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Abstract: Recently, extensive research has been done on evolute curves in Minkowski space-time.
However, the special characteristics of curves demand advanced level observations that are lacking
in existing well-known literature. In this study, a special kind of generalized evolute and involute
curve is considered in four-dimensional Minkowski space. We consider (1,3)-evolute curves with
respect to the casual characteristics of the (1,3)-normal plane that are spanned by the principal normal
and the second binormal of the vector fields and the (0,2)-evolute curve that is spanned by the
tangent and first binormal of the given curve. We restrict our investigation of (1,3)-evolute curves
to the (1,3)-normal plane in four-dimensional Minkowski space. This research contribution obtains
a necessary and sufficient condition for the curve possessing the generalized evolute as well as the
involute curve. Furthermore, the Cartan null curve is also discussed in detail.

Keywords: evolute; involute curves; mate curves; minkowski space
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1. Introduction

In the theory of curves, one of the important and interesting problems is the characterization of
regular curves, in particular, the involute–evolute of a given curve. Evolutes and involutes (also known
as evolvents) were studied by C. Huygens [1]. According to D. Fuchs [2], an involute of a given curve
is a curve to which all tangents of the given curve are normal. He also defined the equation for an
enveloping curve of the family of normal planes for a space curve. Suleyman and Seyda [3] determined
the concept of parallel curves, which means that if the evolute exists, then the evolute of the parallel arc
will also exist and the involute will coincide with the evolute. Brewster and David [4] stated that a curve
is composed of two arcs with a common evolute, and the common evolute of two arcs must be a curve
with only one tangent in each direction. In general, the evolute of a regular curve has singularities,
and these points correspond to vertices. Emin and Suha [5] determined that an evolute Frenet apparatus
can be formed by an involute apparatus in four dimensional Euclidean space, so, in this way, another
orthonormal of the same space can be obtained. Shyuichi Izumiya [6] defined evolutes as the loci of
singularities of space-like parallels and geometric properties of non-singular space-like hyper surfaces
corresponding to the singularities of space-like parallels or evolutes. Takami Sato [7] investigated the
singularities and geometric properties of pseudo-spherical evolutes of curves on a space-like surface in
three-dimensional Minkowski-space. Marcos Craizer [8] stated that the iteration of involutes generates
a pair of sequences of curves with respect to the Minkowski metric and its dual.

According to Boaventura Nolasco and Rui Pacheco [9], correspondence between plane curves and
null curves in Minkowski three-space exists. He also described the geometry of null curves in terms of
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the curvature of the corresponding plane curves. M. Turgut and S. Yilmaz [10] obtained the Frenet
apparatus of a given curve by defining the space-like involute–evolute curve couple in Minkowski
space-time. Some researchers have investigated evolute curves and their characterization in Minkowski
space [11–16] as well as in Euclidean space. Many researchers have dealt with evolute–involute curves,
but no research has been carried out on the Cartan null curve. In this study, a special kind of generalized
evolute and involute curve is considered in four-dimensional Minkowski space. We obtained necessary
and sufficient conditions for the curve possessing a generalized evolute as well as an involute.

2. Preliminaries

Consider the Minkowski space-time, (E4
1, G), where E4

1 = {y = (y1, y2, y3, y4)|yi ∈ R}
and G = −dy2

1 + dy2
2 + dy2

3 + dy2
4. For any M = (m1, m2, m3, m4) and N = (n1, n2, n3, n4) ∈ TyE.

We denote M · N = G(M, N) = m1n1 + m2n2 + m3n3 + m4n4. Let I be an open interval in R
and α : I → E4

1 be a regular curve in E4
1 that is parameterized by the arc length parameter,

s, and {T, N, B1, B2} is the moving Frenet frame along α, consisting of the tangent vector, T;
the principal normal vector, N; the first binormal vector, B1, and the second binormal vector,
B2, respectively, so that T ∧ N ∧ B1 ∧ B2 coincides with the standard orientation of E4

1. Then,
T · T = ε1, N · N = ε2, B1 · B1 = ε3, B2 · B2 = ε4, ε1ε2ε3ε4 = −1, εi ∈ {1,−1}, i ∈ {1, 2, 3, 4}.

In particular, the following conditions hold: T · N = T · B1 = T · B2 = N · B1 = N · B2 = B1 · B2 = 0.
In accordance with reference [17], the Frenet–Serret formula for α in E4

1 is given by
T′

N′

B′1
B′2

 =


0 ε2k1 0 0

−ε1k1 0 ε3k2 0
0 −ε2k2 0 −ε1ε2ε3k3

0 0 −ε3k3 0




T
N
B1

B2

 . (1)

We introduce some methodologies in this paper. At any point of α, the plane spanned by {T, B1}
is called the (0,2)-tangent plane of α. The plane spanned by {N, B2} is called the (1,3)-normal plane
of α.

Let α : I → E4
1 and α∗ : I → E4

1 be two regular curves in E4
1 , where s is the arc-length parameter of

α. Denote s∗ = f (s) to be the arc-length parameters of α∗. For any s ∈ I, if the (0,2)-tangent plane of α

at α(s) coincides with the (1,3)-normal plane at α∗(s) of α∗, then α∗ is called the (0,2)-involute curve of
α in E4

1 and α is called the (1,3)-evolute curve of α∗ in E4
1.

An arbitrary curve, α(s) in E4
1, can locally be space-like, time-like, or null (light-like) if all

of its velocity vectors, α′(s), are respectively space-like, time-like, or null [18]. A null curve, α,
is parametrized by the pseudo-arc s if g(α′′(s), α′′(s)) = 1 [19]. On the other hand, a nonnull
curve, α, is parametrized by the arc-length parameter, s, if g(α′(s), α′(s)) = ±1. In accordance
with references [19,20], if α is null Cartan curve, the Cartan Frenet frame is given by

T′

N′

B′1
B′2

 =


0 k1 0 0
k2 0 −k1 0
0 −k2 0 k3

−k3 0 0 0




T
N
B1

B2

 , (2)

where k1(s) = 0 if α(s) is a null straight line or k1(s) = 1 in all other cases. In this case, the next
conditions hold: T · T = B1 · B1 = 0, N ·N = B2 · B2 = 1, T ·N = T · B2 = N · B1 = N · B2 = B1 · B2 = 0,
T · B1 = 1.

3. The (0,2)-Involute Curve of a Given Curve in E4
1

In this section, we proceed to study the existence and expression of the (0,2)-involute curve of
a given curve in E4

1 .
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Theorem 1. Let α : I → E4
1 be a regular curve parameterized by arc-length s so that k1, k2 and k3 are not zero.

If α possesses the (0,2)-involute mate curve, α∗(s) = α(s) + (φ0 − s)T(s) + ϕB1(s), with ϕ 6= 0, then k1, k2

and k3 satisfy
k2

k1
= τ,

k3

k1
= t1(τ + ε1ε3t2), τ =

φ0 − s + ϕt2
1t2

ϕ(1− ε1ε3t2
1)

,

where φ0, ϕ, t1 and t2 are given constants. Moreover, the three curvatures of α∗ are given by

k∗1 = −
ε1ε4ε∗2 f t2

3
ϕ(τ + ε1ε3t2)

, k∗2 =
f (ε4ε∗3 t2τ − ε2ε∗3 t2

2 − ε1ε∗4 t2
3)

ϕt1(τ + ε1ε3t2)
, k∗3 = −

ε4ε∗4 f
ϕt1

,

where f 6= 0. The associated Frenet frame are given by

T∗ = f t3(t1N + B2), N∗ = f (T + t2B1), B∗1 = gt3(−N + t1B2), B∗2 = f (−t2T + B1).

Proof. Let α : I → E4
1 be a regular curve with arc-length parameter s so that k1, k2 and k3 are not zero.

Suppose that α∗ : I → E4
1 is the (0,2)-involute curve of α. {T∗, N∗, B∗1 , B∗2} is the Frenet frame along α∗

and k∗1, k∗2 and k∗3 are the curvatures of β∗. Then
span {T, B1} = span{N∗, B∗2}, span {N, B2} = span{T∗, B∗1}.
Moreover, α∗ can be expressed as

α∗(s) = α(s) + φ(s)T(s) + ϕ(s)B1, (3)

where φ(s) and ϕ(s) are C∞ functions on I.
By differentiating (3) with respect to s and using the Frenet formula (1), we get

f ′T∗ = (1 + φ′)T(s) + ϕ′(s)B1 + ε2(φk1 − ϕk2)N − ε1ε2ε3 ϕk3B2. (4)

Taking the inner product on both sides of (4) with T and B1, respectively, we get 1 + φ′ = 0 and
ϕ′ = 0, which implies that ϕ is constant and φ = ϕ0 − s, where φ0 is the integration constant. So, (4)
turns into

f ′T∗ = ε2(φk1 − ϕk2)N − ε1ε2ε3 ϕk3B2. (5)

If we denote

µ =
ε2(φk1 − ϕk2)

f ′
, ν =

−ε1ε2ε3 ϕk3

f ′
, (6)

then (5) turns into
T∗ = µN + νB2, µ2 + ν2 = 1. (7)

Case 1: ϕ 6= 0. In this case, ν 6= 0. µ
ν = t1 implies that µ = t1ν and

ε2(φk1 − ϕk2) = −ε1ε2ε3 ϕt1k3, f ′ = −ε1ε2ε3 ϕν−1k3, ν2 =
1

1 + t2
1

. (8)

By differentiating (7) with respect to s and using the Frenet formula (1), we get

ε∗2 f ′k∗1 N∗ = µ′N − ε1µk1T + ν′B2 + ε3(µk2 − νk3)B1. (9)

By taking the inner product from both sides of (9) with N and B2, respectively, we get µ′ = 0 and
ν′ = 0, which implies that µ and ν are constants. So, (9) turns into

ε∗2 f ′k∗1 N∗ = −ε1µk1T + ε3(µk2 − νk3)B1. (10)
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Denote

f = − ε1νt1k1

ε∗2 f ′k∗1
, g =

ε3ν(t1k2 − k3)

ε∗2 f ′k∗1
, (11)

then (10) turns into
N∗ = f T + gB1, f 2 + g2 = 1. (12)

g
f = t2 implies that g = t2 f and

t1t2k1 = −ε1ε3(t1k2 − k3), f 2 =
1

1 + t2
2

. (13)

From Equations (8) and (13), we have

τ :=
k2

k1
=

φ
ϕ + t2

1t2

1− ε1ε3t2
1

,
k3

k1
= t1(τ + ε1ε3t2). (14)

ν
f = t3 implies that ν = t3 f . From (11), we get

f ′k∗1 = −ε1ε∗2 t1t3k1, t2
3 =

1 + t2
2

1 + t2
1

. (15)

By differentiating (12) with respect to s using the Frenet formula (1), we get

− ε∗1 f ′k∗1T∗ + ε∗3 f ′k∗2B∗1 = f ′T + ε2( f k1 − gk2)N + g′B1 − ε1ε2ε3gk3B2. (16)

By taking inner product on both side of (16) by T and B1 respectively, we get f ′ = 0 and g′ = 0,
which implies that f and g are constants. In this case, (16) turns into

ε∗3 f ′k∗2B∗1 = ε∗1 f ′k∗1T∗ + ε2 f (k1 − t2k2)N − ε1ε2ε3gt2k3B2. (17)

By substituting (7) and (15) into (17), we get

f ′k∗2B∗1 = f k1(ε4ε∗3 t2τ − ε2ε∗3 t2
2 − ε1ε∗4 t2

3)(−N + t1B2). (18)

From (18), we may choose that

B∗1 = −ε4νN + ε2µB2, f ′k∗2 = t−1
3 k1(ε4ε∗3 t2τ − ε2ε∗3 t2

2 − ε1ε∗4 t2
3). (19)

By differentiating (19) about s and using the Frenet formula (1), we get

− ε∗2 f ′k∗2 N∗ − ε∗1ε∗2ε∗3 f ′k∗3B∗2 = ε1ε4νk1T − (ε3ε4νk2 + ε2ε3µk3)B1, (20)

from which we obtain

ε∗4 f ′k∗3B∗2 = (ε∗2 f f ′k∗2 + ε1ε4νk1)T + (ε∗2 g f ′k∗2 − ε3ε4νk2 − ε2ε3µk3)B1 = −t−1
3 k1(τ + ε1ε3t2)(−gT + f B1). (21)

From (21), we may choose that

B∗2 = −gT + f B1, f ′k∗3 = −ε∗4 t−1
3 k1(τ + ε1ε3t2). (22)

From Equations (14), (15), (18) and (22), we can easily acquire our theorem.

Case 2: If ϕ = 0, we have the following theorem.
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Theorem 2. Let α : I → E4
1 be a regular curve with arc-length parameter s so that k1, k2 and k3 are not zero.

If α possesses the (0,2)-involute mate curve α∗ = α(s) + (φ0 − s)T(s), then k1 and k2 satisfy

gk1 + f k2 = 0, (23)

where φ0, f , and g are given constants.

Moreover, the three curvatures of α∗ are given by

k∗1 =
1

ε1ε2ε∗2 f (s− φ0)
, k∗2 =

−ε4ε∗3 gk3

ε2(s− φ0)k1
, k∗3 =

ε∗1ε4 f k3

ε2(s− φ0)k1
.

The associated Frenet frames are given by

T∗ = −N, N∗ = f T + gB1, B∗1 = −B2, B∗2 = −gT + f B1.

In this case, (4) turns into
α∗(s) = α(s) + (φ0 − s)T(s). (24)

By differentiating (24) with respect to s and using the Frenet Formula (1), we get

f ′T∗ = ε2(φ0 − s)k1N, (25)

from which we may assume that

f ′ = ε2(s− φ0)k1, T∗ = −N. (26)

By differentiating the second equation of (26) about s and using the Frenet Formula (1), we get

ε∗2 f ′k∗1 N∗ = ε1k1T − ε3k2B1.

Suppose that

N∗ = f T + gB1, f =
ε1k1

ε∗2 f ′k∗1
, g = − ε3k2

ε∗2 f ′k∗1
, f 2 + g2 = 1. (27)

It follows that
k2

k1
= − g

f
ε1ε3. (28)

By differentiating (27) about s, we obtain that f and g are constants:

ε∗3 f ′k∗2B∗1 = ε∗1 f ′k∗1T∗ + ε2( f k1 − gk2)N − ε1ε2ε3gk3B2 = −ε2g( g
f k1 + k2)N + ε4gk3B2 = ε4gk3B2. (29)

Suppose that
B∗1 = −B2, f ′k∗2 = −ε4ε∗3 gk3. (30)

By differentiating (30) about s, we obtain

ε∗4 f ′k∗3B∗2 = ε2 f ′k∗2 N∗ + ε3k3B1 = −ε∗1ε4k3[ f gT − (1− g2)B1] = −ε∗1ε4 f k3(gT − f B1). (31)

Suppose that
T∗ ∧ N∗ ∧ B∗1 ∧ B∗2 = T ∧ N ∧ B1 ∧ B2, (32)

then
B∗2 = −gT + f B1, f ′k∗3 = ε∗1ε4 f k3. (33)

From Equations (27), (30) and (33), we have achieved the desired theorem.
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Remark 1. Theorems 1 and 2 are quite different.

4. The (1,3)-Evolute Curve of a Given Curve in E4
1

In this section, we want to study the (1,3)-evolute curve of a given curve in E4
1.

Theorem 3. Let α : I → E4
1 be a regular curve with arc length parameter s so that k1, k2 and k3 are not zero,

If α possesses the (1,3)-evolute mate curve, α∗(s) = α(s) + 1
ik1(s)

[iN(s) + jB2(s)]− 1
k3(s)

B2(s), then k1, k2

and k3 satisfy ε1ik1 + ε3(jk2 − jk3) = 0, where i and j are given constants. Three curvatures of α∗ are given by

k∗1 = −ε1ε∗2

√
2(ik1)

f ′
, k∗2 =

√
2[ε4ε∗3k3/(2i)− ε1ε∗4 jk1]

f ′
, k∗3 = −

√
2k3/(2i f ′), f ′ = (1/ik1).

The associated Frenet frames are given by

T∗ = iN + jB2, N∗ = (T + B1)/
√

2, B∗1 = −jN + iB2, B∗2 = (−T + B1)/
√

2.

Proof. Let α : I → E4
1 be a regular curve with arc-length parameter s so that k1, k2 and k3 are not zero.

Let α∗ : I → E4
1 be the (1,3)-evolute curve of α. {T∗, N∗, B∗1 , B∗2} is the Frenet frame along α∗ and k∗1 , k∗2

and k∗3 are the curvatures of α∗. Then,

span{T, B1} = span{N∗, B∗2}, span{N, B2} = span{T∗, B∗1}. (34)

Moreover, α∗ can be expressed as

α∗(s) = α(s) + p(s)N(s) + q(s)B2, (35)

where p(s) and q(s) are C∞ functions on I.
Differentiating (35) with respect to s using Frenet Formula (1), we get

T∗ f ′ = (1− pε1k1)T + p
′
N + q

′
B2 + ε3(pk2 − qk3)B1, (36)

By taking the inner product from both sides of (36) with T and B1, respectively, we get

f
′
T∗ = p

′
N + q

′
B2, p =

1
ε1k1

, q =
ε1k2

k1k3
. (37)

Denote

i =
u′

f ′
, j =

v′

f ′
, (38)

then (37) turns into
T∗ = iN + jB2, i2 + j2 = 1. (39)

By differentiating (39) with respect to s and using the Frenet formula (1), we get

ε∗2 f ′k∗1 N∗ = i′N − ε1ik1T + j′B2 + ε3(ik2 − jk3)B1. (40)

By taking inner product on both sides of (40) with N and B2 respectively, we get i′ = o and j′ = 0,
which implies that i and j are constants.

From (38), we obtain

p = i f + p0 =
1

ε1k1
, q = j f + q0 =

ε1k2

k1k3
. (41)

Moreover, (40) turns into

ε∗2 f ′k∗1 N∗ = −ε1ik1T + ε3(ik2 − jk3)B1. (42)
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Denote

r = − ε1ik1

ε∗2 f ′k∗1
, t =

ε3(ik2 − jk3)

ε∗2 f ′k∗1
. (43)

then (42) turns into
N∗ = rT + tB1, f ′k∗1 = −ε1ε∗2r−1ik1, r2 + t2 = 1. (44)

Moreover, we have
− ε1ε∗2 tik1 + ε3(rik2 − rjk3) = 0. (45)

Case 1: t 6= 0. By differentiating (44) about s and using the Frenet Formula (1), we get

− ε∗1 f ′k∗1T∗ + ε∗3 f ′k∗2B∗1 = ε2(rk1 − tk2)N − ε1ε2ε3tk3B2 + r′T + t′B1. (46)

By taking inner product on both sides of (46) with T and B1 respectively, we get r′ = 0 and t′ = 0,
which implies that r and t are constants. In this case, (46) turns into

f ′k∗2B∗1 = (
ε2ε∗3r2 − ε1ε∗4 i2

r
k1 − ε2ε∗3 tk2)N − (ε4ε∗3 tk3 + ε1ε∗4

ij
r

k1)B2. (47)

Denote

σ = ( f ′k∗2)
−1(

ε2ε∗3r2 − ε1ε∗4 i2

r
k1 − ε2ε∗3 tk2), ς = ( f ′k∗2)

−1(ε4ε∗3 tk3 + ε1ε∗4
ij
r

k1), (48)

then (47) turns into
B∗1 = σN + ςB2, σ2 + ς2 = 1. (49)

Since T∗ ⊥ B∗1 , it follows from (40) and (50) that σ
ς = − j

i , which implies that

ε1ik1 + ε3(ik2 − jk3) = 0. (50)

From (45) and (50), we can see that

ik2 − jk3 = −ε1ε3ik1, (ε1r− ε1ε∗1 t)ik1 = 0. (51)

Since t 6= 0, it follows from (51) that t = r. Hence, (49) turns into

B∗1 = −jN + iB2, f ′k∗2 = ε1ε∗4
j
r

k1 + ε4ε∗3
t
i
k3. (52)

By differentiating (52) about s using (1), we get

− ε∗2 f ′k∗2 N∗ + ε∗4 f ′k∗3B∗2 = ε1 jk1T − ε3(jk2 + ik3)B1, (53)

from which we obtain

f ′k∗3B∗2 = ε∗2 f ′k∗2 N∗ + ε1 jk1T − ε3(jk2 + ik3)B1,−ε4ε∗3ε∗4
t2

i
k3(−T + B1). (54)

It follows from (54) that

B∗2 = −tT + rB1, f ′k∗3 = −ε4ε∗3ε∗4
t
i
k3. (55)

From (43), (52) and (55), we can easily acquire our desired theorem.

Case 2: If t = 0, we have the following theorem.
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Theorem 4. Let α : I → E4
1 be a regular curve parameterized by arc-length s so that k1, k2 and k3 are not

zero. If α possesses the (1,3)-evolute mate curve, α∗(s) = α(s) + 1
ik1(s)

[iN(s) + jB2(s)], then k2 and k3 satisfy
ik2 − jk3 = 0, where i and j are given constants. Moreover, the three curvatures of α∗ are given by

k∗1 = −ε1ε∗2 ik1/ f ′, k∗2 = −ε1ε∗2 jk1/ f ′, k∗3 = −ε3i−1k3/ f ′, f ′ = (
1

ik1
). (56)

The associated Frenet frames are given by

T∗ = iN + jB2, N∗ = T, B∗1 = −jN + iB2, B∗2 = B1. (57)

Proof. For this case, we may suppose that

N∗ = T, f ′k∗1 = −ε1ε∗2 ik1, ε3(ik2 − jk3) = 0. (58)

From (41) and the third equation of (58), we acquire

p = i( f + f0) =
ε1

k1
q = j( f + f0) =

ε1 j
ik1

. (59)

By differentiating (58) about s and using (1), we get

− ε∗1 f ′k∗1T∗ + ε∗3 f ′k∗2B∗1 = ε2k1N. (60)

It follows that we may choose

B∗1 = −jN + iB2, f ′k∗2 = −ε1ε∗2 jk1. (61)

By differentiating (61) about s using the Frenet Formula (1) and third equation of (58), we get

B∗2 = B1, f ′k∗3 = −ε3(jk2 + ik3) = ε3i−1k3. (62)

From (58), (61) and (62), we can easily acquire our desired theorem.

Remark 2. Theorems 3 and 4 are quite different.

5. The (1,3)-Evolute Curve of a Cartan Null Curve in E4
1

In this section, we proceed to study the existence and expression of the (1,3)-evolute curve
of a given Cartan null curve in E4

1. At any point of α, the plane spanned by {N, B2} is called the
(1,3)-normal plane of α.

Let α : I → E4
1 and α∗ : I → E4

1 be two regular curves in E4
1 , where s is the arc-length parameter of

α. Denote s∗ = f (s) to be the arc-length parameters of α∗. For any s ∈ I, if the (0,2)-tangent plane of α

at α(s) coincides with the (1,3)-normal plane at α∗(s) of α∗, then α∗ is called the (0,2)-involute curve of
α in E4

1 and α is called the (1,3)-evolute curve of α∗ in E4
1.

Theorem 5. Let α : I → E4
1 be a null Cartan curve with arc length parameter s so that k1 = 1, and k2 k3 are

not zero, if α possesses the (1,3)-evolute mate curve, α∗(s) = α(s) + 1
i(s) [iN(s) + jB2(s)]− 1

k3(s)
B2(s), then

k1, k2 and k3 satisfy i + ik2 − jk3 = 0, where i and j are given constants. Three curvatures of α∗ are given by

k∗1 = −
√

2(i)
f ′

, k∗2 =

√
2[k3/(2i)− j]

f ′
, k∗3 = −

√
2k3/(2i f ′), f ′ = (1/i). (63)
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Moreover, the associated Frenet frames are given by

T∗ = iN + jB2, N∗ = (T + B1)/
√

2, B∗1 = −jN + iB2, B∗2 = (−T + B1)/
√

2. (64)

Proof. Let α : I → E4
1 be a Cartan null curve parameterized by the pseudo-arc parameter s with

curvatures k1 = 1, and k2 and k3 are not zero. Let α∗ : I → E4
1 be the (1,3)-evolute curve of α. Denote

{T∗, N∗, B∗1 , B∗2} as the Frenet frame along α∗ and k∗1,k∗2 and k∗3 as the curvatures of α∗. Then

span{T, B1} = span{N∗, B∗2}, span{N, B2} = span{T∗, B∗1}. (65)

Moreover, α∗ can be expressed as

α∗(s) = α(s) + p(s)N(s) + q(s)B2, (66)

where p(s) and q(s) are C∞ functions on I. By differentiating (66) with respect to s using the Frenet
Formula (2), we get

T∗ f ′ = (1 + pk2 − qk3)T + p
′
N + q

′
B2 − pB1. (67)

By taking the inner product on both sides of (67) with T and B1, respectively, we get

f
′
T∗ = p

′
N + q

′
B2, p = 1, q =

k2

k3
. (68)

Denote

i =
p′

f ′
, j =

q′

f ′
, (69)

then (68) turns into
T∗ = iN + jB2, i2 + j2 = 1. (70)

By differentiating (70) with respect to s and using the Frenet formula (2), we get

f ′k∗1 N∗ = i′N − iB1 + j′B2 + (ik2 − jk3)T. (71)

By taking the inner product on both sides of (71) with N and B2 respectively, we get i′ = o and
j′ = 0 which implies that i and j are constants. From (69), we get

p = i f + p0 = 1, q = j f + q0 =
k2

k3
. (72)

Moreover, (71) turns into
f ′k∗1 N∗ = −iB1 + (ik2 − jk3)T. (73)

Denote

r = − i
f ′k∗1

, t =
(ik2 − jk3)

f ′k∗1
, (74)

then (73) turns into
N∗ = rB1 + tT, f ′k∗1 = −r−1i, r2 + t2 = 1. (75)

Moreover,
ti + rik2 − rjk3 = 0. (76)

Case 1: t 6= 0. By differentiating (75) about s and using the Frenet Formula (2), we get

− f ′k∗1T∗ + f ′k∗2B∗1 = (tk1 − rk2)N + rk3B2 + r′T + t′B1. (77)
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By taking the inner product from both sides of (77) with T and B1 respectively, we get r′ = 0 and
t′ = 0, which implies that r and t are constants. In this case, (77) turns into

f ′k∗2B∗1 = (
r2 − i2

r
− tk2)N − (tk3 +

ij
r
)B2. (78)

Denote

σ = ( f ′k∗2)
−1(

r2 − i2

r
− tk2), ς = ( f ′k∗2)

−1(tk3 −
ij
r
), (79)

then (78) turns into
B∗1 = σN + ςB2, σ2 + ς2 = 1. (80)

Since T∗ ⊥ B∗1 , it follows from (70) and (80) that σ
ς = − j

i , which implies that

i + ik2 − jk3 = 0. (81)

From (76) and (81), we can see that

ik2 − jk3 = −i, (t− r)i = 0. (82)

Since t 6= 0, it follows from (82) that t = r.
Hence (80) turns into

B∗1 = −j + iB2, f ′k∗2 = − j
r
+

t
i
k3. (83)

By differentiating (83) about s using (2), we get

− f ′k∗2 N∗ + f ′k∗3B∗2 = jB1 − (jk2 + ik3)T. (84)

From which we have

f ′k∗3B∗2 = f ′k∗2 N∗ + jB1 − (jk2 + ik3)T,− t2

i
k3(−T + B1). (85)

It follows from (85) that

B∗2 = −tT + rB1, f ′k∗3 = − t
i
k3. (86)

From (74), (83) and (86), we easily acquire our desired theorem.

Case 2: For t = 0, we have the following theorem.

Theorem 6. Let α : I → E4
1 be a null Cartan curve with arc-length parameter s so that k1 = 1, k2 and k3 are

not zero. If α possesses the (1,3)-evolute mate curve, α∗(s) = α(s) + 1
ik1(s)

[iN(s) + jB2(s)], then k2 and k3

satisfy ik2 − jk3 = 0, where i and j are given constants. Moreover, the three curvatures of α∗ are given by

k∗1 = −i/ f ′, k∗2 = −j/ f ′, k∗3 = i−1k3/ f ′, f ′ = (
1
i
). (87)

The associated Frenet frames are given by

T∗ = iN + jB2, N∗ = T, B∗1 = −jN + iB2, B∗2 = B1. (88)

Proof. For this case, we may suppose that

N∗ = T, f ′k∗1 = −i, ik2 − jk3 = 0. (89)
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Moreover, from (72) and the third equation of (89), we get

p = i( f + f0) =
1
k1

q = j( f + f0) =
j
i
. (90)

By differentiating (89) about s and using (2), we get

f ′k∗1T∗ + f ′k∗2B∗1 = k1N. (91)

It follows that we can choose

B∗1 = −jN + iB2, f ′k∗2 = −j. (92)

By differentiating (92) about s using the Frenet Formula (2) and third equation of (89), we get

B∗2 = B1, f ′k∗3 = −(jk2 + ik3) = −i−1k3. (93)

From (89), (92) and (93), we can easily acquire our desired theorem.

Remark 3. Theorems 5 and 6 are quite different.

Condition 2:

Theorem 7. Let α : I → E4
1 be a null Cartan curve with arc length parameter s so that k1 = 1, and k2 k3 are not

zero if α possesses the (1,3)-evolute mate curve, α∗(s) = α(s) + 1
i(s)k1

[iN(s) + jB2(s)]− 1
k3(s)

B2(s). Then, k1, k2

and k3 satisfy ik1 + i− jk3 = 0, where i and j are given constants. Three curvatures of α∗ are given, as follows:

k∗1 = −
√

2(ik1)

f ′
, k∗2 =

√
2[k3/(2i)− jk1]

f ′
, k∗3 = −

√
2k3/(2i f ′), f ′ = (1/ik1). (94)

The associated Frenet Frame are given by

T∗ = iN + jB2, N∗ = (T + B1)/
√

2, B∗1 = −jN + iB2, B∗2 = (−T + B1)/
√

2. (95)

Proof. Let α : I → E4
1 be a Cartan null curve parametrized by pseudo-arc parameter s with curvatures

k2 = 1, and k1 and k3 are not zero. Let α∗ : I → E4
1 be the (1,3)-evolute curve of α. Denote

{T∗, N∗, B∗1 , B∗2} as the Frenet frame along α∗ and k∗1, k∗2 and k∗3 as the curvatures of α∗. Then,

span{T, B1} = span{N∗, B∗2}, span{N, B2} = span{T∗, B∗1}. (96)

Moreover, α∗ can be expressed as

α∗(s) = α(s) + p(s)N(s) + q(s)B2, (97)

where p(s) and q(s) are C∞ functions on I. By differentiating (97) with respect to s using the Frenet
Formula (2), we get

T∗ f ′ = (1 + p− qk3)T + p
′
N + q

′
B2 − pk1B1. (98)

By taking the inner product from both sides of (98) with T and B1 respectively, we get

f
′
T∗ = p

′
N + q

′
B2, p =

1
k1

, q =
1

k1k3
. (99)

Denote

i =
p′

f ′
, j =

q′

f ′
, (100)
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then (99) turns into
T∗ = iN + jB2, i2 + j2 = 1. (101)

By differentiating (101) with respect to s and using the Frenet formula (2), we get

f ′k∗1 N∗ = i′N − ik1B1 + j′B2 + (i− jk3)T. (102)

By taking the inner product from both sides of (102) with N and B2, respectively, we get i′ = o
and j′ = 0 which implies that i and j are constants. From (100), we get

p = i f + p0 =
1
k1

, q = j f + q0 =
1

k1k3
. (103)

Moreover, (102) turns into

f ′k∗1 N∗ = −ik1B1 + (i− jk3)T. (104)

Denote

r = − ik1

f ′k∗1
, t =

(i− jk3)

f ′k∗1
, (105)

then (104) turns into
N∗ = rB1 + tT, f ′k∗1 = −r−1ik1, r2 + t2 = 1. (106)

Moreover,
tik1 + ri− rjk3 = 0. (107)

Case 1: t 6= 0. By differentiating (106) about s and using the Frenet Formula (2), we get

− f ′k∗1T∗ + f ′k∗2B∗1 = (tk1 − r)N + rk3B2 + r′T + t′B1. (108)

By taking the inner product on both sides of (108) with T and B1, respectively, we get r′ = 0 and
t′ = 0, which implies that r and t are constants. In this case, (108) turns into

f ′k∗2B∗1 = (
r2 − i2

r
− t)N − (tk3 +

ijk1

r
)B2. (109)

Denote

σ = ( f ′k∗2)
−1(

r2 − i2

r
k1 − t), ς = ( f ′k∗2)

−1(tk3 −
ij
r

k1), (110)

then (109) turns into
B∗1 = σN + ςB2, σ2 + ς2 = 1. (111)

Since T∗ ⊥ B∗1 , it follows from (101) and (111) that σ
ς = − j

i , which implies that

ik1 + i− jk3 = 0. (112)

From (107) and (112), we get

i− jk3 = −ik1, (t− r)ik1 = 0. (113)

Since t 6= 0, it follows from (113) that t = r. Hence, (111) turns into

B∗1 = −jN + iB2, f ′k∗2 = − j
r

k1 +
t
i
k3. (114)

By differentiating (114) about s using (2), we get
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− f ′k∗2 N∗ + f ′k∗3B∗2 = jk1B1 − (j + ik3)T. (115)

From which we have

f ′k∗3B∗2 = f ′k∗2 N∗ + jk1B1 − (j + ik3)T,− t2

i
k3(−T + B1). (116)

It follows from (116) that
B∗2 = −tT + rB1, f ′k∗3 = − t

i
k3. (117)

From (106), (114) and (117), we can easily acquire our desired theorem.

Case 2: For t = 0, we have the following theorem.

Theorem 8. Let α : I → E4
1 be a null Cartan curve with arc-length parameter s so that k1 = 1, k2 and k3 are

not zero. If α possesses the (1,3)-evolute mate curve α∗(s) = α(s) + 1
ik1(s)

[iN(s) + jB2(s)], then k2 and k3

satisfy ik2 − jk3 = 0, where i and j are given constants. Moreover, the three curvatures of α∗ are given by

k∗1 = −i/ f ′, k∗2 = −j/ f ′, k∗3 = i−1k3/ f ′, f ′ = (
1
i
). (118)

The associated Frenet frames are given by

T∗ = iN + jB2, N∗ = T, B∗1 = −jN + iB2, B∗2 = B1. (119)

Proof. In this case, we may suppose that

N∗ = B1, f ′k∗1 = −ik1, i− jk3 = 0. (120)

Moreover, from (112) and the third equation of (120), we get

p = i( f + f0) =
1
k1

, q = j( f + f0) =
j

ik1
. (121)

By differentiating (120) about s and using (2), we get

f ′k∗1T∗ + f ′k∗2B∗1 = k1N. (122)

It follows that we can choose

B∗1 = −jN + iB2, f ′k∗2 = −jk1. (123)

By differentiating (123) about s using the Frenet Formula (2) and using the third equation of (120),
we get

B∗2 = B1, f ′k∗3 = −(j + ik3) = j−1. (124)

From (120), (123) and (124), we can easily acquire our desired theorem.

Remark 4. Theorems 7 and 8 are quite different.

6. Conclusions

This paper established new kinds of generalized evolute and involute curves in four-dimensional
Minkowski space by providing the necessary and sufficient conditions for the curves possessing
generalized evolute and involute curves. Furthermore, the study invoked a new type of (1,3)-evolute
and (0,2)-evolute curve in four-dimensional Minkowski space. The study also provided a new kind
of generalized null Cartan curve in four-dimensional Minkowski space. For this new type of curve,
the study provided several theorems with necessary and sufficient conditions and obtained significant
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results. The understanding of evolute curves with this new type evolute curve in four-dimensional
Minkowski space will be beneficial for researchers in future studies. The designing of a framework for
the involutes of order k of a null Cartan curve in Minkowski spaces will be considered in future work.
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