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Abstract: To address the complex multiple criteria decision-making (MCDM) problems in practice,
this article proposes the picture hesitant fuzzy set (PHFS) theory based on the picture fuzzy set and
the hesitant fuzzy set. First, the concept of PHFS is put forward, and its operations are presented,
simultaneously. Second, the generalized picture hesitant fuzzy weighted aggregation operators are
developed, and some theorems and reduced operators of them are discussed. Third, the generalized
picture hesitant fuzzy prioritized weighted aggregation operators are put forward to solve the
MCDM problems that the related criteria are at different priorities. Fourth, two novel MCDM
methods combined with the proposed operators are constructed to determine the best alternative in
real life. Finally, two numerical examples and an application of web service selection are investigated
to illustrate the effectiveness of the proposed methods. The sensitivity analysis shows that the
different values of the parameter λ affect the ranking of alternatives, and the proposed operators are
compared with several existing MCDM methods to illustrate their advantages.

Keywords: multiple criteria decision-making; picture hesitant fuzzy set; generalized picture hesitant
fuzzy weighted aggregation operator; generalized picture hesitant fuzzy prioritized weighted
aggregation operator

1. Introduction

Multiple criteria decision-making (MCDM) problems occur in numerous practical fields [1–3].
For a specific purpose, several possible plans may be presented as the alternatives; then, decision
makers assess the alternatives concerning the related criteria to determine the best one. Traditionally,
crisp numbers are utilized to express the evaluation information. However, in real life, the data are
inevitably incomplete and complex, and decision makers may be uncertain when evaluating the
alternatives. To deal with the fuzziness of evaluation information, the fuzzy set (FS) [4] was proposed
to improve the information form. During the past decades, many scholars devoted themselves to the
study of the fuzzy MCDM problems [1]. Furthermore, in recent years, along with the complexity of
the MCDM problems, how to improve the FS theory to deal with different specific situations has been
a hot topic.

Although FS is a valid form to express the uncertain evaluation information, it cannot solve
several complex situations in real life. For more effective expression of the evaluation information,
many generalized forms of FS were proposed [5–10]. The purpose of this paper is to propose a new
information form; the picture hesitant fuzzy set (PHFS) theory is put forward combined with the
concepts of picture fuzzy set (PFS) [7] and hesitant fuzzy set (HFS) [8]. As a generalized form of FS,
intuitionistic fuzzy set (IFS) [5], PFS, and HFS, PHFS can express the uncertainty and complexity of
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human opinions in practice; furthermore, the positive, neutral, negative, and refusal membership
degrees are represented by several possible values that are given by decision makers.

In practice, the uncertain and complex evaluation information will be inevitably given by decision
makers. For example, ten business managers discuss an investment project; five suggest agreement,
two present disagreement, and the other business managers choose to abstain. Obviously, FS can only
indicate the membership degree of evaluation information; thus, the opinions of the 10 business
managers cannot be represented by FS. For overcoming the limitation of FS, Atanassov [5] put
forward the non-membership function and developed the IFS. Then, the evaluation information
in the aforementioned example can be expressed by IFS accurately. Later, the interval numbers were
used to substitute the crisp numbers in IFS; then, the interval-valued intuitionistic fuzzy set (IVIFS)
was developed [6]. To convey the indeterminate information of decision makers more effectively,
Ye [9] and Liu and Yuan [11] extended the FS to triangular and trapezoidal intuitionistic fuzzy set,
respectively. However, in some particular situations, it is not convincing to represent the evaluation
information combined with IFS or IVIFS. For instance, there is a vote for a specific matter, the voting
opinions of voters can be divided into four types, namely, vote for, abstain, vote against, and a refusal
of the voting [12]. Therefore, Cuong [7,13] put forward the PFS, which is composed by the positive,
neutral, negative, and refusal membership functions; thus, PFS can express the opinions of decision
makers accurately in the example above. Subsequently, the correlation coefficient, distance measure,
and cross-entropy measure of PFS were investigated in detail [14–16].

On the other hand, sometimes the accurate membership degree of evaluation information
is difficult to be determined, which is also another shortcoming of FS. Therefore, the HFS was
developed [17], in which the membership degrees are represented by several possible crisp numbers.
Next, the interval numbers were introduced to extend the membership function of HFS and the
interval-valued hesitant fuzzy set (IVHFS) theory was proposed [18]. According to the IFS and HFS,
several potential membership and non-membership functions were expressed to put forward the dual
hesitant fuzzy set (DHFS) [10]. Later, Farhadinia [19] constructed the dual interval-valued hesitant
fuzzy set (DIVHFS) combined with DHFS. Nevertheless, HFS in the existing research cannot express
all types of human opinions in the aforementioned example.

According to the evaluation information of the individual decision makers, the collective
evaluation information of each alternative is obtained through the information fusion. Due to
the important role of aggregation tools in MCDM problems, many scholars have investigated the
aggregation operators of different fuzzy information. For example, Xu and Yager [20] developed the
operations of intuitionistic fuzzy numbers (IFNs) and proposed the intuitionistic fuzzy geometric
aggregation operators. Later, Xu [21] put forward the intuitionistic fuzzy weighted averaging
aggregation operators to aggregate the IFNs. Next, several interval-valued intuitionistic fuzzy
aggregation operators were constructed to deal with the MCDM [22–24]. With respect to the picture
fuzzy (PF) evaluation information, Wei [25] defined the operations of picture fuzzy numbers (PFNs)
according to the study of [21] and proposed the picture fuzzy weighted aggregation operators.
In addition, several PF aggregation operators according to different operations were put forward [12,26].
Besides, a great time of hesitant fuzzy aggregation operators and their generalized forms were
constructed [27], and several aggregation operators under dual hesitant fuzzy and dual interval-valued
hesitant fuzzy environment were developed [28–30].

In some practical MCDM problems, the related criteria may be at different priority levels.
For instance, a young couple wants to choose a toy for their child, the criteria of the toy they will
consider are safety and price; obviously, the criteria safety has a higher priority than price. However,
the aforementioned aggregation operators cannot fuse the aggregated arguments that are in different
priority levels. In response to these situations, Yager [31] proposed the prioritized averaging (PA)
operator. Inspired by Yager [31], Yu et al. [32,33] constructed the intuitionistic fuzzy prioritized fuzzy
and interval-valued intuitionistic fuzzy prioritized fuzzy aggregation operators. Besides, the hesitant
fuzzy prioritized aggregation operators were proposed to aggregate the evaluation information that is
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at different priorities [34]. Nevertheless, to our best knowledge, few researches have extended the PA
operator to solve the MCDM problems under PF environment.

In summary, this paper defines the PHFS based on the PFS and HFS and develops the operations
laws of picture hesitant fuzzy elements (PHFEs) according to the operations of IFNs [21]. Then,
the generalized picture hesitant fuzzy aggregation operators and generalized picture hesitant fuzzy
prioritized aggregation operators are put forward, and the properties and reduced operators of them
are investigated. Furthermore, the proposed operators are utilized to solve diverse situations during
MCDM processes under picture hesitant fuzzy (PHF) environment.

The rest of this paper is structured as follows. Definitions of the PFS, HFS, and PA operator are
presented in Section 2. The concept of PHFS is defined, and the comparison method and operations of
PHFEs are proposed in Section 3. Section 4 constructs the generalized picture hesitant fuzzy weighted
averaging (GPHFWA), generalized picture hesitant fuzzy weighted geometric (GPHFWG), generalized
picture hesitant fuzzy prioritized weighted averaging (GPHFPWA), and generalized picture hesitant
fuzzy prioritized weighted geometric (GPHFPWG) operators. In Section 5, two MCDM methods
are constructed according to the proposed operators. Section 6 applies the proposed methods into
two numerical examples and an application of web service selection to show the effectiveness and
advantages of the proposed methods. Finally, some conclusions are summarized in Section 7.

2. Preliminaries

To make this paper as self-contained as possible, we recall the definitions of the PFS, HFS, and PA
operator, which will be utilized in the subsequent research.

2.1. PFS

Atanassov [5] applied the non-membership degree to extend FS; however, expressing the
evaluation information depend on IFS is unreasonable in practice, at times. Therefore, Cuong [13]
proposed the PFS theory based on FS and IFS, which can represent more information of decision
makers, including yes, abstain, no, and refusal.

Definition 1. Let X be a non-empty and finite set, a PFS P on X is defined by

P = {〈x, µP(x), ηP(x), vP(x)〉|x ∈ X}, (1)

where µP(x), ηP(x), and vP(x) are the positive, neutral, and negative membership functions that are belonging
to [0, 1], respectively, and they meet the condition of 0 ≤ µP(x) + ηP(x) + vP(x) ≤ 1. Furthermore,
πP(x) = 1− µP(x)− ηP(x)− vP(x) is the refusal membership function.

Definition 2. A picture fuzzy number (PFN) is represented by a = (µa, ηa, va), where µa ∈ [0, 1], ηa ∈ [0, 1],
va ∈ [0, 1], and µa + ηa + va ≤ 1 [25].

Wei [25] proposed the operations of PFNs based on the operations of IFNs in [21].

Definition 3. Let a1 = (µ1, η1, v1), a2 = (µ2, η2, v2), and a = (µ, η, v) be three PFNs, λ > 0, and ac is the
complementary set of a, then [25]

ac = (v, η, µ); (2)

a1 ⊕ a2 = (µ1 + µ2 − µ1µ2, η1η2, v1v2); (3)

a1 ⊗ a2 = (µ1µ2, η1 + η2 − η1η2, v1 + v2 − v1v2); (4)

λa =
(

1− (1− µ)λ, ηλ, vλ
)

; (5)

aλ =
(

µλ, 1− (1− η)λ, 1− (1− v)λ
)

. (6)
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2.2. HFS

Due to the complexity of the evaluated object in practice, decision makers may have difficulty
determining an accurate value of the membership level. To deal with this situation, Torra [8] developed
the HFS theory in which the membership degree is expressed by several possible values.

Definition 4. Let ℘([0, 1]) be the set of all subsets of the unitary interval and X be a non- empty set.
Let hA : X → ℘([0, 1]) , then an HFS A on X is defined by

A = {〈x, hA(x)〉|x ∈ X}. (7)

Definition 5. A hesitant fuzzy element (HFE) is a non-empty and finite subset of [0, 1] [27].

Although a HFE can be given by any subset of [0, 1], in practice, HFS is commonly restricted to
finite set in the MCDM problems [27]. Therefore, Bedregal at al. [35] proposed the typical hesitant
fuzzy set (THFS), which is the finite and non-empty HFS. Later, Alcantud and Torra [36] defined
the uniformly typical hesitant fuzzy set (UTHFS) that can simplify many theoretical and practical
arguments, which is a generalized form of THFS. In this paper, the evaluation information of decision
makers is expressed by UTHFS during the MCDM processes under hesitant fuzzy environment.

Definition 6. Let H ⊆ ℘([0, 1]) be the set of all finite and non-empty subsets of [0, 1], and let X be a non-
empty set. Then, a THFS A on X is defined by Equation (7), where hA : X → H . Each h ∈ H is called a typical
hesitant fuzzy element (THFE) [35].

Definition 7. Let A be a THFS on X, if there is N such that the cardinality of the THFS lA(x) ≤ N for each
x ∈ X. Then, the THFS A is an UTHFS. Each h ∈ H is called an uniformly typical hesitant fuzzy element
(UTHFE) [36].

To aggregate the hesitant fuzzy evaluation information, Xia and Xu [27] investigated the
operations of HFEs, which is also valid for fusing UTHFEs.

Definition 8. Let h, h1, and h2 be three UTHFEs, λ > 0, then

h1 ⊕ h2 = ∪
γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2}; (8)

h1 ⊗ h2 = ∪
γ1∈h1,γ2∈h2

{γ1γ2}; (9)

λh = ∪
γ∈h

{
1− (1− γ)λ

}
; (10)

hλ = ∪
γ∈h

{
γλ
}

. (11)

2.3. The PA Operator

Aggregation operator plays a crucial role in the process of information fusion. Sometimes,
the criteria have different priorities according to their important degree; thus, Yager [31] constructed
the PA operator to address these situations.
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Definition 9. Let C = {C1, C2, . . . , Cn} be a set of criteria, which are divided into several priority levels,
i.e., the priority of Cp is higher than Cq when p < q. The Cj(x) ∈ [0, 1] is the evaluation value of the alternative
x concerning the criteria Cj. Thus, the PA operator is expressed by

PA(C1(x), C2(x), . . . , Cn(x)) =
n

∑
j=1

wjCj(x). (12)

where wj = Tj/∑n
j=1 Tj, Tj = ∏

j−1
k=1 Ck(x), and T1 = 1.

3. PHFS

According to the PFS and UTHFS, we can define the PHFS that is composed by four membership
functions, namely, positive, neutral, negative, and refusal membership functions. The four membership
degrees are denoted by several values belonging to [0, 1], respectively, which can convey the hesitancy
of decision makers.

Definition 10. Let X be a non-empty and finite set, a PHFS N on X is defined by

N = {〈x, µ̃(x), η̃(x), ṽ(x)〉|x ∈ X}, (13)

where µ̃(x) = {α|α ∈ µ̃(x)}, η̃(x) = {β|β ∈ η̃(x)}, and ṽ(x) = {γ|γ ∈ ṽ(x)} are three sets of several
values in [0, 1], representing the potential positive, neutral, and negative membership degrees. The degrees
above satisfy the condition of 0 ≤ α+ + β+ + γ+ ≤ 1, where α+ = ∪α∈µ̃(x)max{α}, β+ = ∪β∈η̃(x)max{β},
and γ+ = ∪γ∈ṽ(x)max{γ}. For convenience, we call ñ = {µ̃(x), η̃(x), ṽ(x)} is a PHFE, denoted by
ñ = {µ̃, η̃, ṽ}.

During the process of applying the PHFEs to the practical MCDM problems, it is necessary to
rank the PHFEs; thus, we develop the score and accuracy functions of PHFEs.

Definition 11. Let ñ = {µ̃, η̃, ṽ} be a PHFE, the numbers of values in µ̃, η̃, ṽ are l, p, q, respectively. Thus,
the score function is defined as

s(ñ) =

(
1 +

1
l

l

∑
i=1

αi −
1
p

p

∑
i=1

βi −
1
q

q

∑
i=1

γi

)
/2, s(ñ) ∈ [0, 1]. (14)

the accuracy function is expressed as

h(ñ) =
1
l

l

∑
i=1

αi +
1
p

p

∑
i=1

βi +
1
q

q

∑
i=1

γi, h(ñ) ∈ [0, 1]. (15)

Based on the score and accuracy values of PHFEs, we can determine the order relations between
two PHFEs as in the following.

Definition 12. Let ñ1 = {µ̃1, η̃1, ṽ1} and ñ2 = {µ̃2, η̃2, ṽ2} be two PHFEs, then

(1) If s(ñ1) > s(ñ2), then ñ1 > ñ2;
(2) If s(ñ1) = s(ñ2), then

a. If h(ñ1) > h(ñ2), then ñ1 > ñ2;
b. If h(ñ1) = h(ñ2), then ñ1 = ñ2;
c. If h(ñ1) < h(ñ2), then ñ1 < ñ2
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For example, let ñ1 = {{0.3, 0.4}, {0.2}, {0.2, 0.3}}± and ñ2 = {{0.3}, {0.2, 0.3}, {0.1, 0.2}}
be two PHFEs, according to the Definition 11, we have s(ñ1) = s(ñ2) = 0.45, h(ñ1) = 0.4,
and h(ñ2) = 0.35, then ñ1 > ñ2.

Inspired by the operational laws of PFNs and UTHFEs, i.e., the Definition 3 and 8, we propose
the operational laws of PHFEs as follows.

Definition 13. Let ñ = {µ̃, η̃, ṽ}, ñ1 = {µ̃1, η̃1, ṽ1}, and ñ2 = {µ̃2, η̃2, ṽ2} be three PHFEs, λ > 0, and ñc is
the complementary set of ñ, and the operations of PHFEs are represented as

ñc = ∪
α∈µ̃,β∈η̃,γ∈ṽ

{{γ}, {β}, {α}}; (16)

ñ1 ⊕ ñ2 = {µ̃1 ⊕ µ̃2, η̃1 ⊗ η̃2, ṽ1 ⊗ ṽ2} = ∪
α1∈µ̃1 ,β1∈η̃1 ,γ1∈ṽ1 ,α2∈µ̃2 ,β2∈η̃2 ,γ2∈ṽ2

{{α1 + α2 − α1α2}, {β1β2}, {γ1γ2}}; (17)

ñ1 ⊗ ñ2 = {µ̃1 ⊗ µ̃2, η̃1 ⊕ η̃2, ṽ1 ⊕ ṽ2} = ∪
α1∈µ̃1 ,β1∈η̃1 ,γ1∈ṽ1 ,α2∈µ̃2 ,β2∈η̃2 ,γ2∈ṽ2

{{α1α2}, {β1 + β2 − β1β2}, {γ1 + γ2 − γ1γ2}}; (18)

λñ = ∪
α∈µ̃,β∈η̃,γ∈ṽ

{{
1− (1− α)λ

}
,
{

βλ
}

,
{

γλ
}}

; (19)

ñλ = ∪
α∈µ̃,β∈η̃,γ∈ṽ

{{
αλ
}

,
{

1− (1− β)λ
}

,
{

1− (1− γ)λ
}}

. (20)

For example, let ñ1 = {{0.3, 0.4}, {0.2}, {0.2, 0.3}} and ñ2 = {{0.3}, {0.2, 0.3}, {0.1, 0.2}} be two
PHFEs, λ = 2, then

(1) ñ1
c = {{0.2, 0.3}, {0.2}, {0.3, 0.4}}, ñ2

c = {{0.1, 0.2}, {0.2, 0.3}, {0.3}};
(2) ñ1 ⊕ ñ2 = {{0.51, 0.58}, {0.04, 0.06}, {0.02, 0.03, 0.04, 0.06}};
(3) ñ1 ⊗ ñ2 = {{0.09, 0.12}, {0.36, 0.44}, {0.28, 0.36, 0.37, 0.44}};
(4) λñ1 = {{0.51, 0.64}, {0.04}, {0.04, 0.09}}, λñ2 = {{0.51}, {0.04, 0.09}, {0.01, 0.04}};
(5) ñ1

λ = {{0.09, 0.16}, {0.36}, {0.36, 0.51}}, ñ2
λ = {{0.09}, {0.36, 0.51}, {0.19, 0.36}}.

Obviously, the following theorem can be obtained based on the Definition 13.

Theorem 1. Let ñ = {µ̃, η̃, ṽ}, ñ1 = {µ̃1, η̃1, ṽ1}, and ñ2 = {µ̃2, η̃2, ṽ2} be three PHFEs, λ, λ1, λ2 > 0, then

(1) ñ1 ⊕ ñ2 = ñ2 ⊕ ñ1;
(2) ñ1 ⊗ ñ2 = ñ2 ⊗ ñ1;
(3) λ(ñ1 ⊕ ñ2) = λñ1 ⊕ λñ2;

(4) (ñ1 ⊗ ñ2)
λ = ñ1

λ ⊗ ñ2
λ;

(5) λ1ñ⊕ λ2ñ = (λ1 + λ2)ñ;

(6) ñλ1 ⊗ ñλ2 = ñ(λ1+λ2);

(7)
(
ñλ1
)λ2 = ñλ1λ2 .

4. Generalized Picture Hesitant Fuzzy Aggregation Operators

Combined with the concept and operations of PHFS, the GPHFWA, GPHFWG, GPHFPWA,
and GPHFPWG operators are developed. Then, several properties of them are discussed, and some
other aggregation operators under PHF environment that reduced by the proposed operators
are presented.
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4.1. The GPHFWA Operator

Definition 14. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFWA operator is a mapping
Ωn → Ω as

GPHFWAλ(ñ1, ñ2, . . . , ñn) =
(

w1ñ1
λ ⊕ w2ñ2

λ ⊕ · · · ⊕ wnñn
λ
)1/λ

=
n
⊕

j=1

(
wjñj

λ
)1/λ

. (21)

where w = (w1, w2, . . . , wn) is the weight vector of PHFEs ñj, and satisfies the conditions of wj > 0 and
∑n

j=1 wj = 1.

Based on the Definition 13, we can obtain the theorems as follows.

Theorem 2. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the GPHFWA
operator is also a PHFE, and

GPHFWAλ(ñ1, ñ2, . . . , ñn) = ∪
α1∈µ̃1 ,α2∈µ̃2 ,...,αn∈µ̃n ,β1∈η̃1 ,β2∈η̃2 ,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γn∈ṽn



(

1−
n
∏
j=1

(
1− αj

λ
)wj

)1/λ
 ,1−

(
1−

n
∏
j=1

(
1−

(
1− β j

)λ
)wj

)1/λ
,

1−
(

1−
n
∏
j=1

(
1−

(
1− γj

)λ
)wj

)1/λ

.

(22)

Proof. See Appendix A. �

Theorem 3. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal, i.e.,
ñj = ñ = {µ̃, η̃, ṽ}, µ̃ = α, η̃ = β, ṽ = γ, then

GPHFWAλ(ñ1, ñ2, . . . , ñn) = ñ = {µ̃, η̃, ṽ}. (23)

Proof. See Appendix B. �

Theorem 4. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈µ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min

{
β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈µ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min

{
γj
}

, thus

ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (24)

Proof. See Appendix C. �

Theorem 5. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ GPHFWAλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (25)

Proof. Theorem 5 can be obtained by the Theorem 4. �

Under some specific situations, we can obtain the reduced operators of the GPHFWA operator.

Case 1. If λ = 1, then the GPHFWA operator is reduced to the picture hesitant fuzzy weighted
averaging (PHFWA) operator

PHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn) =
n
⊕

j=1

(
wjñj

)
. (26)
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Case 2. If λ = 1 and w = (1/n, 1/n, . . . , 1/n), then the GPHFWA operator is reduced to the picture
hesitant fuzzy arithmetic averaging (PHFAA) operator

PHFAA(ñ1, ñ2, . . . , ñn) =

(
1
n

ñ1 ⊕
1
n

ñ2 ⊕ · · · ⊕
1
n

ñn

)
. (27)

4.2. The GPHFWG Operator

Similarly, the GPHFWG operator can be defined as in the following.

Definition 15. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFWG operator is a mapping
Ωn → Ω as

GPHFWGλ(ñ1, ñ2, . . . , ñn) =
1
λ
(λñ1

w1 ⊗ λñ2
w2 ⊗ · · · ⊗ λñn

wn) =
1
λ

n
⊗

j=1

(
λñj

wj
)
. (28)

where w = (w1, w2, . . . , wn) is the weight vector of PHFEs ñj, and satisfies the conditions of wj > 0 and
∑n

j=1 wj = 1.

According to the operational laws of PHFEs, the theorem can be obtained as follows.

Theorem 6. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the GPHFWG
operator is also a PHFE, and

GPHFWGλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈µ̃1 ,α2∈µ̃2 ,...,αn∈µ̃n ,β1∈η̃1 ,β2∈η̃2 ,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γn∈ṽn


1−

(
1−

n
∏
j=1

(
1−

(
1− αj

)λ
)wj

)1/λ
,


(

1−
n
∏
j=1

(
1− β j

λ
)wj

)1/λ
 ,

(
1−

n
∏
j=1

(
1− γj

λ
)wj

)1/λ
.

(29)

It can be proven by the same process as Theorem 3–5 that the GPHFWG operator also has
several properties.

Theorem 7. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal,
i.e., ñj = ñ = {µ̃, η̃, ṽ}, µ̃ = α, η̃ = β, ṽ = γ, then

GPHFWGλ(ñ1, ñ2, . . . , ñn) = ñ = {µ̃, η̃, ṽ}. (30)

Theorem 8. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈µ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min

{
β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈µ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min

{
γj
}

, thus

ñ− ≤ GPHFWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (31)

Theorem 9. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFWGλ(ñ1, ñ2, . . . , ñn) ≤ GPHFWGλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (32)

Several reduced operators of the GPHFWG operator are presented as:
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Case 3. If λ = 1, then the GPHFWG operator is reduced to the picture hesitant fuzzy weighted
geometric (PHFWG) operator

PHFWG(ñ1, ñ2, . . . , ñn) = (ñ1
w1 ⊗ ñ2

w2 ⊗ · · · ⊗ ñn
wn) =

n
⊗

j=1

(
ñj

wj
)
. (33)

Case 4. If λ = 1 and w = (1/n, 1/n, . . . , 1/n), then the GPHFWG operator is reduced to the picture
hesitant fuzzy geometric averaging (PHFGA) operator

PHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (34)

4.3. The GPHFPWA Operator

In real life, the criteria sometimes have different priority levels. For example, safety has a higher
priority than price when a couple chooses a toy for their child. Obviously, the GPHFWA and GPHFWG
operators cannot deal with this situation; then, the GPHFPWA and GPHFPWG operators are developed
according to the PA operator proposed by Yager [31].

Definition 16. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFPWA operator is a mapping
Ωn → Ω as

GPHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1
λ ⊕ T2

∑n
j=1 Tj

ñ2
λ ⊕ · · · ⊕ Tn

∑n
j=1 Tj

ñn
λ

)1/λ

. (35)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of PHFE ñk.

Similarly, the following theorem can be put forward.

Theorem 10. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the
GPHFPWA operator is also a PHFE, and

GPHFPWAλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈µ̃1 ,α2∈µ̃2 ,...,αn∈µ̃n ,β1∈η̃1 ,β2∈η̃2 ,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γn∈ṽn



1−

n
∏
j=1

(
1− αj

λ
) Tj

∑n
j=1 Tj

1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− β j

)λ
) Tj

∑n
j=1 Tj

1/λ
,1−

1−
n
∏
j=1

(
1−

(
1− γj

)λ
) Tj

∑n
j=1 Tj

1/λ

.

(36)

The GPHFPWA operator also has the properties as follows.

Theorem 12. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal, i.e.,
ñj = ñ = {µ̃, η̃, ṽ}, µ̃ = α, η̃ = β, ṽ = γ, then

GPHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ = {µ̃, η̃, ṽ}. (37)

Theorem 13. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, ñ− = {{α−}, {β+}, {γ+}} and
ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈µ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min

{
β j
}

, γ− = ∪γj∈ṽj
min

{
γj
}

,
α+ = ∪αj∈µ̃j

max
{

αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min

{
γj
}

, thus
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ñ− ≤ GPHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (38)

Theorem 14. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ GPHFPWAλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (39)

Then, the reduced operators of the GPHFPWA operator can be obtained.

Case 5. If λ = 1, then the GPHFPWA operator is reduced to the picture hesitant fuzzy prioritized
weighted averaging (PHFPWA) operator

PHFPWA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1 ⊕
T2

∑n
j=1 Tj

ñ2 ⊕ · · · ⊕
Tn

∑n
j=1 Tj

ñn

)
. (40)

Case 6. If λ = 1 and the criteria are at the same priority, then the GPHFPWA operator is reduced to the
PHFWA operator

PHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn) =
n
⊕

j=1

(
wjñj

)
. (41)

Case 7. If λ = 1, w = (1/n, 1/n, . . . , 1/n), and the criteria are at the same priority, then the GPHFPWA
operator is reduced to the PHFAA operator

PHFAA(ñ1, ñ2, . . . , ñn) =

(
1
n

ñ1 ⊕
1
n

ñ2 ⊕ · · · ⊕
1
n

ñn

)
. (42)

4.4. The GPHFPWG Operator

Similarly, the GPHFPWG operator is constructed as below.

Definition 17. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, the GPHFPWG operator is a mapping
Ωn → Ω as

GPHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(
(λñ1)

T1
∑n

j=1 Tj ⊗ (λñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (λñn)
Tn

∑n
j=1 Tj

)
. (43)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of PHFE ñk.

Combined with the operations of PHFEs, the following theorems are obtained.



Symmetry 2018, 10, 295 11 of 29

Theorem 15. Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, then their aggregated value by using the
GPHFPWG operator is also a PHFE, and

GPHFPWGλ(ñ1, ñ2, . . . , ñn) =

∪
α1∈µ̃1 ,α2∈µ̃2 ,...,αn∈µ̃n ,β1∈η̃1 ,β2∈η̃2 ,...,βn∈η̃n ,γ1∈ṽ1 ,γ2∈ṽ2 ,...,γn∈ṽn


1−

1−
n
∏
j=1

(
1−

(
1− αj

)λ
) Tj

∑n
j=1 Tj

1/λ
,


1−

n
∏
j=1

(
1− β j

λ
) Tj

∑n
j=1 Tj

1/λ
 ,

1−
n
∏
j=1

(
1− γj

λ
) Tj

∑n
j=1 Tj

1/λ
.

(44)

Theorem 16. (Idempotency) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if all the PHFEs are equal,

i.e., ñj = ñ = {µ̃, η̃, ṽ}, µ̃ = α, η̃ = β, ṽ = γ, then

GPHFPWGλ(ñ1, ñ2, . . . , ñn) = ñ = {µ̃, η̃, ṽ}. (45)

Theorem 17. (Boundedness) Let ñj(j = 1, 2, . . . , n) be a collection of PHFEs, if ñ− = {{α−}, {β+}, {γ+}}
and ñ+ = {{α+}, {β−}, {γ−}}, where α− = ∪αj∈µ̃j

min
{

αj
}

, β− = ∪β j∈η̃j
min

{
β j
}

,
γ− = ∪γj∈ṽj

min
{

γj
}

, α+ = ∪αj∈µ̃j
max

{
αj
}

, β+ = ∪β j∈η̃j
max

{
β j
}

, and γ− = ∪γj∈ṽj
min

{
γj
}

, thus

ñ− ≤ GPHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (46)

Theorem 18. (Monotonicity) Let ñj(j = 1, 2, . . . , n) and ñj
∗(j = 1, 2, . . . , n) be two collections of PHFEs,

if ñj ≤ ñj
∗, then

GPHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ GPHFPWGλ(ñ1
∗, ñ2

∗, . . . , ñn
∗). (47)

Several reduced operators of the GPHFPWG operator are presented as below:

Case 8. If λ = 1, then the GPHFPWG operator is reduced to the picture hesitant fuzzy prioritized
weighted geometric (PHFPWG) operator

PHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (48)

Case 9. If λ = 1 and the criteria are at the same priority, then the GPHFPWG operator is reduced to
the PHFWG operator

PHFWG(ñ1, ñ2, . . . , ñn) = (ñ1
w1 ⊗ ñ2

w2 ⊗ · · · ⊗ ñn
wn) =

n
⊗

j=1

(
ñj

wj
)
. (49)

Case 10. If λ = 1, w = (1/n, 1/n, . . . , 1/n) and the criteria are at the same priority, then the GPHFPWG
operator is reduced to the PHFGA operator

PHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (50)
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5. MCDM Methods under PHF Environment

We utilize the proposed operators to deal the different MCDM problems under PHF environment
in this section. Let A = {A1, A2, . . . , Am} be a collection of alternatives and C = {C1, C2, . . . , Cn} be
a set of criteria; decision maker evaluates the m alternatives concerning the n criteria by using the
PHFEs. Thus, suppose that N =

(
ñij
)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the PHF evaluation matrix,

and ñij =
{

µ̃ij, η̃ij, ṽij
}

is the evaluation information when the alternative Ai is evaluated concerning
the criteria Cj. In general, the criteria can be divided into two types in practice, namely, the cost
criteria and benefit criteria; therefore, the evaluation information concerning the cost criteria should be
transformed into the evaluation information concerning the benefit criteria to obtain the standardized
PHF evaluation matrix N =

(
nij
)

as

nij =

{
ñij, for the benefit criteria;(
ñij
)c, for the cost criteria.

(51)

According to the aforementioned assumptions, when the criteria of a specific MCDM problem
are in same priority level, and let w = (w1, w2, . . . , wn) be the weight vector of the criteria. We can
construct a novel approach, i.e., Algorithm 1 to solve it based on the GPHFWA or the GPHFWG
operator. The flow diagram of the Algorithm 1 is presented in Figure 1, and the ranking result can be
obtained by the following steps.
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Algorithm 1. MCDM method based on the GPHFWA or the GPHFWG operator.

1: Normalize the PHF evaluation matrix N to obtain the standardized PHF evaluation matrix N combined
with Equation (51).
2: Utilize the GPHFWA operator

GPHFWAλ(ni1, ni2, . . . , nin) =
(

w1ni1
λ ⊕ w2ni2

λ ⊕ · · · ⊕ wnnin
λ
)1/λ

=
n
⊕

j=1

(
wjnij

λ
)1/λ

=

∪
αi1∈µ̃i1,αi2∈µ̃i2,...,αin∈µ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin



(

1−
n
∏
j=1

(
1− αij

λ
)wj

)1/λ
 ,

1−
(

1−
n
∏
j=1

(
1−

(
1− βij

)λ
)wj

)1/λ
,1−

(
1−

n
∏
j=1

(
1−

(
1− γij

)λ
)wj

)1/λ



(52)
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or the GPHFWG operator

GPHFWGλ(ni1, ni2, . . . , nin) =
1
λ (λni1

w1 ⊗ λni2
w2 ⊗ · · · ⊗ λnin

wn ) = 1
λ

n
⊗

j=1

(
λnij

wj
)
=

∪
αi1∈µ̃i1,αi2∈µ̃i2,...,αin∈µ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin


1−

(
1−

n
∏
j=1

(
1−

(
1− αij

)λ
)wj

)1/λ
,


(

1−
n
∏
j=1

(
1− βij

λ
)wj

)1/λ
 ,

(
1−

n
∏
j=1

(
1− γij

λ
)wj

)1/λ


(53)

to aggregate the standardized PHF evaluation matrix N to obtain the collective evaluation information of each
alternative, i.e., ñi = {µ̃i, η̃i, ṽi}.
3: Compute the score and accuracy values of each alternative using Equation (14) and (15).
4: Based on the comparison method of PHFEs, rank the alternatives.

When the criteria are in different priorities, we can solve the MCDM problem combined with the
Algorithm 2 based on the GPHFPWA or the GPHFPWG operator. The flow diagram of Algorithm 2 is
presented in Figure 2, and the ranking result can be obtained by the following steps.
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Algorithm 2. MCDM method based on the GPHFPWA or the GPHFPWG operator.

1: Normalize the PHF evaluation matrix N to obtain the standardized PHF evaluation matrix combined with
Equation (51).
2: Compute the values of Tij using the equations as

Tij =
j−1

∏
k=1

s(ñik), Ti1 = 1. (54)

3: Utilize the GPHFPWA operator
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GPHFPWAλ(ni1, ni2, . . . , nin) =

(
Ti1

∑n
j=1 Tij

ni1
λ ⊕ Ti2

∑n
j=1 Tij

ni2
λ ⊕ · · · ⊕ Tin

∑n
j=1 Tij

nin
λ

)1/λ

= ∪
αi1∈µ̃i1,αi2∈µ̃i2,...,αin∈µ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin



(

1−
n
∏
j=1

(
1− αij

λ
) Tij

∑n
j=1 Tij

)1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− βij

)λ
) Tij

∑n
j=1 Tij

1/λ
,

1−

1−
n
∏
j=1

(
1−

(
1− γij

)λ
) Tij

∑n
j=1 Tij

1/λ



(55)

or the GPHFPWG operator

GPHFPWGλ(ni1, ni2, . . . , nin) =
1
λ

(
(λni1)

Ti1
∑n

j=1 Tij ⊗ (λni2)

Ti2
∑n

j=1 Tij ⊗ · · · ⊗ (λnin)

Tin
∑n

j=1 Tij

)
=

∪
αi1∈µ̃i1,αi2∈µ̃i2,...,αin∈µ̃in ,βi1∈η̃i1,βi2∈η̃i2,...,βin∈η̃in ,γi1∈ṽi1,γi2∈ṽi2,...,γin∈ṽin


1−

1−
n
∏
j=1

(
1−

(
1− αij

)λ
) Tij

∑n
j=1 Tij

1/λ
,


(

1−
n
∏
j=1

(
1− βij

λ
) Tij

∑n
j=1 Tij

)1/λ
 ,


(

1−
n
∏
j=1

(
1− γij

λ
) Tij

∑n
j=1 Tij

)1/λ


(56)

to aggregate the standardized PHF evaluation matrix N to obtain the collective evaluation information of each
alternative, i.e., ñi = {µ̃i, η̃i, ṽi}.
4: Compute the score and accuracy values of each alternative using Equation (14) and (15).
5: Based on the comparison method of PHFEs, rank the alternatives.

6. Numerical Examples

We adopt two numerical examples of MCDM problems from the study of [25] and [34]
and an application of web service selection [37] to show the feasibility and advantages of the
proposed methods.

6.1. Implementation

Example 1. Suppose that an organization wants to construct the enterprise resource planning (ERP) system [25].
After investigating the existing vendors of ERP systems on the market, five potential ERP systems are primary
determined to be chosen from, i.e., Ai (i = 1, 2, 3, 4, 5). Decision makers utilize the PHFEs to evaluate the five
alternatives with respect to four criteria, namely, function and technology (C1), strategic fitness (C2), ability
of vendor (C3), and reputation of vendor (C4), and the weight vector of the criteria is w = (0.2, 0.1, 0.3, 0.4).
Subsequently, the PHF evaluation matrix N =

(
ñij
)

is obtained as shown in Table 1.

Table 1. PHF evaluation matrix of Example 1.

Alternatives C1 C2 C3 C4

A1
{{0.43,0.53},{0.33},

{0.06,0.09}}
{{0.76,0.89},

{0.05,0.08},{0.03}}
{{0.42},{0.35},
{0.12,0.18}}

{{0.08},{0.75,0.89},
{0.02}}

A2
{{0.53,0.65,0.73},

{0.10,0.12},{0.08}}
{{0.13},{0.53,0.64},

{0.12,0.21}}
{{0.03},{0.77,0.82},

{0.10,0.13}}
{{0.58,0.73},{0.15},

{0.08}}

A3
{{0.72,0.86,0.91},

{0.03},{0.02}}
{{0.07},{0.05,0.09},

{0.05}} {{0.04},{0.65,0.72,0.85},{0.05,0.10}} {{0.45,0.68},{0.18,0.26},{0.06}}

A4
{{0.77,0.85},{0.09},

{0.05}} {{0.65,0.74},{0.10,0.16},{0.10}} {{0.02},{0.78,0.89},{0.05}} {{0.08},{0.65,0.84},
{0.06}}

A5
{{0.70,0.81,0.90},

{0.05},{0.02}}
{{0.68},{0.08},
{0.13,0.21}} {{0.05},{0.77,0.87},{0.06}} {{0.13},{0.65,0.75},

{0.09}}

Then, we can determine the ranking of the five potential ERP systems using the Algorithm 1,
which are presented as below.

Step 1: Because of all the criteria are the benefit type, the standardized PHF evaluation matrix N is as
same as the PHF evaluation matrix N.
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Step 2: Use the GPHFWA (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.3636, 0.3877, 0.4113, 0.4336} , {0.3862, 0.4048, 0.4136, 0.4335}, {0.0444, 0.0482, 0.0502, 0.0544}};
ñ2 = {{0.4061, 0.4401, 0.4684, 0.5023, 0.5308, 0.5545} , {0.2563, 0.2612, 0.2612, 0.2659, 0.2662, 0.2709, 0.2709, 0.2761},

{0.0891, 0.0942, 0.0964, 0.1019}};
ñ3 = {{0.4014, 0.4789, 0.5180, 0.5230, 0.5804, 0.6159} , {0.1627, 0.1677, 0.1725, 0.1763, 0.1779, 0.1870, 0.1884, 0.1943,

0.1999, 0.2042, 0.2061, 0.2166}, {0.0448, 0.0551}};
ñ4 = {{0.3549, 0.3738, 0.4077, 0.4251} , {0.3834, 0.3989, 0.4018, 0.4181, 0.4248, 0.4420, 0.4452, 0.5632}, {0.0576}};

ñ5 = {{0.3468, 0.4038, 0.4756} , {0.3321, 0.3444, 0.3516, 0.3647}, {0.0612, 0.0642}}.

Step 3: Compute the score values of each alternative combined with Equation (14):

s(ñ1) = 0.4701, s(ñ2) = 0.5611, s(ñ3) = 0.6409, s(ñ4) = 0.4553, s(ñ5) = 0.4989.

Step 4: According to the score values, the ranking result of the five ERP systems is determined as
A3 � A2 � A5 � A1 � A4.

If the GPHFWG operator is utilized in the steps above to complete the information fusion, the
ranking procedures are presented as follows.

Step 1′: See Step 1.
Step 2′: Use the GPHFWG (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.2307, 0.2343, 0.2405, 0.2443} , {0.5365, 0.6663, 0.5380, 0.6673}, {0.0600, 0.0797, 0.0661, 0.0856}};
ñ2 = {{0.2017, 0.2101, 0.2151, 0.2212, 0.2304, 0.2358} , {0.4526, 0.4550, 0.4670, 0.4693, 0.4914, 0.4936, 0.5047, 0.5070},

{0.0901, 0.0993, 0.0999, 0.1090}};
ñ3 = {{0.1986, 0.2057, 0.2081, 0.2342, 0.2427, 0.2454} , {0.3334, 0.3363, 0.3602, 0.3630, 0.3766, 0.3792, 0.4016, 0.4042,

0.4830, 0.4852, 0.5038, 0.5059}, {0.0481, 0.0634}};
ñ4 = {{0.1024, 0.1037, 0.1044, 0.1058} , {0.5949, 0.5977, 0.6709, 0.6732, 0.7038, 0.7058, 0.7594, 0.7611}, {0.0591}};

ñ5 = {{0.1613, 0.1660, 0.1696} , {0.5850, 0.6372, 0.6503, 0.6943}, {0.0716, 0.0805}}.

Step 3′: Compute the score values of each alternative combined with Equation (14):

s(ñ1) = 0.2813, s(ñ2) = 0.3197, s(ñ3) = 0.3778, s(ñ4) = 0.1808, s(ñ5) = 0.2240.

Step 4′: According to the score values, the ranking result of the five ERP systems is determined as
A3 � A2 � A1 � A5 � A4.

Example 2. Suppose a university wants to introduce excellent foreign professors to improve the level of teaching
and scientific research [34]. There are five foreign professors who are selected by the University’s human resources
department. Based on the priority level, the criteria of investigation is successively morality (C1), research ability
(C2), teaching capacity (C3), and educational experience (C4); a priority relationship C1 � C2 � C3 � C4 exists
between the criteria. Then, the PHF evaluation matrix N =

(
ñij
)

is presented in Table 2.
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Table 2. PHF evaluation matrix in Example 2.

Alternatives C1 C2 C3 C4

A1 {{0.40,0.50,0.70},{0.05},{0.10,0.20}} {{0.65},{0.05,0.08},
{0.15}} {{0.40,0.50,0.60},{0.03},{0.10,0.20}} {{0.55},{0.10,0.15},

{0.15}}

A2 {{0.65,0.75},{0.02,0.04},{0.15}} {{0.60},{0.05,0.10},
{0.10,0.20}}

{{0.75,0.80},{0.06},
{0.05,0.08}}

{{0.40,0.50},{0.20},
{0.15,0.25}}

A3
{{0.70},{0.06,0.10},

{0.10,0.15}} {{0.20,0.30,0.50},{0.04},{0.30,0.40}} {{0.50},{0.03,0.06},
{0.30,0.35}}

{{0.50,0.70},{0.10},
{0.10}}

A4 {{0.50,0.60,0.70},{0.08},{0.10}} {{0.40,0.50},{0.20},
{0.10,0.20}}

{{0.85},{0.03,0.07},
{0.05}}

{{0.45},{0.10,0.20},
{0.15,0.30}}

A5
{{0.65},{0.05,0.10},

{0.15,0.20}}
{{0.50,0.70},{0.08},

{0.20}}
{{0.70,0.80},{0.04},

{0.10}} {{0.35},{0.10,0.20},{0.30,0.40}}

Subsequently, we can determine the ranking of the five foreign professors using the Algorithm 2,
which are presented as follows.

Step 1: Because of all the criteria are the benefit type, the standardized PHF evaluation matrix N is as
same as the PHF evaluation matrix N.
Step 2: Compute the values of Tij using the Equation (54)

Tij =


1.000 0.6667 0.4783 0.3157
1.000 0.7600 0.5225 0.4311
1.000 0.7475 0.3526 0.1992
1.000 0.7100 0.3905 0.3417
1.000 0.7000 0.4620 0.3719

.

Step 3: Use the GPHFPWA (λ = 1) operator to aggregate the standardized PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.5003, 0.5177, 0.5360, 0.5382, 0.5522, 0.6230, 0.6361, 0.6516, 0.6516} , {0.0495, 0.0521, 0.0562, 0.0592},
{0.1176, 0.1345, 0.1558, 0.1783}};

ñ2 = {{0.6290, 0.6396, 0.6446, 0.6548, 0.6723, 0.6816, 0.6861, 0.6950} , {0.0460, 0.0559, 0.0594, 0.0722},
{0.1084, 0.1175, 0.1186, 0.1287, 0.1316, 0.1427, 0.1441, 0.1562}};

ñ3 = {{0.5335, 0.5533, 0.5537, 0.5727, 0.5996, 0.6169} , {0.0494, 0.0550, 0.0617, 0.0686} ,

{0.1692, 0.1732, 0.1857, 0.1902, 0.2018, 0.2066, 0.2216, 0.2269}};
ñ4 = {{0.5593, 0.5820, 0.5978, 0.6185, 0.6425, 0.6609} , {0.0921, 0.1015, 0.1055, 0.1162}, {0.0947, 0.1044, 0.1159, 0.1277}};

ñ5 = {{0.5888, 0.6181, 0.6429, 0.6683} , {0.0605, 0.0670, 0.0796, 0.0881}, {0.1670, 0.1742, 0.1871, 0.1951}}.

Step 4: Compute the score values of each alternative combined with Equation (14)

s(ñ1) = 0.6888, s(ñ2) = 0.7368, s(ñ3) = 0.6580, s(ñ4) = 0.6978, s(ñ5) = 0.6874.

Step 5: According to the score values, the ranking result of the five foreign professors is determined as
A2 � A4 � A1 � A5 � A3.

If the GPHFPWG operator is utilized in the steps above to complete the information fusion,
the ranking procedures are presented as follows.

Step 1′: See Step 1.
Step 2′: See Step 2.
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Step 3′: Use the GPHFPWG (λ = 1) operator to aggregate standardized the PHF evaluation matrix N,
and the collective evaluation information of each alternative is obtained as

ñ1 = {{0.4753, 0.4963, 0.5142, 0.5204, 0.5434, 0.5966, 0.6231, 0.6455, 0.6455} , {0.0527, 0.0597, 0.0609, 0.0678},
{0.1203, 0.1402, 0.1614, 0.1804}};

ñ2 = {{0.6049, 0.6124, 0.6267, 0.6345, 0.6376, 0.6456, 0.6606, 0.6689} , {0.0668, 0.0739, 0.0809, 0.0878},
{0.1176, 0.1230, 0.1350, 0.1403, 0.1462, 0.1515, 0.1630, 0.1682}};

ñ3 = {{0.4297, 0.4424, 0.4902, 0.5047, 0.5788, 0.5959} , {0.0526, 0.0571, 0.0703, 0.0748},
{0.2020, 0.2110, 0.2216, 0.2304, 0.2410, 0.2495, 0.2596, 0.2680}};

ñ4 = {{0.5026, 0.5363, 0.5416, 0.5769, 0.5779, 0.6155} , {0.1119, 0.1178, 0.1264, 0.1322}, {0.0994, 0.1236, 0.1297, 0.1531}};
ñ5 = {{0.5596, 0.5733, 0.6141, 0.6292} , {0.0640, 0.0801, 0.0838, 0.0995}, {0.1791, 0.1975, 0.1985, 0.2164}}.

Step 4′: Compute the score values of each alternative combined with Equation (14)

s(ñ1) = 0.6757, s(ñ2) = 0.7080, s(ñ3) = 0.6040, s(ñ4) = 0.6550, s(ñ5) = 0.6572.

Step 5′: According to the score values, the ranking result of the five foreign professors is obtained as
A2 � A1 � A5 � A4 � A3.

6.2. Sensitivity Analysis

To explore the impact of the parameter λ on the ranking results, different possible values of λ

are used in the algorithms of two aforementioned numerical examples, such as 0.001, 0.5, 1, 2, 3, 5,
10, 20, and 50. Then, combined with the proposed methods, the different rankings of alternatives are
presented in Tables 3–6. From Tables 3 and 4, we can find that the best potential ERP system in Example
1 is always A3 using both the GPHFWA operator and GPHFWG operator; however, some differences
exist between the ranking results concerning different values of λ. Tables 5 and 6 show that when we
utilize the GPHFPWA operator to complete the information fusion, the best foreign professor is A2

for 0.001 ≤ λ ≤ 10, but the best alternative is A4 for 20 ≤ λ ≤ 50. In addition, when the GPHFPWG
operator is used in Algorithm 2, the best foreign professor is A2 for 0.001 ≤ λ ≤ 3, but the best
alternative is A1 for 5 ≤ λ ≤ 50. On the other hand, the score values of all the alternatives vary with
different values of λ; the reason is that the aggregation processes of the proposed operators have
changed. For instance, when λ = 2, the GPHFWA operator can be reduced to the picture hesitant
fuzzy weighted quadratic averaging (PHFWQA) operator as

PHFWQA(ni1, ni2, . . . , nin) =
(

w1ni1
2 ⊕ w2ni2

2 ⊕ · · · ⊕ wnnin
2
)1/2

.

when λ = 3, the GPHFWA operator can be reduced to the picture hesitant fuzzy weighted cubic
averaging (PHFWCA) operator as

PHFWCA(ni1, ni2, . . . , nin) =
(

w1ni1
3 ⊕ w2ni2

3 ⊕ · · · ⊕ wnnin
3
)1/3

.

Besides, the following results can be obtained from Tables 3–6:

(1) In Example 1, the score values of each alternative obtained by the GPHFWA operator are bigger
than those obtained by the GPHFWG operator, and the difference between them increases along
with the increasing of λ. It means that the GPHFWA operator is more suitable to aggregate the
PHFEs of optimistic decision makers, while the GPHFWG operator can reflect the opinion of
pessimistic decision makers. Furthermore, the level of optimism and pessimism are greater with
the bigger value of λ.

(2) In Example 2, the score values of each alternative obtained by the GPHFPWA and GPHFPWG
operators are relatively stable when the different values of λ are used; the parameter λ cannot
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reflect the attitude of decision makers. In addition, the best alternative varies when the value
of λ is relatively high, while the best alternative is always the same in Example 1. It means that
the rankings obtained by the GPHFPWA and GPHFPWG operators are more affected by the
parameter λ than those obtained by the GPHFWA and GPHFWG operators.

The aforementioned sensitivity analysis results show that the value of λ plays a very important
role in MCDM problems, especially when the value of λ is relatively high. The value of λ can be
determined based on the personal preference of decision makers to obtain different ranking results;
thus, the proposed methods are highly flexible to deal with different situations in practice.

Table 3. Sensitivity analysis results obtained by the GPHFWA operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.4117 0.4988 0.5787 0.3388 0.4058 A3 � A2 � A1 � A5 � A4
λ = 0.5 0.4412 0.5328 0.6124 0.3977 0.4526 A3 � A2 � A5 � A1 � A4
λ = 1 0.4701 0.5611 0.6409 0.4553 0.4989 A3 � A2 � A5 � A1 � A4
λ = 2 0.5197 0.6001 0.6812 0.5426 0.5743 A3 � A2 � A5 � A4 � A1
λ = 3 0.5578 0.6242 0.7074 0.5981 0.6255 A3 � A5 � A2 � A4 � A1
λ = 5 0.6133 0.6522 0.7406 0.6613 0.6852 A3 � A5 � A4 � A2 � A1

λ = 10 0.6965 0.6831 0.7837 0.7274 0.7481 A3 � A5 � A4 � A1 � A2
λ = 20 0.7679 0.7062 0.8197 0.7722 0.7916 A3 � A5 � A4 � A1 � A2
λ = 50 0.8243 0.7274 0.8527 0.8063 0.8280 A3 � A5 � A1 � A4 � A2

Table 4. Sensitivity analysis results obtained by the GPHFWG operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.3227 0.3791 0.4486 0.2142 0.2720 A3 � A2 � A1 � A5 � A4
λ = 0.5 0.3019 0.3492 0.4120 0.1960 0.2457 A3 � A2 � A1 � A5 � A4
λ = 1 0.2813 0.3197 0.3778 0.1808 0.2240 A3 � A2 � A1 � A5 � A4
λ = 2 0.2451 0.2690 0.3237 0.1587 0.1926 A3 � A2 � A1 � A5 � A4
λ = 3 0.2168 0.2314 0.2858 0.1439 0.1716 A3 � A2 � A1 � A5 � A4
λ = 5 0.1780 0.1829 0.2389 0.1249 0.1441 A3 � A2 � A1 � A5 � A4

λ = 10 0.1301 0.1265 0.1878 0.0991 0.1093 A3 � A1 � A2 � A5 � A4
λ = 20 0.1252 0.1158 0.1923 0.1216 0.1095 A3 � A1 � A4 � A2 � A5
λ = 50 0.1458 0.1377 0.1692 0.1041 0.1351 A3 � A1 � A2 � A5 � A4

Table 5. Sensitivity analysis results obtained by the GPHFPWA operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.6866 0.7337 0.6477 0.6911 0.6829 A2 � A4 � A1 � A5 � A3
λ = 0.5 0.6877 0.7352 0.6529 0.6944 0.6852 A2 � A4 � A1 � A5 � A3
λ = 1 0.6888 0.7368 0.6580 0.6978 0.6874 A2 � A4 � A1 � A5 � A3
λ = 2 0.6913 0.7399 0.6680 0.7054 0.6920 A2 � A4 � A5 � A1 � A3
λ = 3 0.6940 0.7432 0.6769 0.7135 0.6964 A2 � A4 � A5 � A1 � A3
λ = 5 0.6994 0.7495 0.6915 0.7298 0.7045 A2 � A4 � A5 � A1 � A3

λ = 10 0.7108 0.7634 0.7151 0.7628 0.7203 A2 � A4 � A5 � A3 � A1
λ = 20 0.7243 0.7831 0.7369 0.7976 0.7407 A4 � A2 � A5 � A3 � A1
λ = 50 0.7408 0.8092 0.7570 0.8332 0.7693 A4 � A2 � A5 � A3 � A1
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Table 6. Sensitivity analysis results obtained by the GPHFPWG operator.

Values s(ñ1) s(ñ2) s(ñ3) s(ñ4) s(ñ5) Ranking

λ = 0.001 0.6814 0.7230 0.6242 0.6733 0.6706 A2 � A1 � A4 � A5 � A3
λ = 0.5 0.6789 0.7163 0.6147 0.6647 0.6646 A2 � A1 � A4 � A5 � A3
λ = 1 0.6757 0.7080 0.6040 0.6550 0.6572 A2 � A1 � A5 � A4 � A3
λ = 2 0.6680 0.6885 0.5815 0.6344 0.6393 A2 � A1 � A5 � A4 � A3
λ = 3 0.6597 0.6692 0.5611 0.6155 0.6194 A2 � A1 � A5 � A4 � A3
λ = 5 0.6442 0.6378 0.5306 0.5873 0.5815 A1 � A2 � A4 � A5 � A3

λ = 10 0.6190 0.5931 0.4921 0.5524 0.5213 A1 � A2 � A4 � A5 � A3
λ = 20 0.6727 0.5774 0.5122 0.5451 0.5002 A1 � A2 � A4 � A3 � A5
λ = 50 0.7825 0.7355 0.6732 0.7214 0.6872 A1 � A2 � A4 � A5 � A3

6.3. Comparative Analysis

To prove the feasibility of the proposed MCDM methods, the rankings of Example 1 in this paper
are compared with the rankings obtained by the existing MCDM methods as presented in Table 7;
including the PFWA and PFWG operators [25], and the picture fuzzy cross-entropy method [16].
Similarly, a comparison of Example 2 between the GPHFPWA and GPHFPWG operators and the
HFPWA and HFPWG operators [34] is presented in Table 8.

Table 7. Comparison result of Example 1.

MCDM method Ranking

The GPHFWA operator (λ = 1) A3 � A2 � A5 � A1 � A4
The GPHFWG operator (λ = 1) A3 � A2 � A1 � A5 � A4

The PFWA operator A3 � A2 � A1 � A5 � A4
The PFWG operator A3 � A1 � A2 � A5 � A4

The picture fuzzy cross-entropy method A3 � A1 � A2 � A5 � A4

Table 8. Comparison result of Example 2.

MCDM method Ranking

The GPHFPWA operator (λ = 1) A2 � A4 � A1 � A5 � A3
The GPHFPWG operator (λ = 1) A2 � A1 � A5 � A4 � A3

The HFPWA operator A5 � A2 � A1 � A4 � A3
The HFPWG operator A2 � A5 � A1 � A4 � A3

Table 7 shows that the best alternative of Example 2 obtained by the MCDM methods based on
the GPHFWA and GPHFWG operators is always A3, which is consistent with the existing methods;
the results can demonstrate the feasibility of the proposed method. Compared with the PFS that
is used in the study of [25] and [16], PHFS proposed in this paper can convey the human opinions
more effectively, including yes, abstain, no, and refusal. For instance, the evaluation information
of the alternative A1 concerning the criteria C1 that are given by decision maker is expressed as a
PFN (0.53,0.33,0.09) [16,25]. In practice, decision maker may feel doubtful to determine an exact
value of each membership level. Obviously, PFS cannot deal with this situation; however, we can use
PHFS to represent the evaluation information as a PHFE {{0.43,0.53}, {0.33}, {0.06,0.09}} as shown in
Table 1. Consequently, the proposed method can solve the MCDM problems when decision makers
feel difficulty to determine the accurate value of each membership level. On the other hand, when the
numbers of the criteria are relatively large, the aggregation process of the proposed operators will
be more complicated than the existing methods and the data size will be relatively large; it is the
limitation of the proposed method. Table 8 shows that the best alternative of Example 2 obtained
by the HFPWA operator is A5, but the result of other MCDM methods is A2. The main reason of
the difference is that the MCDM methods combined with the HFPWA and HFPWG operators ignore
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some complex evaluation information of decision makers in practice. UTHFS allows the decision
makers to give several values of positive membership level, for instance, the evaluation information
of the alternative A1 concerning the criteria C1 that are given by decision maker is expressed as a
UTHFE (0.4,0.5,0.7) [34]. Nevertheless, in some particular situations, it is not convincing to express
the evaluation information that only considers the positive membership level of decision makers;
many scholars have focused on this problem and made some improvements to UTHFS [10,19]. Thus,
we can overcome the limitation of UTHFS combined with the proposed method. It is worth noting
that the GPHFPWA and GPHFPWG operators also have the same disadvantage as the GPHFWA and
GPHFWG operators.

According to the aforementioned comparison results, we can summarize the advantages and
disadvantages of the different MCDM methods (see Table 9), as well as their respective fields of
application (see Table 10). In addition, the benefits of the aggregation process by using the proposed
operators are presented as in the following.

(1) The Expansion of the Evaluation Information

The GPHFWA, GPHFWG, GPHFPWA, and GPHFPWG operators can solve the MCDM problems
under PHF environment. PHFS proposed in this paper can express the different human opinions in
real life and allow the decision makers to give several possible values of the different membership
levels; thus, it can simultaneously depict the uncertainty and hesitancy of decision makers’ evaluation
information, which cannot be achieved by PFS and UTHFS. Therefore, when decision makers are not
fully aware of the evaluation target and feel doubtful about each membership level, it is reasonable to
deal with these MCDM problems combined with the proposed methods. Furthermore, as a generalized
form of FS, IFS, PFS, and UTHFS, we can transform the proposed methods into the existing MCDM
methods if necessary.

(2) The Flexibility of Information Aggregation with Different Values of λ

Recall the sensitivity analysis in Section 6.2, the proposed operators can be reduced to other
specific PHF aggregation operators by varying the value of λ; thus, the proposed methods are highly
flexible to deal with different situations. Furthermore, the parameter λ can also be regarded as a
measure of the optimism and pessimism level of decision makers in the information fusion of the
GPHFWA and GPHFWG operators; and the value of λ can be determined by decision makers according
to their preferences in practice.

(3) The Simplicity of Dealing with Different Types of Criteria

During the MCDM process, the weight values of criteria play an important role and will affect
the final ranking results. The criteria can be divided into two categories: one is in the same priority,
the other is in different priorities. On the one hand, when the criteria have the same priority level,
we can utilize the proposed method based on the GPHFWA and GPHFWG operators combined with
the weight vector of criteria to solve the MCDM problem. On the other hand, when the criteria have
different priority levels, the GPHFPWA and GPHFPWG operators can be introduced to determine the
ranking of alternatives. In practice, we can use different aggregation operators in this paper to deal
with different situations.

6.4. Application of Web Service Selection

To investigate the applications of the proposed methods in a more realistic scenario, we use the
proposed methods to solve the Quality of Service (QoS) based web service selection problem [37].
According to the study of [37], the evaluation information of QoS is measured by a crisp number scale
of 1–9, and the related criteria are availability (C1), throughput (C2), successability (C3), reliability
(C4), compliance (C5), best practices (C6), documentation (C7), latency (C8), and response time (C9).
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Due to the criteria latency and response time are the cost type criteria, the closer the evaluation values
concerning these two criteria are to 1, the better the alternative.

Table 9. Comparison of each MCDM methods.

Methods Advantages Disadvantages

The GPHFWA/
GPHFWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed, and each
membership functions can be represented by
several possible values.
• The operators can be reduced to other forms
by varying the value of λ.
• The PHFS can be transformed into its special
cases, i.e., FS, IFS, PFS, and UTHFS.

• The calculating process is complex when
the numbers of criteria are relatively large.
• The size of data is relatively large.

The PFWA/
PFWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed.
• The PFS can be transformed into IFS and FS.

• It cannot express the evaluation
information when decision makers have
difficulty determining an accurate value of
each membership level.

Picture fuzzy
cross-entropy

• The human opinions including yes, abstain,
no, and refusal can be expressed.
• The PFS can be transformed into IFS and FS.
• The ranking is obtained without aggregating
the evaluation information; it can avoid the loss
of information.
• The step of normalizing the evaluation
information can be omitted.

• It cannot express the evaluation
information when decision makers have
difficulty determining an accurate value of
each membership level.
• It cannot solve the multiple criteria group
decision-making problems.

The GPHFPWA/
GPHFPWG operator

• The human opinions including yes, abstain,
no, and refusal can be expressed, and each
membership functions can be represented by
several possible values.
• The operators can be reduced to other forms
by varying the value of the λ.
• The PHFS can be transformed into its special
cases, i.e., FS, IFS, PFS, and UTHFS.
• It can solve the MCDM problem that the
criteria are in different priorities.

• The calculating process is complex when
the numbers of criteria are relatively large.
• The size of data is relatively large.

The HFPWA/
HFPWG operator

• The positive membership function can be
expressed by several possible values.
• It can solve the MCDM problem that the
criteria are in different priorities.

• It cannot express the human opinions
including abstain, no, and refusal.

Table 10. MCDM application fields of each MCDM method.

Methods MCDM Application Fields

The GPHFWA/GPHFWG operator

• The evaluation information of decision makers is diverse.
• Decision makers feel doubtful to determine the accurate
value of each membership level.
• The numbers of the criteria are relatively small.

The PFWA/PFWG operator • The evaluation information of decision makers is diverse.

Picture fuzzy cross entropy
• The evaluation information of decision maker is diverse.
• The alternatives are evaluated by an individual decision
maker.

The GPHFPWA/GPHFPWG operator

• The evaluation information of decision makers is diverse.
• Decision makers feel doubtful to determine the accurate
value of each membership level.
• The numbers of the criteria are relatively small.
• The criteria are in different priorities.

The HFPWA/HFPWG operator
• Decision makers feel doubtful to determine the accurate
value of positive membership level.
• The criteria are in different priorities.
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Suppose there are 20 web services to be evaluated concerning the aforementioned nine criteria,
i.e., WSi(i = 1, 2, . . . , 20); the evaluation information of each web service is presented in Table 11.
As each evaluation value in [37] is expressed by an exact crisp number, the PHFS can be reduced to the
PFS to represent the evaluation information of each web service. Based on the relationship between the
linguistic variables and IFNs [38], we develop the transformation relationship between the linguistic
variables and PFNs as presented in Table 12. Then, the evaluation information in Table 11 can be
transformed into a PF evaluation matrix A =

(
aij
)
(i = 1, 2, . . . , 20; j = 1, 2, . . . , 9), and the ranking of

the 20 web services can be obtained by the Algorithm 1 in this paper. Subsequently, the ranking result
will be compared with the rankings determined by AHP, TOPSIS, COPRAS, VIKOR, and SAW methods
in [37]. It is worth noting that, in order to compare different MCDM methods, more effectively we
suppose each criteria is considered equally important, i.e., wj = 1/9(j = 1, 2, . . . , 9). Then, the ranking
of the 20 web services can be determined by the following steps.

Step 1: According to the Definition 3, normalize the PF evaluation matrix A =
(
aij
)

to the standardized
PF evaluation matrix A =

(
aij
)

as

aij =

{
aij, for the benefit criteria;(
aij
)c, for the cost criteria.

(57)

Step 2: Utilize the GPFWA (λ = 1) operator

GPFWAλ=1(ai1, ai2, . . . , ai9) = ai =

(
1−

9

∏
j=1

(
1− µij

)wj
,

9

∏
j=1

(
ηij

)wj
,

9

∏
j=1

(
vij
)wj

)

to aggregated the PF evaluation matrix A =
(
aij
)
, and the collective PFNs of each web service are

obtained.
Step 3: Compute the score values of each web service using the equation

s(ai) = (1 + µi − ηi − vi)/2. (58)

Table 11. Evaluation information of each web service.

Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9

WS1 3 4 2 5 6 7 6 2 8
WS2 4 5 2 3 4 6 8 3 4
WS3 3 5 6 8 3 2 2 4 5
WS4 4 4 5 5 6 2 6 7 8
WS5 5 6 2 4 7 7 8 8 3
WS6 4 4 3 7 6 8 6 8 6
WS7 4 4 5 7 8 7 7 4 3
WS8 6 7 6 6 5 7 8 6 3
WS9 5 3 2 2 6 5 2 4 7
WS10 8 8 7 6 2 2 3 4 3
WS11 5 8 4 4 5 7 4 5 8
WS12 4 5 5 5 6 8 7 6 6
WS13 6 4 7 6 4 5 4 4 5
WS14 4 6 5 4 5 4 6 7 4
WS15 7 5 6 2 7 6 5 5 2
WS16 3 6 4 7 2 3 8 2 4
WS17 4 4 8 4 4 5 2 4 8
WS18 4 3 5 3 5 4 4 6 6
WS19 5 4 4 6 6 7 6 7 2
WS20 6 2 3 5 4 6 5 5 5
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Table 12. Transformation between linguistic variables and PFNs.

Crisp numbers Linguistic variables PFNs

1 Extremely low (EL) (0.05,0.05,0.85)
2 Very low (VL) (0.15,0.05,0.75)
3 Low (L) (0.25,0.05,0.65)
4 Medium low (ML) (0.35,0.05,0.55)
5 Medium (M) (0.45,0.05,0.45)
6 Medium high (MH) (0.55,0.05,0.35)
7 High (H) (0.65,0.05,0.25)
8 Very high (VH) (0.75,0.05,0.15)
9 Extremely high (EH) (0.85,0.05,0.05)

Then, the ranking of the 20 web services can be determined; the lager the score value, the better
the web service. The related data of the ranking are presented in Table 13.

Table 13. Ranking results obtained by the proposed method.

Alternatives Collective Evaluation Information Score Values Ranking

WS1 (0.4677,0.0500,0.4210) 0.4983 12
WS2 (0.4833,0.0500,0.4068) 0.5133 9
WS3 (0.4313,0.0500,0.4579) 0.4617 15
WS4 (0.3776,0.0500,0.5192) 0.4042 18
WS5 (0.5244,0.0500,0.3647) 0.5548 5
WS6 (0.4736,0.0500,0.4159) 0.5038 11
WS7 (0.5817,0.0500,0.3119) 0.6099 2
WS8 (0.5871,0.0500,0.3079) 0.6146 1
WS9 (0.3485,0.0500,0.5475) 0.3755 20
WS10 (0.5447,0.0500,0.3414) 0.5767 3
WS11 (0.4683,0.0500,0.4222) 0.4980 13
WS12 (0.5045,0.0500,0.3879) 0.5333 8
WS13 (0.4828,0.0500,0.4145) 0.5091 10
WS14 (0.4371,0.0500,0.4609) 0.4631 14
WS15 (0.5426,0.0500,0.3498) 0.5714 4
WS16 (0.5191,0.0500,0.3668) 0.5511 6
WS17 (0.4154,0.0500,0.4744) 0.4455 16
WS18 (0.3535,0.0500,0.5459) 0.3788 19
WS19 (0.5186,0.0500,0.3737) 0.5474 7
WS20 (0.4179,0.0500,0.4798) 0.4440 17

To verify the accuracy of the ranking obtained by the proposed method, we use AHP, TOPSIS,
COPRAS, VIKOR, and SAW methods to solve the web service selection problem combined with the
evaluation information in Table 11. Subsequently, the ranking results of different MCDM methods are
presented in Table 14. The Spearman’s rank correlation coefficient is a powerful tool for measuring the
similarity between two MCDM methods [39]. Then, we can calculate the Spearman’s rank correlation
coefficients between the proposed method and the other five MCDM methods as shown in Table 15.
Table 15 shows that the Spearman’s rank correlation coefficients between the proposed method and
AHP and TOPSIS are 0.9722 and 0.9549, respectively, which demonstrate that the proposed method is
highly correlated with these two methods. AHP and TOPSIS methods have been approved to be the
most suitable two methods to solve web service selection problems [39]; thus, the comparison results
above illustrate the feasibility of the proposed method.
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Table 14. Ranking of web services of different MCDM methods.

Alternatives The Proposed Method AHP TOPSIS COPRAS VIKOR SAW

WS1 12 13 14 12 15 14
WS2 9 10 11 6 12 12
WS3 15 16 15 11 17 19
WS4 18 18 18 20 19 18
WS5 5 6 8 9 9 9
WS6 11 11 12 16 14 13
WS7 2 2 2 1 3 2
WS8 1 1 1 5 1 1
WS9 20 20 20 19 20 20
WS10 3 4 4 4 8 10
WS11 13 11 10 15 13 8
WS12 8 6 7 10 4 6
WS13 10 8 6 8 2 5
WS14 14 13 13 13 6 7
WS15 4 3 3 3 7 3
WS16 6 8 9 2 11 11
WS17 16 17 16 17 18 16
WS18 19 19 19 18 10 17
WS19 7 4 5 7 5 4
WS20 17 15 17 14 16 15

Table 15. Spearman’s rank correlation coefficients between the proposed method and the other
MCDM methods.

Existing MCDM Methods Spearman’s Rank Correlation Coefficients

AHP 0.9722
TOPSIS 0.9549

COPRAS 0.9023
VIKOR 0.7429

SAW 0.8165

From the information aggregation of the proposed method, we can find that the calculating
procedure of the proposed method is more complicated than AHP and TOPSIS methods. In addition,
TOPSIS method does not require the transformation of the evaluation information concerning cost and
benefit type criteria. However, when decision makers are not sure if it is 3 or 4 about the evaluation
information of the web service WS1 concerning the criteria C1, AHP and TOPSIS methods cannot
deal with this situation in practice; we can use PHFS to express the evaluation information above,
i.e., {{0.25,0.35},{0.05},{0.55,0.65}}. On the other hand, when the criteria are in different priorities,
the GPHFPWA and GPHFPWG operators can be used to aggregation the evaluation information. Thus,
the AHP, TOPSIS, and proposed methods have their own advantages and disadvantages; in real life,
decision makers can determine to utilize which MCDM methods to solve problems according to the
actual situations.

7. Conclusions

Combined with the picture fuzzy set and uniformly typical hesitant fuzzy set, this paper develops
the picture hesitant fuzzy set, in which the positive, neutral, negative, and refusal membership
degrees are expressed by several possible values. Then, the operations and comparison method
of picture hesitant fuzzy elements are developed. To solve the multiple criteria decision-making
problems under picture hesitant fuzzy environment, the generalized picture hesitant fuzzy weighted
averaging and generalized picture hesitant fuzzy weighted geometric operators are put forward
to aggregate the picture hesitant elements given by decision maker. Furthermore, considering the
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different priorities between the related criteria in practice, the generalized picture hesitant fuzzy
prioritized weighted averaging and generalized picture hesitant fuzzy prioritized weighted geometric
operators are proposed. Meanwhile, some desirable properties and the reduced operators of them are
investigated in detail. Finally, two kinds of multiple criteria decision-making methods combined with
the proposed operators are constructed to solve the multiple criteria decision-making problems in
different situations. Subsequently, two numerical examples and an application of web service selection
are provided to indicate the applications and advantages of the proposed methods.

In future research, we will investigate other operations of picture hesitant fuzzy elements and
develop different aggregation operators to aggregate picture hesitant fuzzy elements. In addition,
we will propose the consensus model to improve the proposed methods; then, the non-consensus
evaluation information of decision makers will be revised to obtain a more accurate ranking result.
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Appendix A

Proof.
a. For n = 1, according to Theorem 1, since

GPHFWAλ(ñ1) =
(

w1ñ1
λ
)1/λ

=
(

ñ1
λ
)1/λ

= ñ1.

Obviously, Equation (22) holds for n = 1.
b. For n = 2, since

ñ1 = ∪
α1∈µ̃1,β1∈η̃1,γ1∈ṽ1

{{
α1

λ
}

,
{
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λ
}
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}}
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we have
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then,
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and

GPHFWAλ(ñ1, ñ2) =
(
w1ñ1

λ ⊕ w2ñ2
λ
)1/λ

=
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i.e., Equation (22) holds for n = 2.
c. If Equation (22) holds for n = k, we have
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when n = k + 1, according to the operations of PHFEs, we have
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i.e., Equation (22) holds for n = k + 1; we can demonstrate that Equation (22) holds for all values of n.
�

Appendix B

Proof. According to Theorem 2, since ñj = ñ = {µ̃, η̃, ṽ}, we have

GPHFWAλ(ñ1, ñ2, . . . , ñn) =
(
w1ñλ ⊕ w2ñλ ⊕ · · · ⊕ wn ñλ

)1/λ
=

∪
α∈µ̃,β∈η̃,γ∈ṽ



(

1−
n
∏
j=1

(
1− αλ

)wj

)1/λ
 ,

1−
(

1−
n
∏
j=1

(
1− (1− β)λ

)wj

)1/λ
,

1−
(

1−
n
∏
j=1

(
1− (1− γ)λ

)wj

)1/λ



= ∪
α∈µ̃,β∈η̃,γ∈ṽ

{{(
1−

(
1− αλ

))1/λ
}

,
{

1−
(

1−
(

1− (1− β)λ
))1/λ

}
,
{

1−
(

1−
(

1− (1− γ)λ
))1/λ

}}
= ∪

α∈µ̃,β∈η̃,γ∈ṽ

{{(
αλ
)1/λ

}
,
{

1−
(
(1− β)λ

)1/λ
}

,
{

1−
(
(1− γ)λ

)1/λ
}}

= ∪
α∈µ̃,β∈η̃,γ∈ṽ

{{α} , {β}, {γ}} = ñ.

�
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Appendix C

Proof. For λ ∈ (0, ∞), since α− ≤ αj ≤ α+, then

αj
λ ≥ (α−)

λ, 1− αj
λ ≤ 1− (α−)

λ,
(
1− αj

λ
)wj ≤

(
1− (α−)

λ
)wj

,
n
∏
j=1

(
1− αj

λ
)wj ≤

n
∏
j=1

(
1− (α−)

λ
)wj

,

1−
n
∏
j=1

(
1− αj

λ
)wj ≥ 1−

n
∏
j=1

(
1− (α−)

λ
)wj

,(
1−

n
∏
j=1

(
1− αj

λ
)wj

)1/λ

≥
(

1−
n
∏
j=1

(
1− (α−)

λ
)wj

)1/λ

= α−.

similarly, we have(
1−

n

∏
j=1

(
1− αj

λ
)wj

)1/λ

≤
(

1−
n

∏
j=1

(
1−

(
α+
)λ
)wj

)1/λ

= α+.

As β− ≤ β j ≤ β+, then

1− β j ≤ 1− β−,
(
1− β j

)λ ≤ (1− β−)
λ, 1−

(
1− β j

)λ ≥ 1− (1− β−)
λ,(

1−
(
1− β j

)λ
)wj ≥

(
1− (1− β−)

λ
)wj

,
n
∏
j=1

(
1−

(
1− β j

)λ
)wj ≥

n
∏
j=1

(
1− (1− β−)

λ
)wj

,

1−
n
∏
j=1

(
1−

(
1− β j

)λ
)wj ≤ 1−

n
∏
j=1

(
1− (1− β−)

λ
)wj

,(
1−

n
∏
j=1

(
1−

(
1− β j

)λ
)wj

)1/λ

≤
(

1−
n
∏
j=1

(
1− (1− β−)

λ
)wj

)1/λ

,

1−
(

1−
n
∏
j=1

(
1−

(
1− β j

)λ
)wj

)1/λ

≥ 1−
(

1−
n
∏
j=1

(
1− (1− β−)

λ
)wj

)1/λ

= β−.

similarly, we have

1−
(

1−
n

∏
j=1

(
1−

(
1− β j

)λ
)wj

)1/λ

≤ 1−
(

1−
n

∏
j=1

(
1−

(
1− β+

)λ
)wj

)1/λ

= β+.

and, as γ− ≤ γj ≤ γ+, we have

γ− ≤ 1−
(

1−
n

∏
j=1

(
1−

(
1− γj

)λ
)wj

)1/λ

≤ γ+.

let GPHFWAλ(ñ1, ñ2, . . . , ñn) = ñ = {{α}, {β}, {γ}}, then

s(ñ) =
1 + 1

l ∑l
i=1 αi − 1

p ∑
p
i=1 βi − 1

q ∑
q
i=1 γi

2
≥

1 + 1
l−∑l−

i=1 α− − 1
p−∑

p−

i=1 β+ − 1
q−∑

q−

i=1 γ+

2
= s
(
ñ−
)
,

and

s(ñ) =
1 + 1

l ∑l
i=1 αi − 1

p ∑
p
i=1 βi − 1

q ∑
q
i=1 γi

2
≤

1 + 1
l+ ∑l+

i=1 α+ − 1
p+ ∑

p+

i=1 β− − 1
q+ ∑

q+

i=1 γ−

2
= s
(
ñ+
)
.
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we obtain
ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+, λ ∈ (0, ∞).

Similarly, we have

ñ− ≤ GPHFWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+, λ ∈ (−∞, 0).

�
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