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Abstract: In this paper, we discuss some relations between the semigroup, Bin(X), of all groupoids
(X, ∗) and graphs. We discuss mimimum (mutual) covering sets in several groupoids and discuss
distances of graphs with groupoids. Finally, we obtain some results on frame graphs with groupoids.
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1. Introduction

J. Neggers [1] defined the notion of a pogroupoid, obtained a functorial connection between
pogroupoids and posets and associated structure mappings. J. Neggers and H. S. Kim [2] proved
that a pogroupoid (X, ·) is modular if and only if its associated poset (X,≤) is (C2 + 1)-free .
Given a pogroupoid (X, ·), the relation, Bµ, is transitive for any fuzzy subset, µ, of X if and only if the
associated poset, (X,≤), of (X, ·) is (C2 + 1)-free [3]. In a sequence of papers, Nebeský [4–6] discussed
various properties of a graph (V, E) with its associated groupoid (V, ∗). Although it is not identical in
terms of outlook, there are some similarities between Nebeský’s work and results which are discussed
in this paper.

As we note below, our point of view permits us to consider arbitrary (simple) graphs as particular
groupoids. By using this model, it is possible to assign to groupoids of a particular (locally zero) type
to certain simple graphs as well. Using the viewpoint developed, we can then assign the theoretical
parameters of graphs to groupoids in a meaningful way. How this is done is the topic of what follows.
We concentrate on two such parameters: “covering” and “shortest distance”. It is clear that a great
deal more work remains to be done and can be done in a straightforward manner.

2. Preliminaries

A non-empty set, X, with a constant 0 and a binary operation “ ∗ ”, satisfying the following
axioms, (i) x ∗ x = 0, (ii) 0 ∗ x = 0, and (iii) x ∗ y = 0, where y ∗ x = 0 implies x = y for all x, y ∈ X is
said to be a d-algebra [7]. For general references on d-algebras, we refer to [8–11].

A d-algebra (X, 0, ∗) is said to be a BCK-algebra [12] if it satisfies the following additional axioms:

(iv) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(v) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Example 1. Let X = {0, 1, 2, 3, 4} be a set with the following table [11]:
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∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Then, (X, ∗, 0) is a d-algebra which is not a BCK-algebra.

For general references on BCK-algebras, we refer to references [12–14]. Given a non-empty set,
X, we denote the collection of all groupoids (X, ∗), where ∗ : X × X → X is a map, by Bin(X).
Given elements (X, ∗) and (X, •) of Bin(X), define a product “2" on these groupoids as follows:

(X, ∗)2 (X, •) = (X,2),

where
x 2 y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X. Using that notion, H. S. Kim and J. Neggers proved the following theorem.

Theorem 1. (Bin(X), 2) [15] is a semigroup, i.e., the operation “2", as defined in general, is associative.
Furthermore, the left- zero-semigroup (X, ∗) for which x ∗ y = x for all x, y ∈ X is the identity for this operation.

Another element with interesting properties in (Bin(X),2) is the right-zero-semigroup,
i.e., the groupoid (X, ∗) for which x ∗ y = y for all x, y ∈ X. Fayoumi [16] is not referred in
main text, please check. showed that a groupoid (X, ∗) commutes relative to the operation, 2,
of (Bin(X), 2) if and only if any two element subset of (X, ∗) is a subgroupoid which is either
a left-zero-semigroup or a right-zero-semigroup. Thus, (X, ∗) is an element of the center, ZBin(X),
of (Bin(X), 2) if and only if for any pair of elements x, y ∈ X, x ∗ y = x, y ∗ x = y or x ∗ y = y, y ∗ x = x.
Therefore, among these groupoids, the left-zero-semigroup on X and the right-zero-semigroup on X
are extreme cases. Furthermore, it is easily seen that (ZBin(X),2) is itself a semigroup with identity—
a subsemigroup of the semigroup (Bin(X), 2) .

3. Graphs and Binary Systems

Let (X, ∗) be an element of ZBin(X). Suppose, in addition, that we construct a graph,
ΓX, as follows: V(ΓX) = X and (x, y) ∈ E(ΓX)—the edge set of ΓX provided that x 6= y, y ∗ x =

y, x ∗ y = x. Thus, if (x, y) ∈ E(ΓX), then (y, x) ∈ E(ΓX) as well, and we identify (x, y) = (y, x)
as an undirected edge of ΓX. Similarly, since (X, ∗) is an element of ZBin(X), if (x, y) 6∈ E(ΓX),
then x ∗ y = y, y ∗ x = x and (x, y) = (y, x) determines the absence of an edge, directed or otherwise.
Since x ∗ x = x in any case, we do not consider this to be of particular graphical interest. The mapping
(X, ∗)↔ ΓX accomplishes the following:

Theorem 2. If G = (V(G), E(G)) is a simple graph with vertex set V(G) = X and edge set E(G),
then G determines a unique groupoid, (X, ∗), in the center of the semigroup (Bin(X), 2) by defining
the binary operation “∗" as x ∗ y = x, y ∗ x = y if (x, y) = (y, x) ∈ E(G) and x ∗ y = y, y ∗ x = x if
(x, y) = (y, x) 6∈ E(G).

Theorem 3. If G = (V(G), E(G)) is a simple graph and (X, ∗) is defined as in Theorem 2, then V(ΓX) =

X = V(G) and E(ΓX) = E(G), so that G = ΓX .

Proof. The proofs of both theorems are straightforward.
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Proposition 1. If (X, ∗) is the left-zero-semigroup, then ΓX is the complete graph on X. If |X| = n < ∞,
then ΓX = Kn.

Proof. From the definition, it is clear that if {x, y} ⊆ X, x 6= y, then x ∗ y = x, y ∗ x = y, so that
(x, y) = (y, x) ∈ E(ΓX), and the conclusion follows.

Proposition 2. If (X, ∗) is the right-zero-semigroup, then ΓX is the null(empty) graph on X, i.e.,
E(ΓX) = ∅, while V(ΓX) = X.

Proof. From the definition, it is clear that if {x, y} ⊆ X, x 6= y, then x ∗ y = y, y ∗ x = x, so that
(x, y) = (y, x) 6∈ E(ΓX), i.e., E(ΓX) = ∅ and the conclusion follows.

To illustrate the close relationship between simple graphs and groupoids, we note the following.

Theorem 4. If G = (V(G), E(G)) is a simple graph and (X, ∗), X = V(G), is the groupoid associated
with G, then for the right-zero-semigroup (X, •) defined on X, (X,2) = (X, ∗)2(X, •) = (X, •)2(X, ∗)
defines (X,2) as the complementary graph of G.

Proof. Suppose that (x, y) = (y, x) ∈ E(G). Then, x ∗ y = x, y ∗ x = y. Hence, x2y = (x ∗ y) • (y ∗ x) =
y ∗ x = y and y2x = (y ∗ x) • (x ∗ y) = x ∗ y = x. Thus, (x, y) = (y, x) 6∈ E(Γ(X,2)). Similarly,
if (x, y) = (y, x) 6∈ E(G), then (x, y) = (y, x) ∈ E(Γ(X,2)), so that (X,2) is the opposite groupoid of
(X, ∗), with x2y = y ∗ x, while Γ(X,2) is the complementary graph of G, with (x, y) = (y, x) ∈ E(Γ(X,2))

if and only if (x, y) = (y, x) 6∈ E(G).

Example 2. The operation “2" on Bin(X) induces an operation “2" on the graphs with vertex set X as well
as edges illustrated in the proof of Theorem 4. Let X = {1, 2, 3, 4} and consider two simple graphs on vertex set
X. Then, we have

• 4

2 • • 3 2

• 1

3 • • 4

2 • =

1 •

4 • • 3

1 • • 2

Based on the fact that (Bin(X), 2) is a semigroup, it follows that this product is associative as well. For groupoids,
we have tables and a resultant (product) table:

∗ 1 2 3 4
1 1 1 1 4
2 2 2 3 2
3 3 2 3 3
4 1 4 4 4

2

• 1 2 3 4
1 1 1 3 4
2 2 2 2 2
3 1 3 3 4
4 1 4 3 4

=

2 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4

Hence, by reconstructing the graph, Γ(X,2), we obtain

4 • • 3

1 • • 2

as pictured.
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4. Graphs with Groupoids

If G = (V(G), E(G)) is a simple graph, then the covering number, γ(G) is the cardinal number
of a minimal covering set which is the smallest among these cardinal numbers. A covering set is
a set of vertices such that any vertex not in the set is connected to an element in the set via an edge.
A covering set is minimal if no vertex can be deleted from the set and still maintain the property of
being a covering set. Thus, e.g., γ(Kn) = γ(K1,n−1) = 1, since γ(G) = 1 for any n-graph containing
a K1,n−1, i.e., a star or a complete bipartite graph partitioned into two classes containing 1 and n− 1
elements respectively. The number γ(G) is an example of a graph parameter which can be directly
taken over by groupoids. Indeed, we shall consider an element, x, of a groupoid to cover an element, y,
of a groupoid if x ∗ y = x and mutually y covers x if y ∗ x = y as well. In the setting of graphs with
the constructions made above, it follows that if G = (X, E(G)), X = V(G) is a simple graph, then if
x ∗ y = x, it follows that y ∗ x = y as well whenever (x, y) = (y, x) ∈ E(G). Thus, for simple graphs,
the two notions are equivalent. However, in the context of groupoids, they are not the same.

Example 3. Suppose that (X,≤, 0) is a poset with a minimal element of 0. The standard BCK-algebra (X, ∗, 0)
for this poset is defined by setting x ∗ y = 0 if x ≤ y and x ∗ y = x otherwise. Now x ∗ 0 = x and 0 ∗ x = 0
for all x ∈ X, and thus, 0 mutually covers every element x of X. On the other hand, if 0 6∈ {x, y} and x 6= y,
then if x 6≤ y, x ∗ y = x and x covers y. If y 6≤ x, then y ∗ x = y, and x and y mutually cover each other.
Thus, we may consider the Hasse diagram of the poset in terms of this relationship, for example, the poset
(X := {0, 1, 2, 3, 4},≤)

•4

2• •3

•1

•0
has a standard BCK-algebra table, as follows:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

In terms of the covering relation, we obtain

RC = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (2, 0), (2, 1), (2, 3),

(3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)},

while the mutual covering relation yields

RMC = {(0, 1), (1, 0), (0, 2), (2, 0), (0, 3), (3, 0), (0, 4), (4, 0), (2, 3), (3, 2)}.

Following the analogy pathway, it is clear that in this case, if γC(X, ∗, 0) is the cardinal
of a minimum covering set (i.e., a minimal covering set of the smallest cardinal number),
then γC(X, ∗, 0) = 1. If γMC(X, ∗, 0) is the cardinal number of a minimum mutual covering set,
then γMC(X, ∗, 0) = 1 as well.
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Proposition 3. If (X, ∗) is a groupoid for which a mutual covering set exists, then

γC(X, ∗) ≤ γMC(X, ∗).

Proof. Suppose that S ⊆ X is a mutual covering set for (X, ∗). Then, S is also a covering set for (X, ∗).
Hence, if S is a minimum mutual covering set for (X, ∗), then it is a covering set for (X, ∗), and hence,
it has a cardinal at least as large as γC(X, ∗).

Example 4. If (X, ∗) is a left-zero-semigroup, then x ∗ y = x and y ∗ x = y implies that elements x and y
mutually cover each other. Thus, any singleton {x} is a minimal mutual covering set, and γMC(X, ∗) = 1,
so that γC(X, ∗) = 1 as well.

Proposition 4. If (X, ∗, 0) is a BCK-algebra, then γMC(X, ∗, 0) = 1.

Proof. This follows from the fact that 0 ∗ x = 0, x ∗ 0 = x for all x ∈ X. Hence, {0} is a mutual covering set.

Proposition 5. If (X, ∗, 0) is a d-algebra, then γC(X, ∗, 0) = 1.

Proof. This follows on from the fact that 0 ∗ x = 0 for all x ∈ X.

Example 5. Let K be a field and let x ∗ y = x(x − y) for all x, y ∈ K. Then, (K, ∗, 0) is a d-algebra.
Since 0 ∗ x = 0 for all x ∈ X, {0} is a minimal covering set, and thus, γC(K, ∗, 0) = 1. Let x 6= 0 in K.
Then, x ∗ 0 = x2 6= x, and thus, {0} is not a mutual covering set. If {u} is a covering set, then u ∗ x = u for
all x ∈ K. It follows that x = u− 1 for all x ∈ K—a contradiction. Hence, {0} is the only minimal covering
set of (K, ∗, 0).

Proposition 6. If G = (X, E(G)), X = V(G), is a simple graph and (X, ∗) is the associated groupoid.
Then, γC(X, ∗) = γMC(X, ∗) = γ(G), the covering number of G.

Example 6. Given a simple graph, as shown below, we see that {1, 3} covers V(G) = {1, 2, 3, 4}.

1 3

2

4

Since 1 does not cover 3, it follows that γC(G) = 2. Since both 2 and 4 cover 1 and 3, {1, 3} is a mutual
covering set which is minimal, i.e., γMC(G) = 2.

Proposition 7. If (X, ∗, e) is a group, then γC(X, ∗, e) + 1 = γMC(X, ∗, e) = |X|, the cardinal of X.

Proof. If x ∗ y = x, then y = e. Hence, it follows that the smallest covering set of (X, ∗, e) is X\{e}.
Now, if x ∗ y = x and y ∗ x = y, then x = y = e. Hence X\{e} is not a mutual covering set, i.e.,
the smallest mutual covering set is X itself, i.e., γMC(X, ∗, e) = γC(X, ∗, e) + 1 = |X|, as claimed.

Proposition 8. Let (X, ∗) be a groupoid with γMC(X, ∗) = 1. The defined set X1 = {u|{u} is
a minimum mutual covering set, }. Then, (X1, ∗) is a subsemigroup of the groupoid (X, ∗) and
a left-zero-semigroup.
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Proof. Suppose u, v ∈ X1. Then, u ∗ v = u, v ∗ u = v, since u ∈ X1. It follows that (X1, ∗, ) is
a left-zero-semigroup, as claimed, and as such, it is a subsemigroup of (X, ∗).

Corollary 1. If (X, ∗, 0) is a BCK-algebra, then X1 = {0}.

Proof. This follows immediately from Propositions 4 and 8.

5. Distances of Graphs with Groupoids

Given a groupoid (X, ∗) we consider the shortest distance, d(x, y), to be n + 1, if, for u1, u2, · · · , un,
we have x ∗ u1 = x, ui ∗ ui+1 = ui, i = 1, 2, · · · , n− 1, un ∗ y = un, where x 6= y, x, y ∈ X, and there
is no set with fewer elements having this property. The mutual shortest distance, md(x, y), is n + 1
for elements x 6= y, x, y ∈ X, if, for u1, u2, · · · , un, we have x ∗ u1 = x, u1 ∗ x = u1, ui ∗ ui+1 =

ui, ui+1 ∗ ui = ui+1, i = 1, 2, · · · , n− 1, un ∗ y = un, y ∗ un = y, and there is no set with fewer elements
having this property. We set d(x, x) = md(x, x) = 0 for any x ∈ X.

Proposition 9. If (X, ∗, 0) is a BCK-algebra, then d(x, y) ≤ 2 for all x, y ∈ X.

Proof. If x 6= y, then x ∗ 0 = x, 0 ∗ y = 0, and thus, d(x, y) ≤ 2.

Example 7. If (X,≤, 0) is a poset with a standard BCK-algebra (X, ∗, 0), then x 6≤ y implies x ∗ y = x, and
thus, d(x, y) = 1, since x 6= y. If x 6≤ y, y 6≤ x, then x ∗ y = x and y ∗ x = y, so that md(x, y) = 1 in that
situation as well.

Proposition 10. If (X, ∗) is any groupoid for which the (mutual) shortest distance exists for all
x, y, z ∈ X, then

(i) d(x, y) ≤ md(x, y),
(ii) d(x, z) ≤ d(x, y) + d(y, z),
(iii) md(x, y) ≤ md(x, y) + md(y, z),
(iv) md(x, y) = md(y, x).

Proof. This follows immediately from the definition.

Given a groupoid (X, ∗) and x, y ∈ X, the cycle number c(x, y) is the sum c(x, y) = d(x, y) + d(y, x)
if d(x, y), and d(y, x) exists. Since, md(x, y) = md(y, x), the mutual cycle number, mc(x, y). is simply
2md(x, y).

Proposition 11. If (X, ∗) is any groupoid with the property that (x ∗ y) ∗ z = (x ∗ z) ∗ y and if d(x, z)
exists and is finite, then d(x ∗ y, z) ≤ d(x, z).

Proof. Suppose d(x, z) = n + 1, with intermediate elements u1, u2, · · · , un. Then, (x ∗ y) ∗ u1 = (x ∗
u1) ∗ y = x ∗ y, (u1 ∗ y) ∗ u2 = (u1 ∗ u2) ∗ y = u1 ∗ y, · · · , (un ∗ y) ∗ z = (un ∗ z) ∗ y = un ∗ y, so that u1 ∗
y, · · · , un ∗ y could serve as a set of intermediate elements for x ∗ y and z. The proposition follows.

Given a poset (X,≤), it is said to be strongly connected if d(x, y) < ∞ for all x, y ∈ X. It is said to
be strongly mutually connected if md(x, y) < ∞ for all x, y ∈ X. In Proposition 10(i), d(x, y) ≤ md(x, y),
so strongly mutually connected groupoids are also strongly connected.

Proposition 12. If (X, ∗) is a commutative (abelian) groupoid, i.e., x ∗ y = y ∗ x for all x, y ∈ X,
then x ∗ y = x implies y ∗ x = x. Hence, if x 6= y, then md(x, y) = ∞.
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Proof. If x 6= y and u1, · · · , un is a set of intermediate elements for md(x, y) = n, then x ∗ u1 = x, u1 ∗
x = u1 implies x = u1, and by continuation, x = u1 = u2 = · · · = un = y—a contradiction. It follows
that md(x, y) = ∞.

Example 8. Let DG = ({x, y}, x → y) be the digraph with diagram x • // • y . Then, the associated

groupoid (X, ∗) has the following Cayley table:
∗ x y
x x x
y x y

. It follows that (X, ∗) is commutative, and

d(x, y) = 1, d(y, x) = md(x, y) = ∞. If DG = ({x, y, z}, x • // • y , y • // • z , z • // • x ),

then (X, ∗) has the Cayley table

∗ x y z
x x x z
y x y y
z z y z

so that (X, ∗) is a commutative groupoid. We have d(x, y) =

d(y, z) = 1, d(x, z) = d(y, x) = d(z, y) = 2, so that (X, ∗) is strongly connected, but not strongly mutually
connected.

Proposition 13. Let (X, ∗) be a groupoid such that x ∗ y = x implies y ∗ x = y and d(x, y) exists.
Then, d(x, y) = md(x, y).

Proof. Suppose that d(x, y) = n and u1, · · · , un is a set of intermediate elements. Then, x ∗ u1 = x
implies u1 ∗ x = u1, ui ∗ ui+1 = ui which implies ui+1 ∗ ui = ui+1, un ∗ z = un which implies
z ∗ un = z. Hence, u1, · · · , un is also a set of intermediate elements for md(x, y), i.e., md(x, y) ≤ d(x, y).
From Proposition 10(i), d(x, y) ≤ md(x, y), and thus, d(x, y) = md(x, y).

We consider the groupoids of Proposition 13 to be undirected groupoids.

Proposition 14. If G = (X, E(G)), X = V(G) is an (undirected) simple graph, then the associated
groupoid (X, ∗) is an undirected groupoid.

Proof. This follows from the definition.

Example 9. Consider the groupoid (X, ∗) with X = {a, b, c} and Cayley table

∗ a b c
a a a b
b b b b
c b c c

. Then, a ∗

c = c ∗ a = b, a ∗ b = a, b ∗ a = b, c ∗ b = c, b ∗ c = b, and (X, ∗) is an undirected groupoid,
since a ∗ b = a implies b ∗ a = b. However, it does not correspond to a simple graph. If we
compute md(a, b) = 1, md(b, c) = 1, md(a, c) = 2, we obtain an undirected graph as follows:
a • •b • c . Thus, the undirected groupoid (X, ∗) is also strongly mutually connected.

6. Frame Graphs with Groupoids

Given a groupoid (X, ∗), we consider the frame of (X, ∗) to be the collection of all pairs {x, y}
such that md(x, y) = md(y, x) = 1. From the frame of (X, ∗) we may construct a simple graph, F(X, ∗),
where VF(X, ∗) = {x|{x, y} is a pair in the frame for some y in X }, and EF(X, ∗) = {(x, y) = (y, x)|
{x, y} is a pair in the frame }. F(X, ∗) is the frame graph of (X, ∗), and every groupoid has a frame graph.

From the diframe of (X, ∗), we may construct a simple digraph, DF(X, ∗), with VDF(X, ∗) =

{x|(x, y) or (y, x) belongs to the diframe of (X, ∗) for some y ∈ X}, and EDF(X, ∗) = {(x, y) | (x, y) :
an ordered pair in the diframe }. DF(X, ∗) is the diframe graph of (X, ∗) and every groupoid has such a
diframe graph. The frame graph, F(X, ∗), is seen to be a subdigraph of the diframe graph, DF(X, ∗),
in a natural way, i.e., the undirected edge, {x, y}, of F(X, ∗) generates a pair of directed edges, (x, y)
and (y, x), in DF(X, ∗).
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Given a groupoid (X, ∗) with a frame, F(X, ∗), a groupoid (VF(X, ∗), •) is generated, where x, y ∈
VF(X, ∗) implies x • y = x, y • x = y if md(x, y) = md(y, x) = 1 and x • y = y, y • x = x otherwise,
i.e., the groupoid (VF(X, ∗), •) is an element of ZBin(VF(X, ∗)), the frame groupoid of (X, ∗).

Example 10. The groupoid (X, ∗) in Example 9 has a frame a • •b • c , (VF(X, ∗), •) has the

Cayley table

• a b c
a a a c
b b b b
c a c c

. If, for the groupoid (X, ∗), we consider the diframe graph, DF(X, ∗), then the

associated algebraic structure is the groupoid (VDF(X, ∗), •), where x ∗ y = x if (x, y) ∈ EDF(X, ∗), i.e.,
if d(x, y) = 1. Since md(x, y) = md(y, x) = 1 implies d(x, y) = d(y, x) = 1 as well, it follows that in such a
case that x → y and y→ x represent the edge x • • y . Hence, in this sense, the frame graph, F(X, ∗),
is a subdigraph of the diframe graph, DF(X, ∗).

Example 11. In Example 9, the condition a ∗ c = c ∗ ab yields (a, c), (c, a) as not being elements of EDF(X, ∗),
and thus, a ∗ c = c, c ∗ a = a in DF(X, ∗), i.e., (VF(X, ∗), •) and (VDF(X, ∗), •) have exactly the same
Cayley table.

Example 12. Suppose that (X, ∗) is the groupoid with X = {a, b, c}, and DF(X, ∗) is the digraph
a• oo // •b // •c . Then, F(X, ∗) is the frame graph, a• •b . The table for (X, ∗) can be

filled in as

∗ a b c
a
√

a c
b b

√
b

c a b
√

, where
√

can be filled with any element of X. For (VDF(X, ∗), •) the table is

• a b c
a a a c
b b b b
c a b c

. Also, for (VF(X, ∗), •), the Cayley table is
• a b
a a a
b b b

.

Example 13. Let (X, ∗) be a groupoid with the following general table:

∗ a b c d e
a

√
a ¬ a ¬ a ¬ a

b ¬ b
√

b ¬ b ¬ b
c ¬ c ¬ c

√
c ¬ c

d ¬ d ¬ d ¬ d
√

d
e e ¬ e ¬ e ¬ e

√

where ¬x means “not x", i.e., anything but x in X, and
√

can be filled with any element of X. Then, DF(X, ∗)
is the following graph:

a• // •b

!!
•c

}}
e•

OO

•doo

i.e., for any x, y ∈ {a, b, c, d, e}, c(x, y) = d(x, y) + d(y, x) = 5. Also, F(X, ∗) has VF(X, ∗) = ∅, since there
is no pair {x, y} with (x, y), (y, x) elements of EDF(X, ∗).
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The groupoid (VDF(X, ∗), •) has the associated table:

• a b c d e
a a a c d e
b a b b d e
c a b c c e
d a b c d d
e e b c d e

Example 14. Let (X, ∗) be a groupoid with the following general table:
∗ a b c d e
a

√
a ¬ a ¬ a a

b b
√

b ¬ b ¬ b
c ¬ c c

√
c ¬ c

d ¬ d ¬ d d
√

d
e e ¬ e ¬ e e

√

where ¬x means “not x", i.e., anything but x in X, and
√

can be filled with any element of X. Then,
F(X, ∗) = DF(X, ∗) is the simple graph:

a• •b

•c

e• •d
The corresponding groupoid (VF(X, ∗), •) (or (VDF(X, ∗), •)) has the following multiplication table:

• a b c d e
a a a c d a
b b b b d e
c a c c c e
d a b d d d
e e b c e e

The question is then how to represent the undirected cyclical nature of the groupoid (X, ∗) in the
most elegant way, such as we were able to do in Example 14.

Theorem 5. Let f : (X, ∗) → (Y, •) be an onto homomorphism for groupoids. Define a binary
operation “ " on X by x  y with f (x ∗ y) = f (x) for any x, y ∈ X. If we define DEFf (X, ∗) :=
{(x, y) | x y}, then the graph, DF(X, ∗), is a subdigraph of DFf (X, ∗).

Proof. If f : (X, ∗) → (Y, •) is an onto homomorphism for groupoids, then x ∗ y = x implies f (x) •
f (y) = f (x). Thus, either f (x) = f (y) or x• // •y maps to f (x)• // • f (y) from DF(X, ∗)
to DF(Y, •). Furthermore, if u• // •v is an arrow (directed edge) in DF(Y, •), then f (x) • f (y) =
f (x) if u = f (x), v = f (y). Hence, f (x ∗ y) = f (x), i.e., x  y. Thus, if we consider the digraph
DFf (X, ∗) to have the vertex set DVFf (X, ∗) = X and edge set DEFf (X, ∗) = {(x, y)|x y}, then f
induces a mapping f̂ : DFf (X, ∗)→ DF(Y, •) by setting f̂ (x y) = f (x)→ f (y). The mapping f̂ is
a surjection of graphs (or a graph epimorphism). Hence the graph DF(X, ∗) is naturally a subdigraph
of DFf (X, ∗).

Example 15. Let f : (R,+)→ (R,+) be a mapping defined by f (x) = 2x for all x ∈ R. Then, f (x + y) =
2(x + y) = 2x + 2y = f (x) + f (y), and f is a group(oid) epimorphism. Now, x + y = x means y = 0,
and thus, f (x) + f (y) = f (x) + 0 = f (x). Thus, x  y means y = 0 and x  0 for all x, while y 6= 0
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means x 6 y. Hence, DEFf (X, ∗) = {(x, y)| f (x + y) = f (x)} = {(x, 0)|x ∈ R} = {(x, y)|x  y}.
The mapping f̂ : DFf (R,+) → DF(R,+) given by f̂ (x  0) = f (x) → f (0) = 2x → 0, as a mapping
of graphs maps an edge, x → 0, to an edge, 2x → 0, and it is an epimorphism of graphs, in fact, it is an
isomorphism. Note that 2(x + y) = 2x implies that x + y = x (i.e., y = 0), and u = 2x, v = 2y, u → v
implies v = 0 and 2x → 0 implies x → 0 as well.

7. Final Considerations

From the constructions made above, we see clearly that we may now infuse the theory of (Bin(X),
2) with a multitude of graph theoretical notions. As a further illustration, we may consider the
eccentricity, e(x), of a vertex, x, of a groupoid (X, ∗) as the maximum, max{d(x, y)|x, y ∈ X}, and if
the maximum is finite, assign that number to the vertex, x. From the eccentricity function, we may
now derive the concepts of radius and diameter. Incidentally we may do the same with respect to the
mutual distance to obtain the mutual eccentricity function After having done so, types of groupoids
can be discussed in terms of these parameters. We have a selection of possibilities:

(1) Groupoids in Bin(X), such that min e (i.e., radius) = max e (i.e., diameter) or equivalently e is
a constant;

(2) Groupoids in Bin(X), such that e(x) = me(x) for x ∈ A ⊆ X, where A is an interesting subset of
X, e.g., A = X;

(3) Groupoids in Bin(X) with a small min e but max e being as large as possible;
(4) Groupoids in Bin(X) with e(x) + me(x) = constant K.

Obviously, there are many other interesting parameters of a graph’s theoretical nature which may
be introduced. Hence, it may be of interest in certain applications to pursue the subject further. In the
interest of producing an article which is clear but manageable in size, we have decided not to go into
more detail in this paper.
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