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Abstract: Recently, magnetocardiography (MCG) has attracted increasing attention as a non-invasive
and non-contact technique for detecting electrocardioelectric functions. However, the severe
background noise makes it difficult to extract information. Variational Mode Decomposition (VMD),
which is an entirely non-recursive model, is used to decompose the non-stationary signal into the
intrinsic mode functions (IMFs). Traditional VMD algorithms cannot control the bandwidth of each
IMF, whose quadratic penalty lacks adaptivity. As a result, baseline drift noise is still present or
medical information is lost. In this paper, to overcome the unadaptable quadratic penalty problem,
an improved VMD model via correlation coefficient and new update formulas are proposed to
decompose MCG signals. To improve the denoising precision, this algorithm is combined with the
interval threshold algorithm. First, the correlation coefficient is calculated, to determine quadratic
penalty, in order to extract the first IMF made up of baseline drift. Then, the new update formulas
derived from the variance that describes the noise level are used, to perform decomposition on the
rest signal. Finally, the Interval thresholding algorithm is performed on each IMF. Theoretical analysis
and experimental results show that this algorithm can effectively improve the output signal-to-noise
ratio and has superior performance.

Keywords: magnetocardiography; quadratic penalty; variational mode decomposition; correlation
coefficient; interval thresholding method

1. Introduction

In recent years, the research on signal processing, modeling, imaging theory, and methods
related to bio-electromagnetism has become a hot topic. With the efforts of many experts and
scholars, this field already has high-level research results. The magnetocardiography [1] signal plays
an increasingly important role in heart disease diagnosis, which is detected with Superconducting
Quantum Interference Devices (SQUID) [2] and has considerable advantages over electrocardiography
(ECG) [3]. As the detecting instrument of the magnetocardiography signal, the SQUID operates from
low to high temperature, and changes the number of channels from the original single channel into
multiple channels. Magnetocardiography signals transmitted to the human chest surface are incredibly
helpful toward both cardiac model reconstruction and clinical application [4,5]. The relationship
between heart function and heart disease is studied by researching the characteristics of magnetic
field strength changes at different locations; this type of study can be called interdisciplinary basic
research. Generally, such measurements are conducted in order to detect small magnetic field signals
in the presence of large background noise [6,7]. Removing background noise and recovering useful
signals are chief objectives. For periodic signals, adequate suppression of uncorrelated noise may often
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be achieved by the signal averaging method [8]. If the signal and noise have separate bandwidths,
one can use conventional frequency domain filtering [9] techniques. Adaptive filtering techniques [10]
measure the noise level of the measurement signal channels by measuring the noise channels. However,
these simple preprocessing methods have limited effectiveness. The wavelet transform method [11]
for signal denoising is based on the use of a set of predefined basis functions, in order to decompose
the measured signals and remove components corresponding to noise. The main disadvantage of this
method is that the selection of wavelet basis seriously affects the denoising results. Empirical Mode
Decomposition (EMD) [12,13] is one of the decomposition methods of signal denoising, and is widely
used to decompose a signal into different modes recursively. This method is, however, prone to
mode mixing, and limited by sensitivity to noise and sampling [14]. The mode mixing is significantly
reduced by a modified noise-assisted data analysis method known as the Ensemble Empirical Mode
Decomposition (EEMD) method [14,15]. The denoising principle of magnetocardiography (MCG)
signals by EEMD based methods was reported in [16,17]. However, the decomposition results were
unsatisfactory because of the low signal-to-noise ratio. In addition, the decomposition results of EMD
and EEMD heavily depend on the extremum seeking algorithm and the ending criterion. A lack of
mathematical approach and predefined filter boundaries reduce the accuracies of such detections [18].
Lately, based on the definition of intrinsic mode functions (IMF), a new adaptive decomposition method
called Variational Mode Decomposition (VMD) [19] has been proposed. Supporting documents [20]
proposed using the VMD method to denoise ECG signals. However, the research results showed that
the decomposition results lack adaptability. The results of studies [21,22] showed that baseline drift
noise was not filtered out by the VMD method. In practice, it is not always possible to have the first
IMF to be a noise-only IMF.

In order to overcome the problems above, we propose an improved VMD method that determines
the bandwidth of modes adaptively via the optimized quadratic penalty. The proposed correlation
coefficient, between the IMF obtained by VMD [19,23] and the baseline drift model, is calculated
repeatedly until the criterion is satisfied and the baseline drift noise is extracted. The new IMFs
are then obtained by using new proposed update formulas that can be deduced by the relationship
between the penalty factor and noise. The interval threshold method is used for the subsequent
processing of each component, which removes noise components.

The rest of this paper is organized as follows: Section 2 introduces the data model required for
the VMD algorithm. In Section 3, a new VMD scheme based on the correlation coefficient and new
updated formulas is proposed. The application for denoising methods of MCG is shown in Section 4.
Conclusions are given in Section 5.

2. Data Model

In the expression of the traditional EMD and EEMD methods, the IMF is defined as a function
where the difference between the number of zeros and poles does not exceed one [24]. In recent studies,
the definition of the modality is changed to amplitude-modulated-frequency-modulated (AM-FM)
signal, defined as follows:

uk(t) = Ak(t) cos(φk(t)) (1)

In the above equation, the phase φk(t) is a non-decreasing function, whose first derivative is
φ′k(t) > 0, where the envelope Ak(t) is non-negative; both the envelope Ak(t) and the instantaneous
frequency ωk(t) vary much slower than the phase φk(t) [25,26].

The Hilbert transform [27] is the convolution of a real function and the corresponding impulse
response of h(t) = 1/πt in time domain. It is an all-pass filter, characterized by the transfer function
H(ω) = −jsgn(ω) = −jω/|ω| in frequency domain. The Hilbert transform of a purely real IMF uk(t)
can be expressed as ũk(t), and the complex-valued analytic signal is now defined as:

uk,A(t) = uk(t) + jũk(t) = Ak(t)[cos(φ(t))− j sin(φ(t))]
= Ak(t)e−jφ(t) (2)
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where φ(t) is the phase, while the amplitude is governed by the real envelope. The expression
Ak(t). ω(t) = dφ(t)/dt is the instantaneous frequency. The amplitude Ak for kth IMF signal changes
slowly enough.

Research has shown, on a sufficiently long interval, that the mode can be considered to be a purely
harmonic signal. In other words, the newer definition of signal components is slightly more restrictive
than the original one, and the VMD mode is the particular case of the EMD mode.

3. Proposed New VMD Scheme

VMD as a new decomposition method, is a process to solve variational problems based on
classic Wiener filtering and Hilbert transformation. We can use the VMD method to decompose a
multi-component signal into several band-limited modes non-recursively, which are redefined as IMFs.
However, the VMD algorithm cannot extract baseline drift noise when decomposing MCG signals.
As such, a new VMD method framework is proposed in this paper.

3.1. Eliminate Baseline Drift Noise Using Proposed Formulas

To overcome the unadaptable quadratic penalty problem, we propose an improved VMD method
with correlation coefficient and new update formulas. First, we need to extract the expected baseline
drift noise that will be included in the first mode. The steps are given as follows:

1. Compute the associated analytic signal of each mode uk by means of the Hilbert transform, that is:

uk,A(t) =
(

δ(t) +
j

πt

)
∗ uk(t) (3)

2. Mix each mode with an exponential adjustment to the respective estimated center frequency in
order to shift the mode spectrum to “baseband”.

ûk,A(t) =
[(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt (4)

where ωk is the center frequency of the kth IMF uk(t).
3. Estimate the bandwidth through the squared L2-norm of the gradient. The expression of the

constrained variational problem is as follows:
min

{uk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(5)

where {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK} are shorthand notations for the set of all
modes and their center frequencies. In order to render the problem unconstrained, a quadratic
penalty term α and Lagrangian multiplier λ are brought in. The quadratic penalty can encourage
reconstruction fidelity, typically in the presence of additive Gaussian noise. The Lagrange
equation can enforce constraints strictly. Therefore, we introduce the augmented Lagrange
equation L as follow [28]:

L({uk}, {ωk}, λ(t)) = α
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2 + ‖ f (t)−
K
∑

k=1
uk(t)‖2

2 + λ(t), f (t)−
K
∑

k=1
uk(t) (6)
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Alternate direction method of multipliers (ADMM) is brought to solve the original minimization
problem [29–31]. To update the mode uk, we can get the equivalent minimization problem as
the following:

un+1
k = argmin

uk∈X

{
α

K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2+

∥∥∥∥ f (t)−
K

∑
i=1

ui(t)−
λ(t)

2
‖2

2

}
(7)

where n is the number of iterations. Now, making use of the Parseval/Plancherel Fourier isometry
under the L2 norm, this problem can be solved in spectral domain. Then, performing a change of
variables ω← ω−ωk in the first term, we can get the following expression:

ûn+1
k = argmin

ûk ,uk∈X

α‖j(ω−ωk)[(1 + sgn(ω))ûk(ω)]‖2
2 +

∥∥∥∥∥ f̂ (ω)−∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥∥
2

2

 (8)

Exploiting the Hermitian symmetry of the real signals, we can write both terms as half-space
integrals, then making the negative frequencies of the first variation disappeared as follows:

ûn+1
k (ω) =

f̂ (ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω) +
λ̂n(ω)

2

1 + 2α
(
ω−ωn

k
)2 (9)

This is clearly identified as Wiener filtering of the current residual, with signal prior 1/
(
ω−ωn

k
)2;

the time domain mode is obtained as the real part of the inverse Fourier transform of this filtered
analytic signal. In order to obtain each component, the center frequency, corresponding to each
component, needs to be solved. The center frequency appears in the bandwidth prior, but not in the
reconstruction fidelity term. The relevant problem thus reads:

ωn+1
k = argmin

ωk

{
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
(10)

As before, the optimization can be taken place in Fourier domain, and we end up optimizing:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(11)

In general, the baseline drift frequency is lower than the low frequency component of the MCG
signal. The center frequency of the first IMF is approximately zero, and we need to reduce the
bandwidth of the first IMF until the signal and baseline drift are separated. We need to know that
the larger the penalty factor, the narrower the mode bandwidth. After completing the above iterative
process, we can get the final ûk(ω) and ωk. In order to extract low-frequency baseline drift noise,
we need to follow the above process to obtain the first IMF:

u1(t) = ejω1t
(

1
2π

∫ ∞

−∞
û1(ω)ejωtdω

)
(12)

To understand the relationship between the first IMF and baseline drift noise, we propose the
correlation coefficient to estimate the relationship. Assuming that the baseline drift noise model is
u1
′ (t) and the correlation coefficient ρ′ are calculated by Equation (13):

ρ′ =
∑i (u1i

′ − u1
′ )(u1i − u1)√

∑i (u1i
′ − u1

′ )
2 ∑i(u1i − u1)

2
(13)
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In the above formula, the variable is simplified for convenience. Where i represents the length of
the data, u1

′ and u1 represent the mean of the baseline drift noise model and the first IMF, respectively.
We believe that signal and baseline drift noise can be separated when the correlation coefficient reaches
a certain threshold ρ. We increase α according to the proposed formulas to repeat the above process
until satisfying ρ′ > ρ. This satisfies the following formulas:

im f1 = u1(t) i f ρ′ > ρ

αm+1 = αm + c1, ûn+1
1 (ω) =

f̂ (ω)−∑i<1 ûn+1
i (ω)−∑i>1 ûn

i (ω)+
λ̂n(ω)

2

1+2αm+1(ω−ωn
1 )

2 i f ρ′ < ρ
(14)

where c1 is a constant and m is the number of loop decomposition. After each updating of modes and
center frequencies, the Lagrange multiplier λ̂ is also updated by Equation (15):

λ̂n+1 ← λ̂n + τ

(
f̂ −∑

k
ûn+1

k

)
(15)

The updating stops until following equation is set up,

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε (16)

From the above, the first IMF im f1 is the baseline drift noise.

3.2. Proposed Adaptive Decomposition

In order to get more reasonable decomposition results, we define fnew = f − im f1. Document 19
proposed that the penalty factor introduced by the traditional VMD method is inversely proportional
to the noise level in the signal. In a limited high frequency noise environment, we can assume that the
weight of penalty is directly proportional to the power (which may be obtained by calculating variance)
of each IMF. In order to further improve the adaptability of the penalty factor, we propose αk =

c2 · D[uk(t)]. From the foregoing description, we can see that the low-frequency signal component has
a large penalty factor, which can achieve low-frequency refinement and degrade the noise component
in each signal mode. The original augmented Lagrange equation L becomes:

L({uk}, {ωk}, λ(t)) = αk
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ fnew(t)−

K
∑

k=1
uk(t)

∥∥∥∥2

2
+ 〈λ(t), fnew(t)−

K
∑

k=1
uk(t)〉

(17)

Since the iterative solution process for each IMF component is performed in the frequency domain,
the derivation of the penalty factor requires the use of a time-domain representation of each component.
In order to obtain accurate decomposition results, we need to solve the penalty factors for each iteration,
and then substitute the new penalty factors into the next iteration, which leads to the loop, which is
very time-consuming. As such, we need to unify the derivation process into the frequency domain.
Expanding the formula to solve the variance creates the following:

αk =
c2
N [(uk1 − uk)

2 + (uk2 − uk)
2 + · · ·+ (ukN − uk)

2]

= c2
N
(
u2

k1 + u2
k2 + · · ·+ u2

kN
)
− 1

N2 (uk1 + uk2 + · · ·+ ukN)
2 (18)

According to Parseval’s Theorem, we know that
∫
|uk(t)|2dt =

∫
|ûk(ω)|2dω and the first item in

the above formula can thus be converted into a frequency representation. By applying the Fourier
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transform of the second term to the above formula, we can get the frequency–domain description of
penalty factor:

αk = c2
N
∫ ∞

0 |ûk(ω)|2dω− 2πûk
2(0)

2πN2 (19)

where c2 is a constant and N is the length of the data. Combine the penalty factor into the previous
update formulas, we can get the new update formulas for ûk(ω), ωk and αk:

ûn+1
k (ω) =

f̂new(ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω)+
λ̂n(ω)

2

1+2αn
k (ω−ωn

k )
2

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

αn+1
k = c2

N
∫ ∞

0 |ûk(ω)|2dω−2πûk
2(0)

2πN2

(20)

The Lagrange multiplier update formula and iteration stop criterion remain unchanged.

3.3. Iterative Thresholding and Improved VMD Method

In this section, we obtain a new denoising process by combining the interval threshold and the
improved variational mode decomposition. In this paper, the hard and soft thresholding methods,
with multiples of Donoho-Johnstone threshold known as universal threshold parameters, are proposed,
in order to cut off each IMF after performing the improved VMD. The threshold parameters are
defined as:

Tk = C
median(|uk(t)−median(uk(t))|)

0.6745

√
2 ln N (21)

where C is a constant and N is the length of the data. It is necessary to adopt a scale dependent
threshold for each IMF instead of an identical universal threshold for all IMFs. The values of the
scaling factor C are the range [0.6, 1.2]. We use the interval thresholding (IT) method to alleviate the
catastrophic consequences caused by the direct application of thresholding. In this method, the first
step is to find the zero points of each IMF. The second step is to compare the threshold and the
extremum between two zero crossing intervals; if the extremum exceeds the threshold, it will allow all
of the samples within the interval to be retained. The interval thresholding can be represented as:

ĉk

(
Zk

i

)
=

 ck

(
Zk

i

)
,

∣∣∣ck

(
rk

i

)∣∣∣ > Tk

0
∣∣∣ck

(
rk

i

)∣∣∣ ≤ Tk
(22)

where i varies from 1 to Nk, Nk indicates the number of zero crossings of the kth IMF, ck

(
rk

i

)
indicates

the sample at the time instance rk
i between the two successive zero points at Zk

i and Zk
i+1, and ck

(
Zk

i

)
refers to the samples from the instant Zk

i to Zk
i+1 of the kth IMF.

Summarizing this denoising process as follows: First, the MCG signal with noise is decomposed
into corresponding IMFs by improved VMD. The first order IMF, including the baseline drift noise,
is eliminated. Second, the interval thresholding is performed on the rest IMFs. Clearly, the higher the
order, the greater the frequency of the IMF. The detailed procedures are as follows:

1. Acquire the MCG signal with noise and initialize the number of modes k, the default of the
penalty factor α is 2000, the default of the bandwidth τ is 0.

2. Determine the value of penalty factor by performing the improved VMD method based on the
correlation coefficient and obtain the first IMF.

3. Eliminate the first IMF that contains baseline drift noise. Decompose the rest signal with the final
update formulas and obtain several IMFs.

4. Perform the interval thresholding operation on the IMFs obtained from step 3.
5. Add all the processed IMFs together and refactor the MCG signal.
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In Figure 1 we show the flow chart of the improved VMD algorithm:
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Figure 1. The flow chart of the improved Variational Mode Decomposition (VMD) algorithm. Figure 1. The flow chart of the improved Variational Mode Decomposition (VMD) algorithm.

4. Results and Discussion

Three different types of noise have been added to the MCG signal, in order to investigate the
effectiveness of denoising by an improved VMD and the interval thresholding method. The types
of noise include a low frequency (0.3 Hz) sinusoidal signal for simulating the baseline drift, 50 Hz
sinusoidal signal for simulating the interference at power line frequency, and high frequency random
noise. In Figure 2, we compare the waveforms of an original simulation signal and a mixed signal.
It is clearly seen that background noise affects signal analysis. It is very significant in the process of
measuring MCG signals to detect heart disease.

The signal is denoised by different algorithms. In Figure 3a,b, we show the signal decomposition
results obtained by the EEMD method. In Figure 3, according to the length of the data, the MCG signal
is decomposed into ten IMFs, and the frequency of IMFs reduces as the order increases. In general,
the low frequency smooth variation of the baseline is expected to be contained in the residue of the
higher order IMFs. However, we cannot determine the low-frequency component that contains baseline
drift noise. It is evident that we can extract signal characteristics from IMF2 to IMF6. Unfortunately,
other IMFs may also contain useful signal components that are invisible to the human eye. Given this,
we apply thresholds only to a few low order IMFs that contain contributions from the high frequency
noise components, then exclude a few high order IMFs that contain the low frequency contents with
a view, to ensure that the low frequency contents of the MCG signal are not affected or distorted
by thresholding.
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Figure 3. The noisy signal and the intrinsic mode functions (IMFs) obtained by Ensemble Empirical
Mode Decompositioning (EEMD) are shown in (a,b).

In Figure 4, we compare the original signal with the reconstructed signals obtained from EEMD
based denoising methods using soft and hard thresholding. The results show that the hard threshold
processing can reconstruct the QRS peak waves, but there are obvious errors in the reconstruction of
other signal parts. The signal obtained by soft thresholding processing has errors compared with the
original signal, especially the QRS peaks. It is seen from Figure 4 that EEMD algorithm is difficult
to distinguish noise components from signal components. And the number of low frequency IMFs
is too many to result in waveform distortion after performing thresholding operation. It may also
be noted that, hard-IT (hard thresholding subsequently interval thresholding) is adopted for EEMD
based denoising of the experimental data. At the same time, we can see that the signal waveform is
not smooth and slightly distorted.

Based on the bandwidth of the measurement signal and multiple tests, the number of modes
decomposed by VMD is assigned to 6. The original algorithm proposer studied some of the
convergence characteristics of the VMD algorithm and its sensitivity to the initial conditions, then got
relatively suitable initialization parameters. The initial value of quadratic penalty α is assigned to
2000, and the default of the bandwidth τ is 0. With this method, the MCG signal is divided into
several frequency bands centering on respective center frequency, which benefits subsequent operation.
As shown in Figure 5a, the MCG signal is divided into six IMFs. The baseline drift noise is found
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in IMF1. In Figure 5b, we compare the original signal with the reconstructed signals obtained from
VMD methods with soft and hard thresholding. The results show that the baseline of the reconstructed
signal is not uniform with the original signal. To make matters worse, there is serious distortion in
the reconstructed signal from the soft thresholding processing. It is obvious that the algorithm cannot
effectively remove baseline drift noise. The decomposition process of the algorithm lacks of adaptability.
Improper decomposition results can easily lead to waveform distortion after threshold processing.

To get a better result, we use the proposed method to decompose the signal. According to many
experiments, we choose the parameter value with better effect as the next simulation initial values.
The threshold value ρ of correlation coefficient is assigned as 0.95. The value of the scaling factor
c1 is the range 1500 and 2000. The value of c2 can be set according to the detailed data features and
is assigned as 3.5. As Figure 6 shown, the baseline noise is extracted. After removing the noise,
the signal is divided into six modes adaptively. According to iterative formulas for multiple iterations,
the penalty factors for six components are [1790, 987, 956, 218, 223, 208]. The decomposition results are
shown in Figure 7a and the denoising results are shown in Figure 7b.
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above is the result of hard thresholding processing and the following panel is the result of soft
thresholding processing.
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Figure 5. The noisy signal and the IMFs obtained from VMD are shown in (a). A comparison of
the original signal (dotted line) with the reconstructed signals (solid line) obtained from VMD based
denoising methods with soft and hard thresholding is shown in (b). The panel above is the result of
hard thresholding processing and the following panel is the result of soft thresholding processing.

The range of the value of the penalty factors can support the adaptive decomposition result.
From this result, it can be seen that the low-frequency IMF’s penalty factors are large, and the penalty
factor increases approximately with the increasing of the center frequency, achieving the purpose of
the meticulous decomposition of low-frequency signal component. In addition, we can obtain a set of
different penalty factors by adjusting the size of c2 to adjust the decomposition result. By comparing
the reconstructed signal with the original signal, we can find that the fitting degree between the
reconstructed signal and the original signal is good, and all three kinds of noise in the signal are
effectively removed. It may also be noted that, signal to noise ratio improvement is much better of the
hard interval thresholding (IT) method compared to the soft interval thresholding.

In order to better compare the performance of the algorithms, we use the root-mean-square error
(the square root of the mean of the sum of squared residuals, RMSE) to characterize the fitting degree
of the reconstructed signal and the original signal. In Figure 8, we compare the root-mean-square
deviation (RMSE) of the three methods with the input signal-to-noise ratio (SNR). In the case of low
input SNR, the RMSE of the improved VMD method is significantly less than the other two methods,
and the method has better denoising performance even with the low input SNR.
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effectively remove baseline drift noise.
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Figure 7. (a) The noisy signal and the IMFs obtained from the improved VMD method; (b) A
comparison of the original signal (dotted line) with the reconstructed signals (solid line) obtained
from the improved VMD method with soft and hard thresholding for interval thresholding. The panel
above is the result of hard thresholding processing and the following panel is the result of soft
thresholding processing.

Symmetry 2018, 10, x FOR PEER REVIEW  10 of 13 

 

  
(a) (b) 

Figure 7. (a) The noisy signal and the IMFs obtained from the improved VMD method; (b) A 
comparison of the original signal (dotted line) with the reconstructed signals (solid line) obtained 
from the improved VMD method with soft and hard thresholding for interval thresholding. The panel 
above is the result of hard thresholding processing and the following panel is the result of soft 
thresholding processing. 

 
Figure 8. The root-mean-square deviation (RMSE) of the EEMD, the VMD, and the improved VMD 
methods are revealed, for both soft and hard thresholding of interval thresholding. The improved 
VMD method outperforms other methods. 

In Figure 9, we compare the performance of the original VMD method, the improved VMD 
method, and the EEMD methods, using soft and hard thresholding in each case. For computing SNR, 
the logarithmic ratio of variance of a signal (from the beginning of P-wave to the end of T-wave for 
one cardiac cycle) to the variance of noise (from the end of T-wave to the beginning of P-wave, i.e., 
in the TP interval) has been taken. The reduction in the SNR for the soft thresholding method is due 
to the reduction of signal components of the lower frequency IMFs. Hereafter, hard-IT (hard 
thresholding is subsequently applied to the interval thresholds) is appropriate for both EEMD and 
VMD based denoising of the experimental data. It is seen from Figure 9 that the improved VMD 
method is capable of achieving better SNR when compared with EEMD and VMD methods. 

From the above simulation results, we can see that the proposed algorithms have better 
denoising performance compared with EEMD and VMD methods. It should be noted, however, that 
the waveform is still distorted, even by the proposed method; this is a crucial detail in 
electrocardiographic-like signals. One encouraging factor, is that results of medical research have 

Figure 8. The root-mean-square deviation (RMSE) of the EEMD, the VMD, and the improved VMD
methods are revealed, for both soft and hard thresholding of interval thresholding. The improved
VMD method outperforms other methods.

In Figure 9, we compare the performance of the original VMD method, the improved VMD
method, and the EEMD methods, using soft and hard thresholding in each case. For computing SNR,
the logarithmic ratio of variance of a signal (from the beginning of P-wave to the end of T-wave for one
cardiac cycle) to the variance of noise (from the end of T-wave to the beginning of P-wave, i.e., in the
TP interval) has been taken. The reduction in the SNR for the soft thresholding method is due to the
reduction of signal components of the lower frequency IMFs. Hereafter, hard-IT (hard thresholding
is subsequently applied to the interval thresholds) is appropriate for both EEMD and VMD based
denoising of the experimental data. It is seen from Figure 9 that the improved VMD method is capable
of achieving better SNR when compared with EEMD and VMD methods.
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From the above simulation results, we can see that the proposed algorithms have better
denoising performance compared with EEMD and VMD methods. It should be noted, however,
that the waveform is still distorted, even by the proposed method; this is a crucial detail in
electrocardiographic-like signals. One encouraging factor, is that results of medical research have
shown that the QRS spikes and S-T waves contain information on the main electrical function
parameters of the heart. The MCG signal is filtered by the algorithm proposed in this paper, in order
to obtain QRS spikes and S-T waves that approximate the original signal. Although there are slight
disturbances in the QRS spikes and S-T waves obtained by filtering, it does not affect the calculation of
heart related parameters! Measurements of magnetic field energy and current density remain accurate).
In the case of the low input signal-to-noise ratio used in this paper, the SNR improvement of the
proposed algorithm can be up to 20 dB. The algorithm filtering results can support feature extraction
of MCG and detection of heart disease.
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Figure 9. The variation of the output signal-to-noise ratio (SNR) by EEMD, VMD and the improved
VMD methods with soft and hard thresholds for interval thresholding. The improved VMD method
outperforms other methods.

Despite these positive results, the MCG signals measured in a clinical non-magnetic shielding
environment would still contain a large amount of background noise, which would still cause the
waveform, denoised by the improved VMD method proposed in this paper, to produce severe
distortion. In order to solve this problem, we need to study the spatial filtering technology in order to
further denoise the MCG signal, in efforts to achieve the purpose of joint filtering in the time domain,
frequency domain, and space domain.

5. Conclusions

The proposed method in this paper overcomes the unadaptable quadratic penalty problem of
VMD, which improves the availability and precision of denoising of the MCG signal. This method
adaptively adjusts the bandwidth of modes by repeatedly executing the VMD method with different
quadratic penalties. The low-frequency noise is eliminated, according to the correlation coefficient
for baseline drift noise, and the first mode. The new update formulas are used to decompose residual
signals adaptively. Then, threshold processing is performed on each IMF to eliminate other noise.
The simulation experiments show the superiority of the improved VMD in denoising performance
of the MCG signal. The acceleration of the proposed method, and the suitable signal preprocessing
methods, should be considered in future research and applications.
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