\epsilon_{2} f^{\prime} k_{2}^{*} N^{*}+\epsilon_{3} k_{3} B_{1}=-\epsilon_{1}^{*} \epsilon_{4} k_{3}\left[f g T-\left(1-g^{2}\right) B_{1}\right]=-\epsilon_{1}^{*} \epsilon_{4} f k_{3}\left(g T-f B_{1}\right) \tag{31}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
T^{*} \wedge N^{*} \wedge B_{1}^{*} \wedge B_{2}^{*}=T \wedge N \wedge B_{1} \wedge B_{2} \tag{32}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{2}^{*}=-g T+f B_{1}, f^{\prime} k_{3}^{*}=\epsilon_{1}^{*} \epsilon_{4} f k_{3} \tag{33}
\end{equation*}
$$

From Equations (27), (30) and (33), we have achieved the desired theorem.

Remark 1. Theorems 1 and 2 are quite different.

4. The (1,3)-Evolute Curve of a Given Curve in E_{1}^{4}

In this section, we want to study the (1,3)-evolute curve of a given curve in E_{1}^{4}.
Theorem 3. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve with arc length parameter so that k_{1}, k_{2} and k_{3} are not zero, If α possesses the (1,3)-evolute mate curve, $\alpha^{*}(s)=\alpha(s)+\frac{1}{i k_{1}(s)}\left[i N(s)+j B_{2}(s)\right]-\frac{1}{k_{3}(s)} B_{2}(s)$, then k_{1}, k_{2} and k_{3} satisfy $\epsilon_{1} i k_{1}+\epsilon_{3}\left(j k_{2}-j k_{3}\right)=0$, where i and j are given constants. Three curvatures of α^{*} are given by

$$
k_{1}^{*}=-\epsilon_{1} \epsilon_{2}^{*} \frac{\sqrt{2}\left(i k_{1}\right)}{f^{\prime}}, k_{2}^{*}=\frac{\sqrt{2}\left[\epsilon_{4} \epsilon_{3}^{*} k_{3} /(2 i)-\epsilon_{1} \epsilon_{4}^{*} j k_{1}\right]}{f^{\prime}}, k_{3}^{*}=-\sqrt{2} k_{3} /\left(2 i f^{\prime}\right), f^{\prime}=\left(1 / i k_{1}\right)
$$

The associated Frenet frames are given by

$$
T^{*}=i N+j B_{2}, N^{*}=\left(T+B_{1}\right) / \sqrt{2}, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=\left(-T+B_{1}\right) / \sqrt{2}
$$

Proof. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve with arc-length parameter s so that k_{1}, k_{2} and k_{3} are not zero. Let $\alpha^{*}: I \rightarrow E_{1}^{4}$ be the (1,3)-evolute curve of $\alpha .\left\{T^{*}, N^{*}, B_{1}^{*}, B_{2}^{*}\right\}$ is the Frenet frame along α^{*} and k_{1}^{*}, k_{2}^{*} and k_{3}^{*} are the curvatures of α^{*}. Then,

$$
\begin{equation*}
\operatorname{span}\left\{T, B_{1}\right\}=\operatorname{span}\left\{N^{*}, B_{2}^{*}\right\}, \operatorname{span}\left\{N, B_{2}\right\}=\operatorname{span}\left\{T^{*}, B_{1}^{*}\right\} \tag{34}
\end{equation*}
$$

Moreover, α^{*} can be expressed as

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+p(s) N(s)+q(s) B_{2} \tag{35}
\end{equation*}
$$

where $p(s)$ and $q(s)$ are C^{∞} functions on I.
Differentiating (35) with respect to s using Frenet Formula (1), we get

$$
\begin{equation*}
T^{*} f^{\prime}=\left(1-p \epsilon_{1} k_{1}\right) T+p^{\prime} N+q^{\prime} B_{2}+\epsilon_{3}\left(p k_{2}-q k_{3}\right) B_{1} \tag{36}
\end{equation*}
$$

By taking the inner product from both sides of (36) with T and B_{1}, respectively, we get

$$
\begin{equation*}
f^{\prime} T^{*}=p^{\prime} N+q^{\prime} B_{2}, p=\frac{1}{\epsilon_{1} k_{1}}, q=\frac{\epsilon_{1} k_{2}}{k_{1} k_{3}} . \tag{37}
\end{equation*}
$$

Denote

$$
\begin{equation*}
i=\frac{u^{\prime}}{f^{\prime}}, j=\frac{v^{\prime}}{f^{\prime}} \tag{38}
\end{equation*}
$$

then (37) turns into

$$
\begin{equation*}
T^{*}=i N+j B_{2}, i^{2}+j^{2}=1 \tag{39}
\end{equation*}
$$

By differentiating (39) with respect to s and using the Frenet formula (1), we get

$$
\begin{equation*}
\epsilon_{2}^{*} f^{\prime} k_{1}^{*} N^{*}=i \prime N-\epsilon_{1} i k_{1} T+j^{\prime} B_{2}+\epsilon_{3}\left(i k_{2}-j k_{3}\right) B_{1} . \tag{40}
\end{equation*}
$$

By taking inner product on both sides of (40) with N and B_{2} respectively, we get $i^{\prime}=o$ and $j^{\prime}=0$, which implies that i and j are constants.

From (38), we obtain

$$
\begin{equation*}
p=i f+p_{0}=\frac{1}{\epsilon_{1} k_{1}}, q=j f+q_{0}=\frac{\epsilon_{1} k_{2}}{k_{1} k_{3}} . \tag{41}
\end{equation*}
$$

Moreover, (40) turns into

$$
\begin{equation*}
\epsilon_{2}^{*} f^{\prime} k_{1}^{*} N^{*}=-\epsilon_{1} i k_{1} T+\epsilon_{3}\left(i k_{2}-j k_{3}\right) B_{1} . \tag{42}
\end{equation*}
$$

Denote

$$
\begin{equation*}
r=-\frac{\epsilon_{1} i k_{1}}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}}, t=\frac{\epsilon_{3}\left(i k_{2}-j k_{3}\right)}{\epsilon_{2}^{*} f^{\prime} k_{1}^{*}} . \tag{43}
\end{equation*}
$$

then (42) turns into

$$
\begin{equation*}
N^{*}=r T+t B_{1}, f^{\prime} k_{1}^{*}=-\epsilon_{1} \epsilon_{2}^{*} r^{-1} i k_{1}, r^{2}+t^{2}=1 \tag{44}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
-\epsilon_{1} \epsilon_{2}^{*} t i k_{1}+\epsilon_{3}\left(r i k_{2}-r j k_{3}\right)=0 \tag{45}
\end{equation*}
$$

Case 1: $t \neq 0$. By differentiating (44) about s and using the Frenet Formula (1), we get

$$
\begin{equation*}
-\epsilon_{1}^{*} f^{\prime} k_{1}^{*} T^{*}+\epsilon_{3}^{*} f^{\prime} k_{2}^{*} B_{1}^{*}=\epsilon_{2}\left(r k_{1}-t k_{2}\right) N-\epsilon_{1} \epsilon_{2} \epsilon_{3} t k_{3} B_{2}+r^{\prime} T+t^{\prime} B_{1} \tag{46}
\end{equation*}
$$

By taking inner product on both sides of (46) with T and B_{1} respectively, we get $r^{\prime}=0$ and $t^{\prime}=0$, which implies that r and t are constants. In this case, (46) turns into

$$
\begin{equation*}
f^{\prime} k_{2}^{*} B_{1}^{*}=\left(\frac{\epsilon_{2} \epsilon_{3}^{*} r^{2}-\epsilon_{1} \epsilon_{4}^{*} i^{2}}{r} k_{1}-\epsilon_{2} \epsilon_{3}^{*} t k_{2}\right) N-\left(\epsilon_{4} \epsilon_{3}^{*} t k_{3}+\epsilon_{1} \epsilon_{4}^{*} \frac{i j}{r} k_{1}\right) B_{2} \tag{47}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\sigma=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(\frac{\epsilon_{2} \epsilon_{3}^{*} r^{2}-\epsilon_{1} \epsilon_{4}^{*} i^{2}}{r} k_{1}-\epsilon_{2} \epsilon_{3}^{*} t k_{2}\right), \varsigma=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(\epsilon_{4} \epsilon_{3}^{*} t k_{3}+\epsilon_{1} \epsilon_{4}^{*} \frac{i j}{r} k_{1}\right), \tag{48}
\end{equation*}
$$

then (47) turns into

$$
\begin{equation*}
B_{1}^{*}=\sigma N+\varsigma B_{2}, \sigma^{2}+\varsigma^{2}=1 \tag{49}
\end{equation*}
$$

Since $T^{*} \perp B_{1}^{*}$, it follows from (40) and (50) that $\frac{\sigma}{\varsigma}=-\frac{j}{i}$, which implies that

$$
\begin{equation*}
\epsilon_{1} i k_{1}+\epsilon_{3}\left(i k_{2}-j k_{3}\right)=0 \tag{50}
\end{equation*}
$$

From (45) and (50), we can see that

$$
\begin{equation*}
i k_{2}-j k_{3}=-\epsilon_{1} \epsilon_{3} i k_{1},\left(\epsilon_{1} r-\epsilon_{1} \epsilon_{1}^{*} t\right) i k_{1}=0 \tag{51}
\end{equation*}
$$

Since $t \neq 0$, it follows from (51) that $t=r$. Hence, (49) turns into

$$
\begin{equation*}
B_{1}^{*}=-j N+i B_{2}, f^{\prime} k_{2}^{*}=\epsilon_{1} \epsilon_{4}^{*} \frac{j}{r} k_{1}+\epsilon_{4} \epsilon_{3}^{*} \frac{t}{i} k_{3} . \tag{52}
\end{equation*}
$$

By differentiating (52) about s using (1), we get

$$
\begin{equation*}
-\epsilon_{2}^{*} f^{\prime} k_{2}^{*} N^{*}+\epsilon_{4}^{*} f^{\prime} k_{3}^{*} B_{2}^{*}=\epsilon_{1} j k_{1} T-\epsilon_{3}\left(j k_{2}+i k_{3}\right) B_{1}, \tag{53}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
f^{\prime} k_{3}^{*} B_{2}^{*}=\epsilon_{2}^{*} f^{\prime} k_{2}^{*} N^{*}+\epsilon_{1} j k_{1} T-\epsilon_{3}\left(j k_{2}+i k_{3}\right) B_{1},-\epsilon_{4} \epsilon_{3}^{*} \epsilon_{4}^{*} \frac{t^{2}}{i} k_{3}\left(-T+B_{1}\right) \tag{54}
\end{equation*}
$$

It follows from (54) that

$$
\begin{equation*}
B_{2}^{*}=-t T+r B_{1}, f^{\prime} k_{3}^{*}=-\epsilon_{4} \epsilon_{3}^{*} \epsilon_{4}^{*} \frac{t}{i} k_{3} . \tag{55}
\end{equation*}
$$

From (43), (52) and (55), we can easily acquire our desired theorem.
Case 2: If $t=0$, we have the following theorem.

Theorem 4. Let $\alpha: I \rightarrow E_{1}^{4}$ be a regular curve parameterized by arc-length s so that k_{1}, k_{2} and k_{3} are not zero. If α possesses the (1,3)-evolute mate curve, $\alpha^{*}(s)=\alpha(s)+\frac{1}{i k_{1}(s)}\left[i N(s)+j B_{2}(s)\right]$, then k_{2} and k_{3} satisfy $i k_{2}-j k_{3}=0$, where i and j are given constants. Moreover, the three curvatures of α^{*} are given by

$$
\begin{equation*}
k_{1}^{*}=-\epsilon_{1} \epsilon_{2}^{*} i k_{1} / f^{\prime}, k_{2}^{*}=-\epsilon_{1} \epsilon_{2}^{*} j k_{1} / f^{\prime}, k_{3}^{*}=-\epsilon_{3} i^{-1} k_{3} / f^{\prime}, f^{\prime}=\left(\frac{1}{i k_{1}}\right) \tag{56}
\end{equation*}
$$

The associated Frenet frames are given by

$$
\begin{equation*}
T^{*}=i N+j B_{2}, N^{*}=T, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=B_{1} . \tag{57}
\end{equation*}
$$

Proof. For this case, we may suppose that

$$
\begin{equation*}
N^{*}=T, f^{\prime} k_{1}^{*}=-\epsilon_{1} \epsilon_{2}^{*} i k_{1}, \epsilon_{3}\left(i k_{2}-j k_{3}\right)=0 \tag{58}
\end{equation*}
$$

From (41) and the third equation of (58), we acquire

$$
\begin{equation*}
p=i\left(f+f_{0}\right)=\frac{\epsilon_{1}}{k_{1}} q=j\left(f+f_{0}\right)=\frac{\epsilon_{1} j}{i k_{1}} . \tag{59}
\end{equation*}
$$

By differentiating (58) about s and using (1), we get

$$
\begin{equation*}
-\epsilon_{1}^{*} f^{\prime} k_{1}^{*} T^{*}+\epsilon_{3}^{*} f^{\prime} k_{2}^{*} B_{1}^{*}=\epsilon_{2} k_{1} N \tag{60}
\end{equation*}
$$

It follows that we may choose

$$
\begin{equation*}
B_{1}^{*}=-j N+i B_{2}, f^{\prime} k_{2}^{*}=-\epsilon_{1} \epsilon_{2}^{*} j k_{1} . \tag{61}
\end{equation*}
$$

By differentiating (61) about s using the Frenet Formula (1) and third equation of (58), we get

$$
\begin{equation*}
B_{2}^{*}=B_{1}, f^{\prime} k_{3}^{*}=-\epsilon_{3}\left(j k_{2}+i k_{3}\right)=\epsilon_{3} i^{-1} k_{3} . \tag{62}
\end{equation*}
$$

From (58), (61) and (62), we can easily acquire our desired theorem.
Remark 2. Theorems 3 and 4 are quite different.

5. The (1,3)-Evolute Curve of a Cartan Null Curve in E_{1}^{4}

In this section, we proceed to study the existence and expression of the $(1,3)$-evolute curve of a given Cartan null curve in E_{1}^{4}. At any point of α, the plane spanned by $\left\{N, B_{2}\right\}$ is called the $(1,3)$-normal plane of α.

Let $\alpha: I \rightarrow E_{1}^{4}$ and $\alpha^{*}: I \rightarrow E_{1}^{4}$ be two regular curves in E_{1}^{4}, where s is the arc-length parameter of α. Denote $s^{*}=f(s)$ to be the arc-length parameters of α^{*}. For any $s \in I$, if the $(0,2)$-tangent plane of α at $\alpha(s)$ coincides with the (1,3)-normal plane at $\alpha^{*}(s)$ of α^{*}, then α^{*} is called the $(0,2)$-involute curve of α in E_{1}^{4} and α is called the $(1,3)$-evolute curve of α^{*} in E_{1}^{4}.

Theorem 5. Let $\alpha: I \rightarrow E_{1}^{4}$ be a null Cartan curve with arc length parameter s so that $k_{1}=1$, and $k_{2} k_{3}$ are not zero, if α possesses the (1,3)-evolute mate curve, $\alpha^{*}(s)=\alpha(s)+\frac{1}{i(s)}\left[i N(s)+j B_{2}(s)\right]-\frac{1}{k_{3}(s)} B_{2}(s)$, then k_{1}, k_{2} and k_{3} satisfy $i+i k_{2}-j k_{3}=0$, where i and j are given constants. Three curvatures of α^{*} are given by

$$
\begin{equation*}
k_{1}^{*}=-\frac{\sqrt{2}(i)}{f^{\prime}}, k_{2}^{*}=\frac{\sqrt{2}\left[k_{3} /(2 i)-j\right]}{f^{\prime}}, k_{3}^{*}=-\sqrt{2} k_{3} /\left(2 i f^{\prime}\right), f^{\prime}=(1 / i) \tag{63}
\end{equation*}
$$

Moreover, the associated Frenet frames are given by

$$
\begin{equation*}
T^{*}=i N+j B_{2}, N^{*}=\left(T+B_{1}\right) / \sqrt{2}, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=\left(-T+B_{1}\right) / \sqrt{2} \tag{64}
\end{equation*}
$$

Proof. Let $\alpha: I \rightarrow E_{1}^{4}$ be a Cartan null curve parameterized by the pseudo-arc parameter s with curvatures $k_{1}=1$, and k_{2} and k_{3} are not zero. Let $\alpha^{*}: I \rightarrow E_{1}^{4}$ be the (1,3)-evolute curve of α. Denote $\left\{T^{*}, N^{*}, B_{1}^{*}, B_{2}^{*}\right\}$ as the Frenet frame along α^{*} and k_{1}^{*}, k_{2}^{*} and k_{3}^{*} as the curvatures of α^{*}. Then

$$
\begin{equation*}
\operatorname{span}\left\{T, B_{1}\right\}=\operatorname{span}\left\{N^{*}, B_{2}^{*}\right\}, \operatorname{span}\left\{N, B_{2}\right\}=\operatorname{span}\left\{T^{*}, B_{1}^{*}\right\} . \tag{65}
\end{equation*}
$$

Moreover, α^{*} can be expressed as

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+p(s) N(s)+q(s) B_{2} \tag{66}
\end{equation*}
$$

where $p(s)$ and $q(s)$ are C^{∞} functions on I. By differentiating (66) with respect to s using the Frenet Formula (2), we get

$$
\begin{equation*}
T^{*} f^{\prime}=\left(1+p k_{2}-q k_{3}\right) T+p^{\prime} N+q^{\prime} B_{2}-p B_{1} . \tag{67}
\end{equation*}
$$

By taking the inner product on both sides of (67) with T and B_{1}, respectively, we get

$$
\begin{equation*}
f^{\prime} T^{*}=p^{\prime} N+q^{\prime} B_{2}, p=1, q=\frac{k_{2}}{k_{3}} . \tag{68}
\end{equation*}
$$

Denote

$$
\begin{equation*}
i=\frac{p^{\prime}}{f^{\prime}}, j=\frac{q^{\prime}}{f^{\prime}} \tag{69}
\end{equation*}
$$

then (68) turns into

$$
\begin{equation*}
T^{*}=i N+j B_{2}, i^{2}+j^{2}=1 \tag{70}
\end{equation*}
$$

By differentiating (70) with respect to s and using the Frenet formula (2), we get

$$
\begin{equation*}
f^{\prime} k_{1}^{*} N^{*}=i^{\prime} N-i B_{1}+j^{\prime} B_{2}+\left(i k_{2}-j k_{3}\right) T . \tag{71}
\end{equation*}
$$

By taking the inner product on both sides of (71) with N and B_{2} respectively, we get $i^{\prime}=o$ and $j^{\prime}=0$ which implies that i and j are constants. From (69), we get

$$
\begin{equation*}
p=i f+p_{0}=1, q=j f+q_{0}=\frac{k_{2}}{k_{3}} . \tag{72}
\end{equation*}
$$

Moreover, (71) turns into

$$
\begin{equation*}
f^{\prime} k_{1}^{*} N^{*}=-i B_{1}+\left(i k_{2}-j k_{3}\right) T \tag{73}
\end{equation*}
$$

Denote

$$
\begin{equation*}
r=-\frac{i}{f^{\prime} k_{1}^{*}}, t=\frac{\left(i k_{2}-j k_{3}\right)}{f^{\prime} k_{1}^{*}}, \tag{74}
\end{equation*}
$$

then (73) turns into

$$
\begin{equation*}
N^{*}=r B_{1}+t T, f^{\prime} k_{1}^{*}=-r^{-1} i, r^{2}+t^{2}=1 \tag{75}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
t i+r i k_{2}-r j k_{3}=0 \tag{76}
\end{equation*}
$$

Case 1: $t \neq 0$. By differentiating (75) about s and using the Frenet Formula (2), we get

$$
\begin{equation*}
-f^{\prime} k_{1}^{*} T^{*}+f^{\prime} k_{2}^{*} B_{1}^{*}=\left(t k_{1}-r k_{2}\right) N+r k_{3} B_{2}+r^{\prime} T+t^{\prime} B_{1} . \tag{77}
\end{equation*}
$$

By taking the inner product from both sides of (77) with T and B_{1} respectively, we get $r^{\prime}=0$ and $t^{\prime}=0$, which implies that r and t are constants. In this case, (77) turns into

$$
\begin{equation*}
f^{\prime} k_{2}^{*} B_{1}^{*}=\left(\frac{r^{2}-i^{2}}{r}-t k_{2}\right) N-\left(t k_{3}+\frac{i j}{r}\right) B_{2} . \tag{78}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\sigma=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(\frac{r^{2}-i^{2}}{r}-t k_{2}\right), \varsigma=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(t k_{3}-\frac{i j}{r}\right), \tag{79}
\end{equation*}
$$

then (78) turns into

$$
\begin{equation*}
B_{1}^{*}=\sigma N+\varsigma B_{2}, \sigma^{2}+\varsigma^{2}=1 \tag{80}
\end{equation*}
$$

Since $T^{*} \perp B_{1}^{*}$, it follows from (70) and (80) that $\frac{\sigma}{\varsigma}=-\frac{j}{i}$, which implies that

$$
\begin{equation*}
i+i k_{2}-j k_{3}=0 \tag{81}
\end{equation*}
$$

From (76) and (81), we can see that

$$
\begin{equation*}
i k_{2}-j k_{3}=-i,(t-r) i=0 \tag{82}
\end{equation*}
$$

Since $t \neq 0$, it follows from (82) that $t=r$.
Hence (80) turns into

$$
\begin{equation*}
B_{1}^{*}=-j+i B_{2}, f^{\prime} k_{2}^{*}=-\frac{j}{r}+\frac{t}{i} k_{3} \tag{83}
\end{equation*}
$$

By differentiating (83) about s using (2), we get

$$
\begin{equation*}
-f^{\prime} k_{2}^{*} N^{*}+f^{\prime} k_{3}^{*} B_{2}^{*}=j B_{1}-\left(j k_{2}+i k_{3}\right) T . \tag{84}
\end{equation*}
$$

From which we have

$$
\begin{equation*}
f^{\prime} k_{3}^{*} B_{2}^{*}=f^{\prime} k_{2}^{*} N^{*}+j B_{1}-\left(j k_{2}+i k_{3}\right) T,-\frac{t^{2}}{i} k_{3}\left(-T+B_{1}\right) \tag{85}
\end{equation*}
$$

It follows from (85) that

$$
\begin{equation*}
B_{2}^{*}=-t T+r B_{1}, f^{\prime} k_{3}^{*}=-\frac{t}{i} k_{3} \tag{86}
\end{equation*}
$$

From (74), (83) and (86), we easily acquire our desired theorem.
Case 2: For $t=0$, we have the following theorem.
Theorem 6. Let $\alpha: I \rightarrow E_{1}^{4}$ be a null Cartan curve with arc-length parameter so that $k_{1}=1, k_{2}$ and k_{3} are not zero. If α possesses the (1,3)-evolute mate curve, $\alpha^{*}(s)=\alpha(s)+\frac{1}{i k_{1}(s)}\left[i N(s)+j B_{2}(s)\right]$, then k_{2} and k_{3} satisfy $i k_{2}-j k_{3}=0$, where i and j are given constants. Moreover, the three curvatures of α^{*} are given by

$$
\begin{equation*}
k_{1}^{*}=-i / f^{\prime}, k_{2}^{*}=-j / f^{\prime}, k_{3}^{*}=i^{-1} k_{3} / f^{\prime}, f^{\prime}=\left(\frac{1}{i}\right) \tag{87}
\end{equation*}
$$

The associated Frenet frames are given by

$$
\begin{equation*}
T^{*}=i N+j B_{2}, N^{*}=T, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=B_{1} \tag{88}
\end{equation*}
$$

Proof. For this case, we may suppose that

$$
\begin{equation*}
N^{*}=T, f^{\prime} k_{1}^{*}=-i, i k_{2}-j k_{3}=0 \tag{89}
\end{equation*}
$$

Moreover, from (72) and the third equation of (89), we get

$$
\begin{equation*}
p=i\left(f+f_{0}\right)=\frac{1}{k_{1}} q=j\left(f+f_{0}\right)=\frac{j}{i} . \tag{90}
\end{equation*}
$$

By differentiating (89) about s and using (2), we get

$$
\begin{equation*}
f^{\prime} k_{1}^{*} T^{*}+f^{\prime} k_{2}^{*} B_{1}^{*}=k_{1} N . \tag{91}
\end{equation*}
$$

It follows that we can choose

$$
\begin{equation*}
B_{1}^{*}=-j N+i B_{2}, f^{\prime} k_{2}^{*}=-j \tag{92}
\end{equation*}
$$

By differentiating (92) about s using the Frenet Formula (2) and third equation of (89), we get

$$
\begin{equation*}
B_{2}^{*}=B_{1}, f^{\prime} k_{3}^{*}=-\left(j k_{2}+i k_{3}\right)=-i^{-1} k_{3} \tag{93}
\end{equation*}
$$

From (89), (92) and (93), we can easily acquire our desired theorem.
Remark 3. Theorems 5 and 6 are quite different.

Condition 2:

Theorem 7. Let $\alpha: I \rightarrow E_{1}^{4}$ be a null Cartan curve with arc length parameter s so that $k_{1}=1$, and $k_{2} k_{3}$ are not zero if α possesses the (1,3)-evolute mate curve, $\alpha^{*}(s)=\alpha(s)+\frac{1}{i(s) k_{1}}\left[i N(s)+j B_{2}(s)\right]-\frac{1}{k_{3}(s)} B_{2}(s)$. Then, k_{1}, k_{2} and k_{3} satisfy $i k_{1}+i-j k_{3}=0$, where i and j are given constants. Three curvatures of α^{*} are given, as follows:

$$
\begin{equation*}
k_{1}^{*}=-\frac{\sqrt{2}\left(i k_{1}\right)}{f^{\prime}}, k_{2}^{*}=\frac{\sqrt{2}\left[k_{3} /(2 i)-j k_{1}\right]}{f^{\prime}}, k_{3}^{*}=-\sqrt{2} k_{3} /\left(2 i f^{\prime}\right), f^{\prime}=\left(1 / i k_{1}\right) . \tag{94}
\end{equation*}
$$

The associated Frenet Frame are given by

$$
\begin{equation*}
T^{*}=i N+j B_{2}, N^{*}=\left(T+B_{1}\right) / \sqrt{2}, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=\left(-T+B_{1}\right) / \sqrt{2} \tag{95}
\end{equation*}
$$

Proof. Let $\alpha: I \rightarrow E_{1}^{4}$ be a Cartan null curve parametrized by pseudo-arc parameter s with curvatures $k_{2}=1$, and k_{1} and k_{3} are not zero. Let $\alpha^{*}: I \rightarrow E_{1}^{4}$ be the $(1,3)$-evolute curve of α. Denote $\left\{T^{*}, N^{*}, B_{1}^{*}, B_{2}^{*}\right\}$ as the Frenet frame along α^{*} and k_{1}^{*}, k_{2}^{*} and k_{3}^{*} as the curvatures of α^{*}. Then,

$$
\begin{equation*}
\operatorname{span}\left\{T, B_{1}\right\}=\operatorname{span}\left\{N^{*}, B_{2}^{*}\right\}, \operatorname{span}\left\{N, B_{2}\right\}=\operatorname{span}\left\{T^{*}, B_{1}^{*}\right\} \tag{96}
\end{equation*}
$$

Moreover, α^{*} can be expressed as

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+p(s) N(s)+q(s) B_{2} \tag{97}
\end{equation*}
$$

where $p(s)$ and $q(s)$ are C^{∞} functions on I. By differentiating (97) with respect to s using the Frenet Formula (2), we get

$$
\begin{equation*}
T^{*} f^{\prime}=\left(1+p-q k_{3}\right) T+p^{\prime} N+q^{\prime} B_{2}-p k_{1} B_{1} \tag{98}
\end{equation*}
$$

By taking the inner product from both sides of (98) with T and B_{1} respectively, we get

$$
\begin{equation*}
f^{\prime} T^{*}=p^{\prime} N+q^{\prime} B_{2}, p=\frac{1}{k_{1}}, q=\frac{1}{k_{1} k_{3}} . \tag{99}
\end{equation*}
$$

Denote

$$
\begin{equation*}
i=\frac{p^{\prime}}{f^{\prime}}, j=\frac{q^{\prime}}{f^{\prime}} \tag{100}
\end{equation*}
$$

then (99) turns into

$$
\begin{equation*}
T^{*}=i N+j B_{2}, i^{2}+j^{2}=1 \tag{101}
\end{equation*}
$$

By differentiating (101) with respect to s and using the Frenet formula (2), we get

$$
\begin{equation*}
f^{\prime} k_{1}^{*} N^{*}=i \prime N-i k_{1} B_{1}+j^{\prime} B_{2}+\left(i-j k_{3}\right) T . \tag{102}
\end{equation*}
$$

By taking the inner product from both sides of (102) with N and B_{2}, respectively, we get $i^{\prime}=o$ and $j^{\prime}=0$ which implies that i and j are constants. From (100), we get

$$
\begin{equation*}
p=i f+p_{0}=\frac{1}{k_{1}}, q=j f+q_{0}=\frac{1}{k_{1} k_{3}} . \tag{103}
\end{equation*}
$$

Moreover, (102) turns into

$$
\begin{equation*}
f^{\prime} k_{1}^{*} N^{*}=-i k_{1} B_{1}+\left(i-j k_{3}\right) T \tag{104}
\end{equation*}
$$

Denote

$$
\begin{equation*}
r=-\frac{i k_{1}}{f^{\prime} k_{1}^{*}}, t=\frac{\left(i-j k_{3}\right)}{f^{\prime} k_{1}^{*}} \tag{105}
\end{equation*}
$$

then (104) turns into

$$
\begin{equation*}
N^{*}=r B_{1}+t T, f^{\prime} k_{1}^{*}=-r^{-1} i k_{1}, r^{2}+t^{2}=1 \tag{106}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
t i k_{1}+r i-r j k_{3}=0 \tag{107}
\end{equation*}
$$

Case 1: $t \neq 0$. By differentiating (106) about s and using the Frenet Formula (2), we get

$$
\begin{equation*}
-f^{\prime} k_{1}^{*} T^{*}+f^{\prime} k_{2}^{*} B_{1}^{*}=\left(t k_{1}-r\right) N+r k_{3} B_{2}+r^{\prime} T+t^{\prime} B_{1} . \tag{108}
\end{equation*}
$$

By taking the inner product on both sides of (108) with T and B_{1}, respectively, we get $r^{\prime}=0$ and $t^{\prime}=0$, which implies that r and t are constants. In this case, (108) turns into

$$
\begin{equation*}
f^{\prime} k_{2}^{*} B_{1}^{*}=\left(\frac{r^{2}-i^{2}}{r}-t\right) N-\left(t k_{3}+\frac{i j k_{1}}{r}\right) B_{2} . \tag{109}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\sigma=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(\frac{r^{2}-i^{2}}{r} k_{1}-t\right), \zeta=\left(f^{\prime} k_{2}^{*}\right)^{-1}\left(t k_{3}-\frac{i j}{r} k_{1}\right), \tag{110}
\end{equation*}
$$

then (109) turns into

$$
\begin{equation*}
B_{1}^{*}=\sigma N+\varsigma B_{2}, \sigma^{2}+\varsigma^{2}=1 \tag{111}
\end{equation*}
$$

Since $T^{*} \perp B_{1}^{*}$, it follows from (101) and (111) that $\frac{\sigma}{\varsigma}=-\frac{j}{i}$, which implies that

$$
\begin{equation*}
i k_{1}+i-j k_{3}=0 \tag{112}
\end{equation*}
$$

From (107) and (112), we get

$$
\begin{equation*}
i-j k_{3}=-i k_{1},(t-r) i k_{1}=0 \tag{113}
\end{equation*}
$$

Since $t \neq 0$, it follows from (113) that $t=r$. Hence, (111) turns into

$$
\begin{equation*}
B_{1}^{*}=-j N+i B_{2}, f^{\prime} k_{2}^{*}=-\frac{j}{r} k_{1}+\frac{t}{i} k_{3} \tag{114}
\end{equation*}
$$

By differentiating (114) about s using (2), we get

$$
\begin{equation*}
-f^{\prime} k_{2}^{*} N^{*}+f^{\prime} k_{3}^{*} B_{2}^{*}=j k_{1} B_{1}-\left(j+i k_{3}\right) T . \tag{115}
\end{equation*}
$$

From which we have

$$
\begin{equation*}
f^{\prime} k_{3}^{*} B_{2}^{*}=f^{\prime} k_{2}^{*} N^{*}+j k_{1} B_{1}-\left(j+i k_{3}\right) T,-\frac{t^{2}}{i} k_{3}\left(-T+B_{1}\right) \tag{116}
\end{equation*}
$$

It follows from (116) that

$$
\begin{equation*}
B_{2}^{*}=-t T+r B_{1}, f^{\prime} k_{3}^{*}=-\frac{t}{i} k_{3} \tag{117}
\end{equation*}
$$

From (106), (114) and (117), we can easily acquire our desired theorem.
Case 2: For $t=0$, we have the following theorem.
Theorem 8. Let $\alpha: I \rightarrow E_{1}^{4}$ be a null Cartan curve with arc-length parameter s so that $k_{1}=1, k_{2}$ and k_{3} are not zero. If α possesses the (1,3)-evolute mate curve $\alpha^{*}(s)=\alpha(s)+\frac{1}{i k_{1}(s)}\left[i N(s)+j B_{2}(s)\right]$, then k_{2} and k_{3} satisfy $i k_{2}-j k_{3}=0$, where i and j are given constants. Moreover, the three curvatures of α^{*} are given by

$$
\begin{equation*}
k_{1}^{*}=-i / f^{\prime}, k_{2}^{*}=-j / f^{\prime}, k_{3}^{*}=i^{-1} k_{3} / f^{\prime}, f^{\prime}=\left(\frac{1}{i}\right) \tag{118}
\end{equation*}
$$

The associated Frenet frames are given by

$$
\begin{equation*}
T^{*}=i N+j B_{2}, N^{*}=T, B_{1}^{*}=-j N+i B_{2}, B_{2}^{*}=B_{1} \tag{119}
\end{equation*}
$$

Proof. In this case, we may suppose that

$$
\begin{equation*}
N^{*}=B_{1}, f^{\prime} k_{1}^{*}=-i k_{1}, i-j k_{3}=0 \tag{120}
\end{equation*}
$$

Moreover, from (112) and the third equation of (120), we get

$$
\begin{equation*}
p=i\left(f+f_{0}\right)=\frac{1}{k_{1}}, q=j\left(f+f_{0}\right)=\frac{j}{i k_{1}} . \tag{121}
\end{equation*}
$$

By differentiating (120) about s and using (2), we get

$$
\begin{equation*}
f^{\prime} k_{1}^{*} T^{*}+f^{\prime} k_{2}^{*} B_{1}^{*}=k_{1} N . \tag{122}
\end{equation*}
$$

It follows that we can choose

$$
\begin{equation*}
B_{1}^{*}=-j N+i B_{2}, f^{\prime} k_{2}^{*}=-j k_{1} . \tag{123}
\end{equation*}
$$

By differentiating (123) about s using the Frenet Formula (2) and using the third equation of (120), we get

$$
\begin{equation*}
B_{2}^{*}=B_{1}, f^{\prime} k_{3}^{*}=-\left(j+i k_{3}\right)=j^{-1} \tag{124}
\end{equation*}
$$

From (120), (123) and (124), we can easily acquire our desired theorem.
Remark 4. Theorems 7 and 8 are quite different.

6. Conclusions

This paper established new kinds of generalized evolute and involute curves in four-dimensional Minkowski space by providing the necessary and sufficient conditions for the curves possessing generalized evolute and involute curves. Furthermore, the study invoked a new type of (1,3)-evolute and (0,2)-evolute curve in four-dimensional Minkowski space. The study also provided a new kind of generalized null Cartan curve in four-dimensional Minkowski space. For this new type of curve, the study provided several theorems with necessary and sufficient conditions and obtained significant
results. The understanding of evolute curves with this new type evolute curve in four-dimensional Minkowski space will be beneficial for researchers in future studies. The designing of a framework for the involutes of order k of a null Cartan curve in Minkowski spaces will be considered in future work.

Author Contributions: M.H. is a doctorate candidate under the supervision of Z.H.H. and writer of original draft. Z.H.H. write, review and edit the original draft and formal analysis by K.S.N.

Funding: The work presented in this paper is supported by National Natural Science Foundation of China under Grant No. 61473059.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huygens, C. 1673 Horologium oscillatorium. In Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometrical (Paris: AF Muguet); Iowa State University Press: Ames, IA, USA, 1986.
2. Fuchs, D. Evolutes and involutes of spatial curves. Am. Math. Mon. 2013, 120, 217-231. [CrossRef]
3. Şenyurt, S.; Kılıçoğlu, Ş. On the Differential Geometric Elements of the Involute D-Scroll in E3. Adv. Appl. Clifford Algebras 2015, 25, 977-988. [CrossRef]
4. Gere, B.H.; Zupnik, D. On the Construction of Curves of Constant Width. Stud. Appl. Math. 1943, 22, 31-36. [CrossRef]
5. Özylmaz, E.; Yılmaz, S. Involute-evolute curve couples in the euclidean 4-Space. Int. J. Open Probl. Compt. Math. 2009, 2, 168-174.
6. Izumiya, S.; Takahashi, M. Spacelike parallels and evolutes in Minkowski pseudo-spheres. J. Geom. Phys. 2007, 57, 1569-1600. [CrossRef]
7. Sato, T. Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz-Minkowski space. J. Geom. 2012, 103, 319-331. [CrossRef]
8. Craizer, M. Iteration of involutes of constant width curves in the Minkowski plane. Beiträge Algebra Geometrie/Contrib. Algebra Geom. 2014, 55, 479-496. [CrossRef]
9. Nolasco, B.; Pacheco, R. Evolutes of plane curves and null curves in Minkowski 3-space. J. Geom. 2017, 108, 195-214. [CrossRef]
10. Turgut, M.; Yilmaz, S. On the Frenet frame and a characterization of space-like involute-evolute curve couple in Minkowski space-time. Int. Math. Forum 2008, 3, 793-801.
11. Bükcü, B.; Karacan, M.K. On the involute and evolute curves of the timelike curve in Minkowski 3-space. Demonstr. Math. 2007, 40, 721-732.
12. Bukcu, B.; Karacan, M.K. On the involute and evolute curves of the spacelike curve with a spacelike binormal in Minkowski 3-space. Int. J. Contemp. Math. Sci. 2007, 2, 221-232. [CrossRef]
13. Yoon, D.W. On the evolute offsets of ruled surfaces in Minkowski3-space. Turk. J. Math. 2016, 40,594-604. [CrossRef]
14. As, E.; Sarıoğlugil, A. On the Bishop curvatures of involute-evolute curve couple in E3. Int. J. Phys. Sci. 2014, 9, 140-145.
15. Yu, H.; Pei, D.; Cui, X. Evolutes of fronts on Euclidean 2-sphere. J. Nonlinear Sci. Appl. 2015, 8, 678-686. [CrossRef]
16. Fukunaga, T.; Takahashi, M. Evolutes of fronts in the Euclidean plane. Hokkaido Univ. Prepr. Ser. Math. 2012, 1026, 1-17. [CrossRef]
17. İlarslan, K.; Nešović, E. Spacelike and timelike normal curves in Minkowski space-time. Publ. Inst. Math. 2009, 85, 111-118. [CrossRef]
18. O'neill, B. Semi-Riemannian Geometry With Applications to Relativity; Academic Press: Cambridge, MA, USA, 1983; Volume 103.
19. Bonnor, W.B. Null curves in a Minkowski space-time. Tensor 1969, 20, 229.
20. Bonnor, W. Curves with null normals in Minkowski space-time. In A Random Walk in Relativity and Cosmology; 1985; pp. 33-47. Avaliable online: http:/ /adsabs.harvard.edu/abs/1985rwrc.conf...33B (accessed on 17 June 2018).
