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Abstract: We propose an incremental spectral clustering method for stream data clustering and apply
it to stream image segmentation. The main idea in our work consists of generating the data points
in the kernel space by Fastfood features and iteratively calculating the eigendecomposition of data.
Compared with the popular Nyström-based approximation, our work accesses each data point only
once while Nyström, in particular the sampling scheme, will go through the entire dataset first and
calculate the embeddings of data points with a second visit. As a result, our method is able to learn
data partitions incrementally and improve eigenvector approximation with more and more data seen
from a stream. By contrast, the performance of the standard Nyström is fixed when the sample set is
selected. Experimental results show the superiority of our method.

Keywords: symmetric kernel matrix; spectral clustering; fastfood features; Nyström approximation;
pattern recognition

1. Introduction

In the last decade, clustering methods are widely used in image processing and data mining,
such as image segmentation [1], image matting [2], path planing [3] and thermal error modeling [4].
Due to its advantages in clustering accuracy, spectral clustering plays an important role in data
partition [5]. It has demonstrated success in revealing the underlying complicated, in most cases
non-linear, structure of real-world dataset. However, spectral clustering is known for its shortage
of huge computational burden, in particular of O(n3) in computational complexity of a dataset with
volume n. The cubic growth on time cost prevents spectral clustering from online processing with
stream data.

A popular way to accelerate spectral clustering is the Nyström approximation that approximates
the eigenvectors of the kernel matrix by a subset, typically known as the training set, of data points.
In general, Nyström method requires O(m3 + nm2) in time cost [6], where m is the volume of the
training data. As to memory storage, Nyström needs to hold the sampled landmark points in
main memory, typically with O(nm). When n is large, the main memory may not be sufficient.
Another disadvantage of Nyström for stream data is the sampling process which is essential for the
approximation accuracy in Nyström. Popular sampling methods, such as the k-means or the kernel
k-means sampling, need to go through the entire input data first and search for the optimal landmark
points. In stream-data and memory-limited tasks where only current data are temporally stored,
one method is expected to make the optimal clustering according to iteratively improve its learnt
model with the coming data stream. However, the sampling process in Nyström often finds difficulty
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to do so. Incremental clustering method [7,8], as a promising solution, is able to incrementally partition
data points and obtain the up-to-now clustering results according the seen data.

In this paper, we propose a new framework for approximating the eigenvectors of the kernel
matrix. Compared with the Nyström methods, our method shows its superiority in memory usage:
our method requires a constant occupation of memory, O(D2), where D is the dimension of Fastfood
features [9] and is fixed by users. One promoting property of our method is the absence of memory
storage with respect to data size n, indicating the stream-data-friendly fashion of our method. Actually,
we only hold a D× D matrix in memory and update this fixed-size matrix in data stream. We show
a demonstration of the stream data processing in Figure 1. In Figure 1, the entire dataset (on the left) is
separated into many subsets, or batches. A processing unit loads and runs clustering on one batch after
another (in the middle) and, once all data points are seen, returns the final partition according to all
batch results (on the right). As its theoretical foundation, we need to solve the eigenvectors, which are
used in spectral clustering for the final partition, in an incremental fashion. Since most processing
units in stream data clustering are memory-sensitive, it is strongly recommended to avoid any storage
of history data.

Entire Data Data batch

... ...

Processing on 

each batch
Final partition

... ...

Data 

Pipeline

Figure 1. A demonstration of stream data processing. A clustering method, such as spectral clustering,
will receive iteratively a new batch of data from a data pipeline and process on each batch in real time.
Finally, this clustering method is expected to obtain the final partition of the entire dataset according to
batch-clustering-results.

Our main idea consists of the employment of Fastfood features, by which we are able to explicitly
represent data points in the kernel space. Denote the D× n matrix X as the data points in the kernel
space with one column standing for one data point. Spectral clustering, in this manner, requires solving
the eigensystem of the n× n kernel matrix K = XTX, with n iteratively increasing in case of stream
data tasks. Instead of studying K, we focus on the D × D matrix G = XXT , which has a constant
size even if n increases. We solve the eigensystem of K from that of G and apply our method in data
stream clustering.

Our contributions include the followings:

• We propose an incremental spectral clustering method with a constant memory requirement. Thus,
our method is suitable for stream data clustering.

• We solve the eigensystem of kernel matrix K from another matrix, titled G in our works, a process
in return benefiting us in both time cost and memory storage.

The rest of this paper is organized as follows. Section 2 reviews the related works in large-scale
and stream data spectral clustering. Our algorithm is described in Section 3. Section 4 presents the
experimental results on several datasets. We conclude this paper in Section 5.

2. Related Works

Spectral clustering problem is always identical to solve eigenvectors of a kernel matrix K ∈ Rn×n,
which is conducted to estimate the similarity among data points. The eigendecomposition of K
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always requires O(n3) in time cost and O(n2) in memory. To accelerate the eigendecomposition on K,
the Nyström method is popular [10,11]. The basic idea of Nsytröm is to sample some training data
points and build the low-rank approximation to K from the training set.

2.1. Nyström

Nyström is the most popular method to generate the low-rank approximation to a kernel matrix.
Suppose K are organized according to the training set and the testing set, respectively, and

K =

[
W CT

C K2

]
, E =

[
W
C

]
(1)

where W is the similarity matrix among the training data, C the similarity matrix of the remaining data
to the sample set, and K2 is the similarity among the remaining data.

Nyström uses the m×m matrix W and n×m matrix C to approximate K by

K ≈ K̃ = CW+CT (2)

and approximates the top k eigenvalues Λk and eigenvectors Vk by

Λ̃k =
n
m

ΛWk (3)

Ṽk =

√
m
n

CVWk(ΛWk)
−1 (4)

where W+ represents the Moore–Penrose pseudo-inverse of W, and ΛWk are the top k eigenvalues
of the sampled kernel matrix W with corresponding eigenvectors VWk.

2.2. CUR Approximation

Besides the Nyström method, CUR decomposition is also a popular fashion for kernel
approximation. CUR attempts to form three new matrices, C, R and U, where C haa c columns
picking from K, R has r rows of K and U is the intersection matrix. Then, CUR will minimize the
approximation error ‖K− CUR‖.

Various CUR methods have been proposed in recent years. Wang et al. proposed an adaptive
sampling method for CUR decomposition [12]. They first employed the near-optimal column selection
algorithm [13] to select c columns to form both C and the first c rows in R. Then, they selected the
remaining r− c rows according to the residual. They iteratively performed such column–row picking
step for a given number of times and showed that the expected error is proportional to ‖K − Kc‖,
where Kc is the best rank-c approximation of K from SVD decomposition.

Beyond Nyström and CUR, there are several approximation methods, such as Orthogonal
Matching Pursuit (OMP) [14,15]. OMP attempts to select a sparse dictionary for data representation
and is widely used in communication and signal processing. OMP searches for the optimal projections
of data onto an over-completed dictionary in a greedy fashion.

2.3. Random Kitchen Sinks and Fastfood Features

Denote {xi}n
i=1 as the input data points. The corresponding kernel matrix is thus K ∈ Rn×n.

Random Kitchen Sinks (RKS) attempts to solve X ∈ RD×n such that K = XTX where D is the
dimension of the kernel space. One column in X indicates one data point in the kernel space. As one
efficient solution, RKS [16] approximates X with Φ(x),
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XT ≈ Φ(x)T =

√
2
D


cos (ωT

1 x1) sin (ωT
1 x1) . . . cos (ωT

D
2

x1) sin (ωT
D
2

x1)

cos (ωT
1 x2) sin (ωT

1 x2) . . . cos (ωT
D
2

x2) sin (ωT
D
2

x2)

...
cos (ωT

1 xn) sin (ωT
1 xn) . . . cos (ωT

D
2

xn) sin (ωT
D
2

xn)


(5)

where ω is the Fourier frequency chosen randomly from N (0, σ−2) and σ is the Gaussian kernel scale
parameter, ker(x, y) = exp(−‖x− y‖2/2σ2). As shown in [17], the approximation error is related to
D, where a large D will improve the approximation accuracy.

Other than RKS, Fastfood features [9] are shown with more efficient in both time cost and memory
usage. Fastfood features replace the {cos, sin} part in RKS with

V =
1

σ
√

d
SHGΠHB (6)

where H = Hd is the d× d Walsh–Hadamard matrix, Π ∈ {0, 1}d×d is a random permutation matrix
and S, G and B are all diagonal random matrices where B are uniformly drawn from {−1,+1}, G has
values drawn from a Gaussian distribution and S is a random scaling matrix. Then, the feature
mapping of data points are

Φ(x) = (D)−1/2 exp (i[Vx]) (7)

The computational burden of Fastfood features are O(n log d) in time and O(n) in storage [9].

3. Incremental Spectral Clustering via Fastfood

3.1. Main Idea

In this section, we propose our main contribution that incrementally calculates the eigensystem
of the kernel matrix K. We show our framework in Figure 2.

Update G
Data stream

One new data
Fastfood Features

Equation 

(9)
of K of entire

 data set

Solve 

Output

Figure 2. Framework of the proposed method.

Denote K = XTX and G = XXT . The eigenvector/eigenvalue pairs of the couple matrices can be
defined as

K : {v, λ}, G : {β, γ} (8)

Given the eigensystem of both K and G, we can represent v of K by β of G, as shown in Theorem 1.
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Theorem 1. Denote the eigensystem the same as shown in Equation (8). Then, {v, λ} can be represented by
{β, γ} and vice versa,

v = γ−1/2XT β

β = λ−1/2Xv

λ = γ

(9)

Proof. To verify whether ṽ = γ−1/2XT β is a valid eigenvector of K, we just verify whether Kṽ = λṽ
holds true or not.

Kṽ = Kγ−1/2XT β

= γ−1/2XTXXT β

= γ−1/2XTGβ

= γXTγ−1/2β

= γṽ

(10)

In the second equality of Equation (10), we use the fact that K = XTX. To obtain the fourth equality,
we employed that β is an eigenvector of G with the corresponding eigenvalue γ. By Equation (10),
we show that ṽ = γ−1/2XT β is an eigenvector of K with the corresponding eigenvalue γ. It is easy to
verify in the same way that β = λ−1/2Xv is an eigenvector of G with the corresponding eigenvalue λ.
Then, we obtain Equation (9).

By Equation (9), we could solve the eigensystem of K from that of G. Notice that G can be
decomposed as the sum of n rank-one matrices as

G =
n

∑
i=1

XiXT
i (11)

where in Equation (11) Xi indicates the i-th column in X.
Equation (11) implies an incremental way in approximating G. Suppose we already have the

eigensystem of G(n) from the leading n data points of a stream, when a new data point xn+1 arrives
along with its kernel mapping Xn+1 = Φ(xn+1) from Equation (7), the updated G(n+1) is then

G(n+1) = G(n) + Xn+1XT
n+1 (12)

Notice that, in Equation (12), the size of G is fixed as D × D through all iterations. Thus,
maintaining G in the main memory requires a constant volume.

Denote {β(n), γ(n)} as the eigensystem of G(n). With the assumption that β(n+1) ≈ β(n), we can
efficiently solve the updated eigenvectors β(n+1) by many eigenvector approximation methods, such as
power iteration [18]. We summarize our proposed method in Algorithm 1.

3.2. Complexity Analysis

The proposed incremental spectral clustering method in Algorithm 1 shows its advantages over
the Nyström methods in both time cost and memory usage. In this section, we give details on both
time complexity and memory complexity of our method.

Given n data points in the d-dimensional input space, the Fastfood feature requires O(nd)
operations in generating the D× n kernel data matrix X. Solving the eigensystem of G is a bottleneck
in running time since typically O(D3) operations are required to solve the full matrix G. However,
in stream data clustering with the assumption that β remains stable in coming data, we initialize our β

with that of the previous results and update β in an power-iteration fashion. The actual running time
in solving β thus is limited. Finally, solving v of K from the learnt β takes O(nD) in time consumption.
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In summary, the overall running time complexity of the proposed method is O(nd + D3) and is even
much faster if we solve the eigensystem with an efficient eigen-solver. In contrast, the Nyström
methods need O(nmd + m3 + nm2) in time complexity where m is the training set volume and is not
suitable for incremental clustering.

Algorithm 1 Incremental Spectral Clustering via Fastfood
INPUT: Desired dimension D of Fastfood features, n data points x from a data stream, Gaussian scale
parameter σ, β convergence threshold εβ.
OUTPUT: The approximated eigenvectors v of the n× n kernel matrix K.

Initialize Fastfood parameters S, H, G and Π. Initialize eigenvectors β with random values.
Initialize G(0) with all zero values.
for i = 1 to n do

Pick the i-th data point xi.
Calculate the D× 1 Fastfood feature vector Xi of xi with the initialized S, H, G and Π.
Update G: G(i) = G(i−1) + XiXT

i .
repeat

Loop β: β = Gβ/‖Gβ‖.
until β converges in εβ.

end for
v = XT β/‖XT β‖.

As to memory complexity, our method only upholds the D× D matrix G and D× k eigenvectors
β in memory. Our memory usage thus is constant with respect to data size n. As n increases, our G
and β are both with fixed size and thus benefit a lot for efficient clustering.

3.3. Comparison with Related Methods

In standard spectral clustering, when a new data point arrives, the corresponding kernel matrix K
then becomes (n + 1)× (n + 1). The square growth of K in memory storage prevents the standard
spectral clustering from any large-scale or stream data tasks. In the proposed method, we replace K
with the corresponding G and update G instead in a stream. In our fashion, either G or its eigenvectors
β are both with fixed size when n increases. Thus, our method is more suitable for stream data
clustering than the standard spectral clustering.

Although the Nyström methods are able to accelerate clustering significantly, Nyström may
find difficulties in building a proper training set in stream data tasks. The construction of the
training set in Nyström prefers to sample as many as possible points from the entire dataset in
the purpose of accurately revealing the underlying distribution of data points. In stream data tasks,
however, the processing unit is always memory-sensitive and only holds the current points due to
memory limitation. The Nyström methods, thus, may suffer from undersampling due to inadequate
observations from a data stream.

Compared with standard methods, the proposed incremental spectral clustering method is
suitable for stream data clustering, in particular memory-sensitive tasks. The absence of sampling step,
as used in Nyström, ensures the ability of our method to process data in one-shot, i.e., without a second
visit to each point. In addition, the employment of Fastfood features provides a customized solution to
kernel eigenvector decomposition, as shown in Algorithm 1. In this way, users are able to dynamically
change the hardware deployment to meet their own memory or accuracy considerations.

4. Experimental Results

We verified the performance of our proposed method on several real-world datasets. We used the
Fastfoot Matlab code (https://www.dropbox.com/s/p5vtzqvcdwlswg8/FastMMD.zip) in our work.

https://www.dropbox.com/s/p5vtzqvcdwlswg8/FastMMD.zip
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All experiments were carried out in MATLAB. Our platform running these experiments is a laptop
equipped with an Intel 2.66 GHz CPU and a 4 GB RAM.

4.1. Datasets and Competing Methods

We used datasets from the UCI machine learning repository (http://archive.ics.uci.edu/ml/
datasets.html), which are benchmark datasets in data clustering and classification tests. In addition,
we used MNIST-8M dataset (http://leon.bottou.org/projects/infimnist) to verify the embedding
ability of the proposed method on large-scale data. MNIST-8M contains 8 million 28 × 28 handwritten
digit images labeled 0 to 9. MNIST-8M is built by elastic deformation of the original MNIST training set,
which is a benchmark dataset for handwritten digits recognition. Figure 6a shows demos of MNIST-8M.
Details of the employed datasets are shown in Table 1.

Table 1. A summary of datasets.

Dataset Size Dimensions Classes

Hayes 81 5 2
Iris 150 4 3

Wine 178 13 3
SVM Guide 4 300 10 6

Liver Disorders 345 6 2
Ionosphere 351 34 2

SVM Guide 2 391 20 3
Vowel 528 10 11

UCI Image 2310 19 7
SVM Guide 1 3089 4 2
Statlog Letter 10,500 16 26

MNIST-8M (Embedding only) 8,100,000 784 10

We compared the proposed method with four popular clustering methods on UCI datasets.
The competing methods are listed as follows:

• Standard Nyström [10] (Nys), in which we randomly selected m = k× 10 points as the training set.
• Random SVD Nyström [19] (RSNys), in which we used the default settings in Random SVD, i.e.,

over-sampling parameter p = 5 and power parameter q = 2.
• Normalized Cuts [5] (NCut), in which we used the default settings.
• Incremental k-means [20] (IncKM), in which we used the default settings.
• Our proposed method (IncSC), in which we used D = 4000 Fastfood features for each data point

and the β convergence threshold εβ = k/10 for all datasets.

In our UCI experiments, we used the default settings (if available) in each competing method.
This is fair since we assumed that, in practice, users are blind to the ground truth labels and hence will
run clustering with the default settings. We did not fine-tune our parameters in our experiments and
fixed those in all tests.

4.2. Configurations and Evaluation Metrics

In our work, we adopted the Gaussian kernel, ker (x, y) = exp (−‖x− y‖2/2σ2), in our clustering.
In incremental clustering, there are two critical parameters that dominate the clustering results. The first
is the number of desired clusters k and the second is the Gaussian parameter σ. Although self-tuning
methods [21,22] were applied to select σ, it is still a challenging problem in searching for the optimal
Gaussian scale parameter. We set the k as the ground truth number of classes. We further set the
Gaussian scale parameter σ as the average value of the square root of the distance sum.

It is noticeable that, in our works, we did not refer to any parameter fine-tuning technologies,
such as cross validation. It is shown in many previous works that searching the optimal parameters via

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://leon.bottou.org/projects/infimnist
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cross validation can significantly improve the clustering performance. In our works, however, we left
the parameter searching blank and used the default settings of all competitors since: (a) it is still a fair
competition with fixed parameters in all datasets; and (b) users are always blind to the ground truth
labels and hence prefer to use the default configuration as the primary choice.

In our competitive tests, i.e., UCI datasets experiments, we employed clustering Accuracy,
NMI and Eigenvector Relative Error to evaluate the performance of clustering results. On MNIST-8M
and BSD500 tasks, we only show the embedding or segmentation results without further evaluation.

Accuracy is defined by

Acc = ∑n
i=1 δ(ĉi, map(ci))

n
(13)

where ĉi is the ground truth label; ci is the derived label of the ith datum; δ(p, q) is the delta
function where δ(p, q) = 1 if p = q and δ(p, q)=0 otherwise; and map(·) is the best mapping
function that matches the true labels and the derived ones. A larger Accuracy indicates a better
clustering performance.

NMI is the second performance measure used in this paper. Let M and N be the random variables
represented by the clustering labels generated from two competing methods. Denote I(M, N) as the
mutual information between M and N and H(M) as the entropy of M. Then, NMI is defined as:

NMI(M, N) =
I(M, N)√

H(M)H(N)
(14)

NMI ranges from 0 to 1 and takes the unitary value when two clustering labels are
perfectly matched.

Eigenvector Relative Error (ERE) is used in our works to evaluate the eigenvector approximation
accuracy. ERE is defined as

ERE =
‖V − Ṽ‖F
‖V‖F

(15)

where V indicates the ground truth eigenvectors and Ṽ is the approximated eigenvectors generated by
our method. ‖ · ‖F means the Frobenius norm of a matrix.

4.3. Real-World Datasets

We tested our method on eleven datasets to verify the clustering performance. In this experiment,
we first randomly separated one dataset into ten folds, and iteratively pushed one fold after another to
the proposed method. At the i-th iteration, we calculated the clustering results as well as the eigenvector
errors on the leading i folds and compared with that of the standard NCut, which performs as the
ground truth values in this experiment. In Accuracy and NMI evaluation, we ran each competing
methods 20 times and present the average value and the standard deviation. Figure 3 illustrates the
eigenvector relative errors, Figure 4 shows the Accuracy in terms of various folds and Figure 5 refers
to NMI.

In Figure 3, we can see that our method is able to improve its accuracy on eigenvector
approximation as more data are seen. In Hayes, SVM Guide 4 and Liver Disorders, the ERE is
stable through the whole dataset. Only on Wine, the ERE is slightly increased.

In Figures 4 and 5, we can observe the following:
(1) Clustering performance of NCut is relatively promising in real-world datasets. On Liver

Disorders and SVM Guide 1, NCut is among the top two methods in terms of Accuracy. Compared with
traditional clustering methods such as k-means, the employment of kernel similarity and clustering in
the kernel space ensures NCut can partition data points with non-convex structure, a case in which
k-means may fail to work.

(2) As variants to NCut, the standard Nyström and Random SVD both are comparable to others.
Both methods employ Nyström Gram matrix approximation to estimate the eigenvectors of K while
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RSVD uses random SVD for acceleration. RSVD obtains much lower Accuracy on Hayes and Nyström
on SVM Guide 4. Both Nyström and RSVD need to sample training set from the current batch. If data
distribution of the current batch is much different from that of the entire dataset, the sampled training
set then may mislead to an incorrect partition.

(3) Clustering performance of incremental k-means is not stable. On SVM Guide 1 and most
batches of Statlog Letter, incremental k-means obtains the lowest Accuracy. The standard k-means is
known for its disadvantages in revealing the underlying structure of complicated datasets, such as the
XOR problem. It is a challenging task for k-means-based method, including the incremental k-means,
to partition on dataset with non-convex data distribution.

(4) The proposed incremental spectral clustering method obtains comparable, sometimes slightly
better, results compared with other methods. Compared with Nyström-based methods, i.e., Nyström
and RSVD, our method is able to recover from a bad sampling and provide robust clustering results
regardless of arriving order. The clustering results, hence, are more stable than others.
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Figure 3. Eigenvector approximation relative errors: (a) Hayes; (b) Iris; (c) Wine; (d) SVM Guide 4;
(e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image; and (j) SVM Guide 1;
and (k) Statlog Letter.

Figure 3. Eigenvector approximation relative errors: (a) Hayes; (b) Iris; (c) Wine; (d) SVM Guide 4;
(e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image; and (j) SVM Guide 1;
and (k) Statlog Letter.
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Figure 4. Clustering results on several real-world datasets, Accuracy: (a) Hayes; (b) Iris; (c) Wine;
(d) SVM Guide 4; (e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image;
(j) SVM Guide 1; and (k) Statlog Letter.

Figure 4. Clustering results on several real-world datasets, Accuracy: (a) Hayes; (b) Iris; (c) Wine;
(d) SVM Guide 4; (e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image;
(j) SVM Guide 1; and (k) Statlog Letter.
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Figure 5. Clustering results on several real-world datasets, NMI: (a) Hayes; (b) Iris; (c) Wine;
(d) SVM Guide 4; (e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image; (j)
SVM Guide 1; and (k) Statlog Letter.

4.4. Embeddings on Extremely Large Dataset

We verifyed our method on MNIST-8M dataset containing 8.1M data points. For visualization
purpose, we only used digits 0, 1, 2 and 9, which result in a subset with about 3.3M data points. Due to
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(d) SVM Guide 4; (e) Liver Disorders; (f) Ionosphere; (g) SVM Guide 2; (h) Vowel; (i) UCI Image;
(j) SVM Guide 1; and (k) Statlog Letter.

4.4. Embeddings on Extremely Large Dataset

We verifyed our method on MNIST-8M dataset containing 8.1M data points. For visualization
purpose, we only used digits 0, 1, 2 and 9, which result in a subset with about 3.3M data points. Due to
the sheer shape, processing on MNIST-8M is difficult for the original spectral clustering or even the
Nyström approximations.
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To record the similarity matrix among the training set and the testing set, Nyström methods may
require as large as a (3.3× 106)×m matrix storage, where m is the training size. If we use 100 points
in the training set, or roughly 0.001% of the entire dataset, Nyström still requires almost 19.67 GB in
the main memory with double (64 bit) format. Although we can release such memory burden by I/O
processing, additional time costs are needed in this case. By contrast, our method is able to complete
such embeddings in a memory-efficient way.

Our incremental spectral clustering is able to operate the huge dataset by streaming the data and
processing one batch after another. Figure 6b shows our embedding results on the first two dimensions
with D = 1200. As can be seen, digits in embedding space are well structured. To further illustrate
the performance of the proposed method in incremental embedding, we show the embeddings of the
leading [1%, 2%, 9%] batches with a stride of 1%, or roughly 81K images per stride. Figure 7 shows the
embeddings of digits 0, 1, 2 and 9 with various employed batch sizes.

(a) (b)

Figure 6. Demo data of MNIST-8M dataset and embeddings by the proposed method: (a) demos
of MNIST-8M; and (b) embeddings of digits 0, 1, 2 and 9 by our method.

(a) (b) (c)

Figure 7. Embeddings of MNIST-8M dataset with the leading batches: (a–c) Embeddings of the digits
0, 1, 2 and 9 with the leading batches [1%, 5%, 9%]. The sheer volume of MNIST-8M prevents the
application of most clustering methods. Our incremental spectral clustering, by contrast, is able to
handle data in a stream fashion, i.e., read and process data from a pipeline with neither re-visiting
historical data nor huge (thus impossible in practice) storage in the main memory.
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4.5. Experiment on Incremental Image Segmentation

In this experiment, we tested our method on incremental image segmentation task. We used the
test images from the Berkeley image segmentation dataset [23] (https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/). Of each image, we loaded iteratively [5%, 10%, 20%, 50%, 100%]

of the entire pixels as input and ran our incremental spectral clustering method on the partially (except
the last test) observed image. To describe one pixel, similar to our previous works [6,24], we calculated
a local color histogram, hb, with a 2× 2 window centered at each pixel of an image. Thus, each pixel is
featured by a descriptor of length b× 1, where b is the number of bins in the color histogram hb and is
fixed as b = 8 in our test. We run our method on all 200 testing images and show the average Accuracy
and its standard deviation values in Figure 8. Several segmentation results are shown in Figure 9.

In Figure 9, each subfigure consists of five columns representing input set size [0.05, 0.1, 0.2, 0.5, 1]×n
pixels. We show in each column the partially-observed input image and its corresponding clustering
results. In each partially-observed image, colored pixels indicate the observed ones and black ones
mean unseen pixels. Our method iteratively loads the input pixels with growing volume and iteratively
generates the clustering results. To extend the clustering results from the observed pixels to the unseen
ones, we set the label of one unseen pixel the same as that of its nearest neighbour in the observed
(hence labeled) pixels.

Our method, as shown in Figures 8 and 9, improves the clustering results when more pixels are
available. A similar approach can be found in Figure 3 where eigenvector errors are reduced when
more data points are loaded. Ideally, the clustering approximation error of our method is determined
by Fastfood approximation error when all batches are read from a pipeline. With the assumption that
data points in the kernel space are linearly separable, which implies we are able to partition points by
the leading eigenvectors of K, then our method is more likely to be convergent to the real partition.

To further verify the performance of our method against very low batch sizes, we tested on
BSD500 ID 100007 with batch size [0.0001, 0.0002, 0.0005]× n, as shown in Figure 10. With very low
batch size, e.g., batch size 0.01% in Figure 10a, our method attempts to reveal the structure of this
image but many incorrect labels can be found. With more pixels seen, as shown in Figure 10b,c,
the segmentation then is more accurate and close to the real partition.
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Figure 8. Image incremental segmentation results, Accuracy. Different stacks correspond to different
image IDs and of one stack the five different bars show the Accuracy of different observed data sizes.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Figure 9. A demonstration of the incremental image segmentation results. Every two rows correspond
to one image. Top to bottom: ID 100007, ID 103078, ID 100039, ID 101027, ID 28083 and ID 81066.
Pixels of each image are read from a pipeline and our method processes the current batch in real
time without any re-visiting to previous pixels. Different columns correspond to different observed
pixel sizes ranging from 5% (left) to 100% (right). The upper row of each subfigure shows the
observed pixels where black pixels indicate the unseen ones. The lower row displays the corresponding
segmentation results.
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(a) (b) (c)

Figure 10. Segmentation with very low batch sizes: (a) Batch size 0.01%; (b) Batch size 0.02%; and
(c) Batch size 0.05%.

5. Conclusions

In this paper, we propose an incremental image segmentation method based on Fastfood features.
Our main idea consists of representing eigenvectors of the kernel matrix K in spectral clustering by
that of G, where G is of fixed size and, as a result, can be upheld in main memory and process with G
in real time. Compared with the standard spectral clustering, such as Normalized Cuts, our method is
able to solve the eigensystem of K in an incremental fashion, indicating the ability to handle stream
data which NCut may fail to do so. To obtain G, we represent data points in the kernel space, X,
by Fastfood features and form our G by G = XXT and repeatedly update both G and its eigensystem
with coming data from a pipeline. We then prove that we are able to solve the eigensystem of K by
that of G and X. Thus, we approximate the eigenvectors of K, whose memory occupation increases
quadratically, with a constant memory requirement and use the approximated eigenvectors to obtain
the final partition. Our work is suitable for stream data clustering due to the one-shot process in our
method. In addition, the proposed method is also able to handle large-scale data by loading data
points from a pipeline. We verified our method on several real-world datasets and image segmentation
tasks. Our method shows its ability in iteratively approximate the eigenvectors of K with more and
more data seen. On clustering tasks, we compared our method with four competing methods and
ours is comparable or slightly better than the competitors. We also tested on our embedding ability on
MNIST-8M dataset, which consists of 8 million data points. We also applied our method on stream
image segmentation tasks.

Our proposed method takes Fastfood features as its theoretical foundation to accurately
approximate the kernel matrix K. Fastfood features belong to a family of methods entitled explicit
feature mapping by which we can explicitly obtain the kernel mapped data point X. Approximation
error of explicit feature mapping is shown related to the mapped dimension D, e.g., O(exp−D) of
random Fourier features. By increasing D will improve the approximation accuracy but with the cost
of additional time and memory costs. A good balance between efficiency and accuracy is a task-driven
problem and there is not a general solution. In addition, for extremely large-scale datasets, we need to
build a parallel-computing-friendly variant of our method. We did not employ parameter optimization
in our experiments. Parameter fine-tuning, e.g., via cross validation, is shown to significantly improve
clustering performance. We keep the study of an efficient method in determining our parameters as
one of our further works.

Figure 10. Segmentation with very low batch sizes: (a) Batch size 0.01%; (b) Batch size 0.02%; and
(c) Batch size 0.05%.

5. Conclusions

In this paper, we propose an incremental image segmentation method based on Fastfood features.
Our main idea consists of representing eigenvectors of the kernel matrix K in spectral clustering by
that of G, where G is of fixed size and, as a result, can be upheld in main memory and process with G
in real time. Compared with the standard spectral clustering, such as Normalized Cuts, our method is
able to solve the eigensystem of K in an incremental fashion, indicating the ability to handle stream
data which NCut may fail to do so. To obtain G, we represent data points in the kernel space, X,
by Fastfood features and form our G by G = XXT and repeatedly update both G and its eigensystem
with coming data from a pipeline. We then prove that we are able to solve the eigensystem of K by
that of G and X. Thus, we approximate the eigenvectors of K, whose memory occupation increases
quadratically, with a constant memory requirement and use the approximated eigenvectors to obtain
the final partition. Our work is suitable for stream data clustering due to the one-shot process in our
method. In addition, the proposed method is also able to handle large-scale data by loading data
points from a pipeline. We verified our method on several real-world datasets and image segmentation
tasks. Our method shows its ability in iteratively approximate the eigenvectors of K with more and
more data seen. On clustering tasks, we compared our method with four competing methods and
ours is comparable or slightly better than the competitors. We also tested on our embedding ability on
MNIST-8M dataset, which consists of 8 million data points. We also applied our method on stream
image segmentation tasks.

Our proposed method takes Fastfood features as its theoretical foundation to accurately
approximate the kernel matrix K. Fastfood features belong to a family of methods entitled explicit
feature mapping by which we can explicitly obtain the kernel mapped data point X. Approximation
error of explicit feature mapping is shown related to the mapped dimension D, e.g., O(exp−D) of
random Fourier features. By increasing D will improve the approximation accuracy but with the cost
of additional time and memory costs. A good balance between efficiency and accuracy is a task-driven
problem and there is not a general solution. In addition, for extremely large-scale datasets, we need to
build a parallel-computing-friendly variant of our method. We did not employ parameter optimization
in our experiments. Parameter fine-tuning, e.g., via cross validation, is shown to significantly improve
clustering performance. We keep the study of an efficient method in determining our parameters as
one of our further works.



Symmetry 2018, 10, 272 16 of 17

Author Contributions: L.H. initiated the research problem and developed the proposed method. C.C., X.Z. and
Y.L. conducted the experiments. L.Z. and C.L. reviewed and edited the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China (61703115,
61673125, and 61702251), the Frontier and Key Technology Innovation Special Funds of Guangdong Province
(2016B090910003 and 2014B090919002), and the Natural Science Basic Research Plan in Shaanxi Province of China
under Program No. 2018JM6030.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yin, S.; Gong, M.; Gong, M. Unsupervised hierarchical image segmentation through fuzzy entropy
maximization. Pattern Recognit. 2017, 68, 245–259. [CrossRef]

2. Gong, M.; Qian, Y.; Li, C. Integrated Foreground Segmentation and Boundary Matting for Live Videos.
IEEE Trans. Image Process. 2015, 24, 1356–1370. [CrossRef] [PubMed]

3. Chen, P.; Zhang, X.; Chen, X.; Liu, M. Path Planning Strategy for Vehicle Navigation Based on User Habits.
Appl. Sci. 2018, 8, 407. [CrossRef]

4. Li, F.; Li, T.; Wang, H.; Jiang, Y. A Temperature Sensor Clustering Method for Thermal Error Modeling
of Heavy Milling Machine Tools. Appl. Sci. 2017, 7, 82. [CrossRef]

5. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,
888–905.

6. He, L.; Zhang, H. Iterative Ensemble Normalized Cuts. Pattern Recognit. 2016, 10, 111–123. [CrossRef]
7. Ning, H.; Xu, W.; Chi, Y.; Gong, Y.; Huang, T.S. Incremental spectral clustering by efficiently updating

the eigen-system. Pattern Recognit. 2010, 43, 113–127. [CrossRef]
8. Dhanjal, C.; Gaudel, R.; Clémençon, S. Efficient eigen-updating for spectral graph clustering. Neurocomputing

2014, 131, 440–452. [CrossRef]
9. Le Quoc, V.; Sarlos, T.; Smola, A.J. Fastfood: Approximate Kernel Expansions in Loglinear Time. arXiv

2013, arXiv:1408.3060 .
10. Williams, C.; Seeger, M. Using the nyström method to speed up kernel machines. In Proceedings of the 14th

Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001;
pp. 682–688.

11. Fowlkes, C.; Belongie, S.; Chung, F.; Malik, J. Spectral grouping using the Nystrom method. IEEE Trans.
Pattern Anal. Mach. Intell. 2004, 26, 214–225. [CrossRef] [PubMed]

12. Wang, S.; Zhang, Z. Improving Cur Matrix Decomposition and the Nyström Approximation Via Adaptive
Sampling. J. Mach. Learn. Res. 2013, 14, 2729–2769.

13. Boutsidis, C.; Drineas, P.; Magdon-Ismail, M. Near-Optimal Column-Based Matrix Reconstruction.
SIAM J. Comput. 2014, 43, 687–717. [CrossRef]

14. Wen, J.; Zhou, Z.; Wang, J.; Tang, X.; Mo, Q. A sharp condition for exact support recovery with orthogonal
matching pursuit. IEEE Trans. Signal Process. 2017, 65, 1370–1382. [CrossRef]

15. Wen, J.; Wang, J.; Zhang, Q. Nearly optimal bounds for orthogonal least squares. IEEE Trans. Signal Process.
2017, 65, 5347–5356. [CrossRef]

16. Rahimi, A.; Recht, B. Random features for large-scale kernel machines. In Proceedings of the Advances in
Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1177–1184.

17. Sutherland, D.J.; Schneider, J. On the error of random Fourier features. arXiv 2015, arXiv:1506.02785.
18. Lin, F.; Cohen, W.W. Power iteration clustering. In Proceedings of the International Conference on Machine

Learning, Haifa, Israel, 21–24 June 2010; pp. 655–662.
19. Li, M.; Bi, W.; Kwok, J.T.; Lu, B.-L. Large-scale Nyström kernel matrix approximation using randomized

SVD. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 152–164. [PubMed]
20. Aaron, B.; Dan, E.T.; Rishe, N.D.; Kandel, A. Dynamic Incremental K-means Clustering. In Proceedings

of the International Conference on Computational Science and Computational Intelligence, Las Vegas, NV,
USA, 10–13 March 2014; pp. 308–313.

21. Zelnik-Manor, L.; Perona, P. Self-Tuning Spectral Clustering. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 13–16 December, 2004; pp. 1601–1608.

http://dx.doi.org/10.1016/j.patcog.2017.03.012
http://dx.doi.org/10.1109/TIP.2015.2401516
http://www.ncbi.nlm.nih.gov/pubmed/25675459
http://dx.doi.org/10.3390/app8030407
http://dx.doi.org/10.3390/app7010082
http://dx.doi.org/10.1016/j.patcog.2015.10.019
http://dx.doi.org/10.1016/j.patcog.2009.06.001
http://dx.doi.org/10.1016/j.neucom.2013.11.015
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://www.ncbi.nlm.nih.gov/pubmed/15376896
http://dx.doi.org/10.1137/12086755X
http://dx.doi.org/10.1109/TSP.2016.2634550
http://dx.doi.org/10.1109/TSP.2017.2728502
http://www.ncbi.nlm.nih.gov/pubmed/25312945


Symmetry 2018, 10, 272 17 of 17

22. Yiming, Q.; Gong, M.; Cheng, L. STOCS: An Efficient Self-Tuning Multiclass Classification Approach.
In Proceedings of the Canadian Conference on Artificial Intelligence, Halifax, NS, Canada, 2–5 June 2015;
pp. 291–306.

23. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth
IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423.

24. He, L.; Zhang, H. Kernel K-means Sampling for Nystrom Approximation. IEEE Trans. Image Process. 2018,
27, 2108–2120. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2018.2796860
http://www.ncbi.nlm.nih.gov/pubmed/29432094
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Nyström
	CUR Approximation
	Random Kitchen Sinks and Fastfood Features

	Incremental Spectral Clustering via Fastfood
	Main Idea
	Complexity Analysis
	Comparison with Related Methods

	Experimental Results
	Datasets and Competing Methods
	Configurations and Evaluation Metrics
	Real-World Datasets
	Embeddings on Extremely Large Dataset
	Experiment on Incremental Image Segmentation

	Conclusions
	References

