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Abstract: Chemical graph theory plays an important role in modeling and designing any chemical
structure. The molecular topological descriptors are the numerical invariants of a molecular graph
and are very useful for predicting their bioactivity. In this paper, we study the chemical graph
of the crystal structure of titanium difluoride TiF2 and the crystallographic structure of cuprite
Cu2O. Furthermore, we compute degree-based topological indices, mainly ABC, GA, ABC4, GA5

and general Randić indices. Furthermore, we also give exact results of these indices for the crystal
structure of titanium difluoride TiF2 and the crystallographic structure of cuprite Cu2O.

Keywords: topological indices; cuprite; atom bond connectivity index; Zagreb indices;
geometric arithmetic index; general Randić index; titanium difluoride

1. Introduction

Graph theory is one of the most special and unique branches of mathematics by which the
demonstration of any structure is made conceivable. Recently, it has attained much attention
among researchers because of its wide range of applications in computer science, electrical networks,
interconnected networks, biological networks, chemistry, etc. The chemical graph theory CGT is a fast
growing area among researchers. It helps in understanding the structural properties of a molecular
graph. There are many chemical compounds that possess a variety of applications in the fields of
commercial, industrial, pharmaceutical chemistry and daily life and in the laboratory.

A relationship exists between chemical compounds and their molecular structures.
The manipulation and examination of chemical structural information is made conceivable using
molecular descriptors. Chemical graph theory is a branch of mathematical chemistry in which the
tools of graph theory are applied to model the chemical phenomenon mathematically. Furthermore,
it relates to the nontrivial applications of graph theory for solving molecular problems. This theory
contributes to a prominent role in the field of chemical sciences; see for details [1–3].

Chem-informatics is a new subject, which is a combination of chemistry, mathematics and
information science. It examines the quantitative structure–activity relationship (QSAR) and
quantitative structure-property relationship (QSPR), which are utilized to predict the bioactivity
and physicochemical properties of chemical compounds [4]. The field of chemical graph theory has
attained much attention and consideration among researchers [5,6].

In solid state physics, the electrons of a single, isolated atom occupy atomic orbitals, each of which
has a discrete energy level. When two atoms join together to form a molecule, their atomic orbitals
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overlap [7]. The Pauli exclusion principle dictates that no two electrons can have the same quantum
numbers in a molecule. Therefore, if two identical atoms combine to form a diatomic molecule,
each atomic orbital splits into two molecular orbitals of different energy, allowing the electrons in
the former atomic orbitals to occupy the new orbital structure without any having the same energy.
Similarly if a large number N of identical atoms come together to form a solid, such as a crystal lattice,
the atoms’ atomic orbitals overlap [8]. Since the Pauli exclusion principle dictates that no two electrons
in the solid have the same quantum numbers, each atomic orbital splits into N discrete molecular
orbitals, each with a different energy.

In chemical graph, the vertices represent atoms, and edges refer to the chemical bonds in the
underlying chemical structure. A topological index is a numerical value that is computed mathematically
from the molecular graph. It is associated with the chemical constitution indicating the correlation of the
chemical structure with many physical, chemical properties and biological activities. The exact formulas
of topological indices of certain chemical graphs have been computed and plotted in [9,10].

Let G = (V, E) be a graph where V is the vertex set and E is the edge set of G. The degree deg(t)
(or dt) of v is the number of edges of G incident with t. The length of the shortest path in a graph G is a
distance d(s, t) between s and t. A graph can be represented by a polynomial, a numerical value or
by matrix form. There are certain types of topological indices, mainly eccentric-based, degree-based,
distance-based indices, etc. In this paper, we deal with degree-based topological indices.

The first and oldest degree-based index was introduced by Milan Randić [11] in 1975 and is
defined in the following equation.

R− 1
2
(G) = ∑

st∈E(G)

1√
dsdt

In 1988, Bollobás et al. [12] and Amic et al. [13] proposed the general Randić index independently.
For more details about the Randić index, its properties and important results, see [14,15]. The general
Randić index is defined as:

Rα(G) = ∑
st∈E(G)

(dsdt)
α

The atom bond connectivity index is of vital importance and was introduced by Estrada et al. [16].
It is defined as:

ABC(G) = ∑
st∈E(G)

√
ds + dt − 2

dsdt

The geometric arithmetic index GA of a graph G was introduced by Vukičević et al. [17]. It is
defined as:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

The first Zagreb index was introduced in 1972 by [18]. Later on, the second Zagreb index was
introduced by [19]. The first and second Zagreb indices are formulated as:

M1(G) = ∑
st∈E(G)

(ds + dt)

M2(G) = ∑
st∈E(G)

(dsdt)

The fourth version of the atom bond connectivity index ABC4 of a graph G was introduced by
Ghorbhani et al. [20]. It is defined as:

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt
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where Ss = ∑
st∈E(G)

dt and St = ∑
st∈E(G)

ds.

Another molecular descriptor was the fifth version of the geometric arithmetic index GA5 of a
graph G introduced by Graovac et al. [21]. It is defined as:

GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

2. Research Aim

Our aim in this article is to compute the additive topological indices, mainly the atom
bond connectivity index, geometric arithmetic index, fourth atom bond connectivity index ABC4,
fifth geometric arithmetic index GA5 and general Randić index Rα, for α = {−1, 1, 1

2 ,− 1
2} for

Cu2O[m, n, t] and TiF2[m, n, t]. Moreover, the graphical representation of these exact result is depicted
for further explanation of the behavior of these topological indices.

3. Applications of Topological Indices

The atom-bond connectivity (ABC) index provides a very good correlation for the stability
of linear alkanes, as well as the branched alkanes and for computing the strain energy of cyclo
alkanes [22]. The Randi/’c index is a topological descriptor that has been correlated with many
chemical characteristics of molecules and has been found to the parallel to computing the boiling
point and Kovats constants of the molecules. To correlate with certain physicochemical properties,
the GA index has much better predictive power than the predictive power of the Randić connectivity
index [23,24]. The first and second Zagreb index were found to occur for the computation of the total
π-electron energy of the molecules within specific approximate expressions [25]. These are among the
graph invariants, which were proposed for the measurement of the skeleton of the branching of the
carbon-atom [26].

4. Crystallographic Structure of the Molecule Cu2O

Among various transition metal oxides, Cu2O has attracted much attention in recent years
owing to its distinguished properties and non-toxic nature, low-cost, abundance and simple
fabrication process [27]. Nowadays, the promising applications of Cu2O mainly focus on chemical
sensors, solar cells, photocatalysis, lithium-ion batteries and catalysis [28]. The chemical graph
of the crystallographic structure of Cu2O is described in Figures 1 and 2; see details in [29].
Let G ∼= Cu2O[m, n, t] be the chemical graph of Cu2O with m× n unit cells in the plane and t layers.
We construct this graph first by taking m × n units in the mn-plane and then storing it up in t
layers. The number of vertices and edges of Cu2O[m, n, t] is (m + 1)(n + 1)(t + 1) + 5mnt and 8mnt,
respectively. In Cu2O[m, n, t], the number of vertices of degree zero is four; the number of vertices of
degree one is 4m + 4n + 4t− 8; the number of vertices of degree two is 4mnt + 2mn + 2mt + 2nt−
4n− 4m− 4t + 6; and the number of vertices of degree four is 2nmt− nm− nt−mt + n + m + t− 1.
Furthermore, the edge partition of Cu2O[m, n, t] based on the degrees of end vertices of each edge is
depicted in Table 1.

Table 1. Edge partition of Cu2O[m, n, t] based on the degrees of end vertices of each edge.

(ds, dt) Frequency Set of Edges

(1, 2) 4n + 4m + 4t− 8 E1
(2, 2) 4nm + 4nt + 4mt− 8n− 8m− 8t + 12 E2
(2, 4) 4(2nmt− nm− nt−mt + n + m + t− 1) E3
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Figure 1. Crystallographic structure of the molecule Cu2O. (a) Structural characteristics of Cu and O
atoms in the Cu2O lattice. The Cu2O lattice is formed by interpenetrating the Cu and O lattices with
each other. (b) Unit cell of Cu2O. Copper atoms are shown as small blue spheres, and oxygen atoms
are shown as large red spheres. In the Cu2O lattice, each Cu atom is coordinated with two O atoms,
and each O atom is coordinated with four Cu atoms.

(a)
(b)

Figure 2. (a) Unit cell of Cu2O[1, 1, 1] (b) Crystallographic structure of Cu2O[3, 2, 3].

Theorem 1. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its general Randić index is
equal to,

RαG =



8
[
8mnt− 2(mn + mt + nt) + m + n + t

]
, if α = 1,

1
2 (2mnt + mn + mt + nt + m + n + t− 3), if α = −1,

4
(
4
√

2mnt + 2(1−
√

2)(mn + mt + nt)

+(3
√

2− 4)(m + n + t)− 4
√

2 + 6
)
, if α = 1

2 ,

2
√

2mnt + (2−
√

2)(mn + mt + nt)

+(3
√

2− 4)(m + n + t)− 5
√

2 + 6, if α = − 1
2 .
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Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The general Randić index,

For α = 1.

R1(G) = ∑
st∈E(G)

(ds × dt)

= ∑
st∈E1(G)

(ds × dt) + ∑
st∈E2(G)

(ds × dt) + ∑
st∈E3(G)

(ds × dt)

= (4m + 4n + 4t− 8)(1× 2) + (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)(2× 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)(2× 4)

= 8
[
8mnt− 2(mn + mt + nt) + m + n + t

]
For α = −1,

R−1(G) = ∑
st∈E(G)

1
(ds × dt)

= ∑
st∈E1(G)

1
(ds × dt)

+ ∑
st∈E2(G)

1
(ds × dt)

+ ∑
st∈E3(G)

1
(ds × dt)

= (4m + 4n + 4t− 8)
1

(1× 2)
+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

1
(2× 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)
1

(2× 4)

=
1
2
(2mnt + mn + mt + nt + m + n + t− 3)

For α = 1
2 ,

R 1
2
(G) = ∑

st∈E(G)

√
(ds × dt)

= ∑
st∈E1(G)

√
(ds × dt) + ∑

st∈E2(G)

√
(ds × dt) + ∑

st∈E3(G)

√
(ds × dt)

= (4m + 4n + 4t− 8)
√
(1× 2) + (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

√
(2× 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)
√
(2× 4)

= 4
(
4
√

2mnt + 2(1−
√

2)(mn + mt + nt) + (3
√

2− 4)(m + n + t)− 4
√

2 + 6
)
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For α = − 1
2 ,

R− 1
2
(G) = ∑

st∈E(G)

1√
(ds × dt)

= ∑
st∈E1(G)

1√
(ds × dt)

+ ∑
st∈E2(G)

1√
(ds × dt)

+ ∑
st∈E3(G)

1√
(ds × dt)

= (4m + 4n + 4t− 8)
1√

(1× 2)
+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

1√
(2× 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)
1√

(2× 4)

= 2
√

2mnt + (2−
√

2)(mn + mt + nt) + (3
√

2− 4)(m + n + t)− 5
√

2 + 6

Theorem 2. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its atom bond connectivity index
is equal to,

ABC(G) = 4
√

2mnt.

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The result for the atom bond
connectivity index is as follows:

ABC(G) = ∑
st∈E(G)

√
ds + dt − 2

dsdt

= ∑
st∈E1(G)

√
ds + dt − 2

dsdt
+ ∑

st∈E2(G)

√
ds + dt − 2

dsdt
+ ∑

st∈E3(G)

√
ds + dt − 2

dsdt

= (4m + 4n + 4t− 8)

√
1 + 2− 2

1× 2
+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

√
2 + 2− 2

2× 2

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)

√
2 + 4− 2

2× 4

= 4
√

2mnt.

Theorem 3. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its geometric arithmetic index is
equal to,

GA(G) = 4
[

4
√

2mnt
3

−
(2
√

2− 3
3

)
(mn + mt + nt− 2m− 2n− 2t)− 2

√
2 + 3

]
.
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Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The geometric arithmetic index is
computed as below:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

= ∑
st∈E1(G)

2
√

dsdt

ds + dt
+ ∑

st∈E2(G)

2
√

dsdt

ds + dt
+ ∑

st∈E3(G)

2
√

dsdt

ds + dt

= (4m + 4n + 4t− 8)
2
√

1× 2
1 + 2

+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)
2
√

2× 2
2 + 2

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)
2
√

2× 4
2 + 4

= 4
[

4
√

2mnt
3

−
(2
√

2− 3
3

)
(mn + mt + nt− 2m− 2n− 2t)− 2

√
2 + 3

]

Theorem 4. Consider the graph of G ∼= Cu2O[m, n, t] with m, n, t ≥ 1, then its first and second Zagreb
indices are equal to,

M1(G) = 4
(
12mnt− 2(mn + mt + nt) + m + n + t

)
M2(G) = 8

(
8mnt− 2(mn + mt + nt) + m + n + t

)
.

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The first Zagreb index is computed
as below:

M1(G) = ∑
st∈E(G)

(ds + dt)

= ∑
st∈E1(G)

(ds + dt) + ∑
st∈E2(G)

(ds + dt) + ∑
st∈E3(G)

(ds + dt)

= (4m + 4n + 4t− 8)(1 + 2) + (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)(2 + 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)(2 + 4)

= 4
(
12mnt− 2(mn + mt + nt) + m + n + t

)
The second Zagreb index is computed as below:

M2(G) = ∑
st∈E(G)

(dsdt)

= ∑
st∈E1(G)

(dsdt) + ∑
st∈E2(G)

(dsdt) + ∑
st∈E3(G)

(dsdt)

= (4m + 4n + 4t− 8)(1× 2) + (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)(2× 2)

+ (8mnt− 4mn− 4mt− 4nt + 4m + 4n + 4t− 4)(2× 4)

= 8
(
8mnt− 2(mn + mt + nt) + m + n + t

)
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Table 2 shows the edge partition of the chemical graph Cu2O[m, n, t] based on the degree sum of
end vertices of each edge.

Table 2. Edge partition of Cu2O[m, n, t] with m, n, t ≥ 2 based on the degree sum of end vertices of
each edge.

(Ss, St) Frequency Set of Edges

(2, 4) 4m + 4n + 4t− 8 E1
(4, 6) 4mn + 4mt + 4nt− 8m− 8n− 8t + 12 E2
(5, 8) 4n + 4m + 4t− 8 E3
(6, 8) 4mn + 4mt + 4nt− 8m− 8n− 8t + 12 E4
(8, 8) 8mnt− 8mn− 8mt− 8nt + 8m + 8n + 8t− 8 E5

Theorem 5. Consider the graph G ∼= Cu2O[m, n, t] with m, n, t ≥ 2, then its fourth atom bond connectivity
index is equal to,

ABC4(G) =
√

14mnt +
( 4√

3
−
√

14 + 2
)
(mn + mt + nt)− 4

√
2 + 4

√
3−
√

14− 2
√

110
5

+ 6

+
(

2
√

2− 8√
3
+
√

14 +

√
110
5
− 4
)
(m + n + t).

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The fourth atom bond connectivity
index is computed by using Table 2 in the following equation.

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt

= ∑
st∈E1(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E2(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E3(G)

√
Ss + St − 2

SsSt

+ ∑
st∈E4(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E5(G)

√
Ss + St − 2

SsSt

ABC4(G) = (4m + 4n + 4t− 8)

√
2 + 4− 2

2× 4
+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

√
4 + 6− 2

4× 6

+ (4m + 4n + 4t− 8)

√
5 + 8− 2

5× 8
+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)

√
6 + 8− 2

6× 8

+ (8mnt− 8mn− 8mt− 8nt + 8m + 8n + 8t− 8)

√
8 + 8− 2

8× 8

=
√

14mnt +
( 4√

3
−
√

14 + 2
)
(mn + mt + nt)− 4

√
2 + 4

√
3−
√

14− 2
√

110
5

+ 6

+
(

2
√

2− 8√
3
+
√

14 +

√
110
5
− 4
)
(m + n + t)
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Theorem 6. Consider the graph G ∼= Cu2O[m, n, t] with m, n, t ≥ 2, then its fifth geometric arithmetic index
is equal to,

GA5(G) = 8mnt +
(16
√

3
7

+
8
√

6
5
− 8
)
(mn + mt + nt)− 16

√
2

3
+

48
√

3
7

+
24
√

6
5
− 32

√
10

13
− 8

+
(8
√

2
3
− 32

√
3

7
− 16

√
6

5
+

16
√

10
13

+ 8
)
(m + n + t)

Proof. Let G be the crystallographic structure of Cu2O[m, n, t]. The fifth geometric arithmetic index is
computed as below:

GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

= ∑
st∈E1(G)

2
√

SsSt

Ss + St
+ ∑

st∈E2(G)

2
√

SsSt

Ss + St
+ ∑

st∈E3(G)

2
√

SsSt

Ss + St

+ ∑
st∈E4(G)

2
√

SsSt

Ss + St
+ ∑

st∈E5(G)

2
√

SsSt

Ss + St

= (4m + 4n + 4t− 8)
2
√

2× 4
2 + 4

+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)
2
√

4× 6
4 + 6

+ (4m + 4n + 4t− 8)
2
√

5× 8
5 + 8

+ (4mn + 4mt + 4nt− 8m− 8n− 8t + 12)
2
√

6× 8
6 + 8

+ (8mnt− 8mn− 8mt− 8nt + 8m + 8n + 8t− 8)
2
√

8× 8
8 + 8

= 8mnt +
(16
√

3
7

+
8
√

6
5
− 8
)
(mn + mt + nt)− 16

√
2

3
+

48
√

3
7

+
24
√

6
5
− 32

√
10

13
− 8

+
(8
√

2
3
− 32

√
3

7
− 16

√
6

5
+

16
√

10
13

+ 8
)
(m + n + t)

5. Crystal Structure of Titanium Difluoride

Titanium difluoride is a water-insoluble titanium source for use in oxygen-sensitive applications,
such as metal production. Fluoride compounds have diverse applications in current technologies
and science, from oil refining and etching to synthetic organic chemistry and the manufacture of
pharmaceuticals. The chemical graph of the crystal structure of titanium difluoride TiF2[m, n, t] is
described in Figure 3; for more details, see [30]. Let G ∼= TiF2[m, n, t] be the chemical graph of TiF2

with m× n unit cells in the plane and t layers. We construct this graph first by taking m× n units
in the mn−plane and then storing it up in t layers. The number of vertices and edges of TiF2[m, n, t]
is 12mnt + 2mn + 2mt + 2nt + m + n + t + 1 and 32mnt, respectively.In TiF2[m, n, t], the number of
vertices of degree one is eight; the number of vertices of degree two is 4m + 4n + 4t− 12; the number
of vertices of degree four is 8mnt + 4mn + 4mt + 4nt− 4n− 4m− 4t + 6; and the number of vertices
of degree eight is 4mnt− 2(mn + mt + nt) + m + n + t− 1. The edge partition of TiF2[m, n, t] based
on the degrees of end vertices of each edge is depicted in Table 3.
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(a) (b)

Figure 3. (a)The unit cell of of TiF2[m, n, t] with Ti atoms in red and F atoms in green; (b) the crystal
structure of TiF2[4, 1, 2].

Table 3. Edge partition of TiF2[m, n, t] based on the degrees of end vertices of each edge.

(ds, dt) Frequency Set of Edges

(1, 4) 8 E1
(2, 4) 8(m + n + t− 3) E2
(4, 4) 16(mn + mt + nt)− 16(m + n + t) + 24 E3
(4, 8) 32mnt− 16(mt + mn + nt) + 8(m + n + t)− 8 E4

Theorem 7. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its general Randić index is equal to,

RαG =



32
[
32mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

]
, if α = 1,

1
4 (4mnt + 2(mn + mt + nt) + m + n + t + 1), if α = −1,

16
(
8
√

2mnt + 4(1−
√

2)(mn + mt + nt)

+(3
√

2− 4)(m + n + t)− 5
√

2 + 7
)
, if α = 1

2 ,

4
√

2mnt + 2(2−
√

2)(mn + mt + nt)

+(3
√

2− 4)(m + n + t)− 7
√

2 + 10, if α = − 1
2 .

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The general Randić index,

For α = 1.

R1(G) = ∑
st∈E(G)

(ds × dt)

= ∑
st∈E1(G)

(ds × dt) + ∑
st∈E2(G)

(ds × dt) + ∑
st∈E3(G)

(ds × dt) + ∑
st∈E4(G)

(ds × dt)

= (8)(1× 4) + (8m + 8n + 8t− 24)(2× 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4× 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4× 8)

= 32
[
32mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

]
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For α = −1,

R−1(G) = ∑
st∈E(G)

1
(ds × dt)

= ∑
st∈E1(G)

1
(ds × dt)

+ ∑
st∈E2(G)

1
(ds × dt)

+ ∑
st∈E3(G)

1
(ds × dt)

+ ∑
st∈E4(G)

1
(ds × dt)

R−1(G) = (8)
1

(1× 4)
+ (8m + 8n + 8t− 24)

1
(2× 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

) 1
(4× 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

) 1
(4× 8)

=
1
4
(4mnt + 2(mn + mt + nt) + m + n + t + 1)

For α = 1
2 ,

R 1
2
(G) = ∑

st∈E(G)

√
(ds × dt)

= ∑
st∈E1(G)

√
(ds × dt) + ∑

st∈E2(G)

√
(ds × dt) + ∑

st∈E3(G)

√
(ds × dt) + ∑

st∈E4(G)

√
(ds × dt)

= (8)
√
(1× 4) + (8m + 8n + 8t− 24)

√
(2× 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)√
(4× 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)√
(4× 8)

= 16
(
8
√

2mnt + 4(1−
√

2)(mn + mt + nt) + (3
√

2− 4)(m + n + t)− 5
√

2 + 7
)

For α = − 1
2 ,

R− 1
2
(G) = ∑

st∈E(G)

1√
(ds × dt)

= ∑
st∈E1(G)

1√
(ds × dt)

+ ∑
st∈E2(G)

1√
(ds × dt)

+ ∑
st∈E3(G)

1√
(ds × dt)

+ ∑
st∈E4(G)

1√
(ds × dt)

= (8)
1√

(1× 4)
+ (8m + 8n + 8t− 24)

1√
(2× 4)

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

) 1√
(4× 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

) 1√
(4× 8)

= 4
√

2mnt + 2(2−
√

2)(mn + mt + nt) + (3
√

2− 4)(m + n + t)− 7
√

2 + 10
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Theorem 8. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its atom bond connectivity index is
equal to,

ABC(G) = 2
[
4
√

5mnt− 2(
√

5−
√

6)(mn + mt + nt) + (2
√

2 +
√

5− 2
√

6)(m + n + t)
]

+ 2
[
− 6
√

2 + 2
√

3−
√

5 + 3
√

6
]

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The atom bond connectivity
index can be calculated by using Table 3 in the following equation.

ABC(G) = ∑st∈E(G)

√
ds+dt−2

dsdt

= ∑st∈E1(G)

√
ds+dt−2

dsdt
+ ∑st∈E2(G)

√
ds+dt−2

dsdt
+ ∑st∈E3(G)

√
ds+dt−2

dsdt
+ ∑st∈E4(G)

√
ds+dt−2

dsdt

= (8)
√

1+4−2
1×4 + (8m + 8n + 8t− 24)

√
2+4−2

2×4

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)√ 4+4−2
4×4

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)√ 4+8−2
4×8

= 2
[
4
√

5mnt− 2(
√

5−
√

6)(mn + mt + nt) + (2
√

2 +
√

5− 2
√

6)(m + n + t)
]

+ 2
[
− 6
√

2 + 2
√

3−
√

5 + 3
√

6
]

Theorem 9. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its geometric arithmetic index is
equal to,

GA(G) = 8
[8
√

2(mnt− 1)
3

−
(4
√

2
3
− 2
)
(mn + mt + nt−m− n− t) +

19
5

]
Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The geometric arithmetic
index is computed as below:

GA(G) = ∑
st∈E(G)

2
√

dsdt

ds + dt

= ∑
st∈E1(G)

2
√

dsdt

ds + dt
+ ∑

st∈E2(G)

2
√

dsdt

ds + dt
+ ∑

st∈E3(G)

2
√

dsdt

ds + dt
+ ∑

st∈E4(G)

2
√

dsdt

ds + dt

= (8)
2
√

1× 4
1 + 4

+ (8m + 8n + 8t− 24)
2
√

2× 4
2 + 4

+
(
16(mn + mt + nt)− 16(m + n + t) + 24

)2
√

4× 4
4 + 4

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)2
√

4× 8
4 + 8

= 8
[8
√

2(mnt− 1)
3

−
(4
√

2
3
− 2
)
(mn + mt + nt−m− n− t) +

19
5

]
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Theorem 10. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 1, then its first and second Zagreb indices
are equal to,

M1(G) = 8
[
48mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

]
,

M2(G) = 32
[
32mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

]
.

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The first and second Zagreb
indices are computed as below:

M1(G) = ∑st∈E(G)(ds + dt)

= ∑st∈E1(G)(ds + dt) + ∑st∈E2(G)(ds + dt) + ∑st∈E3(G)(ds + dt) + ∑st∈E4(G)(ds + dt)

= (8)(1 + 4) + (8m + 8n + 8t− 24)(2 + 4) +
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4 + 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4 + 8)

= 8
(
48mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

)
M2(G) = ∑st∈E(G)(dsdt)

= ∑st∈E1(G)(dsdt) + ∑st∈E2(G)(dsdt) + ∑st∈E3(G)(dsdt) + ∑st∈E4(G)(dsdt)

= (8)(1× 4) + (8m + 8n + 8t− 24)(2× 4) +
(
16(mn + mt + nt)− 16(m + n + t) + 24

)
(4× 4)

+
(
32mnt− 16(mn + mt + nt) + 8(m + n + t)− 8

)
(4× 8)

= 32
[
32mnt− 8(mn + mt + nt) + 2(m + n + t)− 1

]

Table 4 shows the edge partition of the chemical graph TiF2[m, n, t] based on the degree sum of
the end vertices of each edge.

Table 4. Edge partition of TiF2[m, n, t], m, n, s ≥ 2 based on the degree sum of the end vertices of
each edge.

(Ss, St) Frequency Set of Edges

(4, 13) 8 E1
(8, 18) 8(m + n + t− 3) E2
(13, 16) 16 E3
(16, 18) 16(mn + mt + nt)− 16(m + n + t) + 8 E4
(16, 24) 32mnt− 16(mn + mt + nt) + 8 E5
(18, 32) 8(m + n + t− 2) E6

Theorem 11. Consider the graph G ∼= TiF2[m, n, t] with m, n, t > 1, then its fourth atom bond connectivity
index is equal to,

ABC4(G) =
4
√

57mnt
3

−
(2
√

57
3
− 16

3

)
(mn + mt + nt) +

( 4√
3
+

4
√

6
3
− 16

3

)
(m + n + t)

− 4
√

6− 8√
3
+

12
√

39
13

+

√
57
3

+
4
√

195
13

+
8
3
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Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The fourth atom bond
connectivity index is computed as below:

ABC4(G) = ∑
st∈E(G)

√
Ss + St − 2

SsSt

= ∑
st∈E1(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E2(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E3(G)

√
Ss + St − 2

SsSt

+ ∑
st∈E4(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E5(G)

√
Ss + St − 2

SsSt
+ ∑

st∈E6(G)

√
Ss + St − 2

SsSt

ABC4(G) = (8)

√
4 + 13− 2

4× 13
+ (8m + 8n + 8t− 24)

√
8 + 18− 2

8× 18
+ (16)

√
13 + 16− 2

13× 16

+
(
16(mn + mt + nt)− 16(m + n + t) + 8

)√16 + 18− 2
16× 18

+
(
32mnt− 16(mn + mt + nt) + 8

)√16 + 24− 2
16× 24

+ (8m + 8n + 8t− 16)

√
18 + 32− 2

18× 32

=
4
√

57mnt
3

−
(2
√

57
3
− 16

3

)
(mn + mt + nt) +

( 4√
3
+

4
√

6
3
− 16

3

)
(m + n + t)

− 4
√

6− 8√
3
+

12
√

39
13

+

√
57
3

+
4
√

195
13

+
8
3

Theorem 12. Consider the graph G ∼= TiF2[m, n, t] with m, n, t ≥ 2, then its fifth geometric arithmetic index
is equal to,

GA5(G) =
64
√

6mnt
5

+
(192

√
2

17
− 32

√
6

5

)
(mn + mt + nt)−

(192
√

2
17

− 4896
325

)
(m + n + t)

+
96
√

2
17

+
16
√

6
5

+
3104
√

13
493

− 12192
325

Proof. Let G ∼= TiF2[m, n, t] be the crystal structure of titanium difluoride. The fifth geometric
arithmetic index is computed as below:
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GA5(G) = ∑
st∈E(G)

2
√

SsSt

Ss + St

= ∑
st∈E1(G)

2
√

SsSt

Ss + St
+ ∑

st∈E2(G)

2
√

SsSt

Ss + St
+ ∑

st∈E3(G)

2
√

SsSt

Ss + St

+ ∑
st∈E4(G)

2
√

SsSt

Ss + St
+ ∑

st∈E5(G)

2
√

SsSt

Ss + St
+ ∑

st∈E6(G)

2
√

SsSt

Ss + St

= (8)
2
√

4× 13
4 + 13

+ (8m + 8n + 8t− 24)
2
√

8× 18
8 + 18

+ (16)
2
√

13× 16
13 + 16

+
(
16(mn + mt + nt)− 16(m + n + t) + 8

)2
√

16× 18
16 + 18

+
(
32mnt− 16(mn + mt + nt) + 8

)2
√

16× 24
16 + 24

+ (8m + 8n + 8t− 16)
2
√

18× 32
18 + 32

=
64
√

6mnt
5

+
(192

√
2

17
− 32

√
6

5

)
(mn + mt + nt)−

(192
√

2
17

− 4896
325

)
(m + n + t)

+
96
√

2
17

+
16
√

6
5

+
3104
√

13
493

− 12192
325

6. Discussion

Since the topological indices have many applications in different branches of science,
namely pharmaceutical, chemistry and biological drugs, the graphical representation of these
calculated results is helpful to scientists. The graphical representations of topological indices for
Cu2O[m, n, t] are depicted for Randić indices in Figures 4 and 5. The atomic bond connectivity index
and geometric arithmetic index for Cu2O[m, n, t] are depicted in Figure 6. The first and second Zagreb
indices for Cu2O[m, n, t] are depicted in Figure 7. The fourth atomic bond connectivity index and the
fifth geometric arithmetic index for Cu2O[m, n, t] are depicted in Figure 8.

(a) (b)

Figure 4. The graphical representation of the Randić index for (a) α = 1 and (b) for α = −1.
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(a) (b)

Figure 5. The graphical representation of the Randić index for (a) α = 1
2 and (b) for α = −1

2 .

(a) (b)

Figure 6. The graphical representation of the (a) ABC index and (b) GA index.

(a) (b)

Figure 7. The graphical representation of the (a) first Zagreb index and (b) second Zagreb index.



Symmetry 2018, 10, 265 17 of 20

(a) (b)

Figure 8. The graphical representation of the (a) ABC4 index and (b) GA5 index.

The graphical representations of topological indices for titanium difluoride TiF2 are depicted for
Randić indices in Figures 9 and 10. The atomic bond connectivity index and geometric arithmetic
index for titanium difluoride TiF2 are depicted in Figure 11. The first and second Zagreb indices for
titanium difluoride TiF2 are depicted in Figure 12. The fourth atomic bond connectivity index and the
fifth geometric arithmetic index for titanium difluoride TiF2 are depicted in Figure 13.

(a)
(b)

Figure 9. The graphical representation of the Randić index for (a) α = 1 and (b) for α = −1.

(a) (b)

Figure 10. The graphical representation of the Randić index for (a) α = 1
2 and (b) for α = −1

2 .
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(a) (b)

Figure 11. The graphical representation of the (a) ABC index and (b) GA index.

(a) (b)

Figure 12. The graphical representation of the (a) first Zagreb index and (b) second Zagreb index.

(a)
(b)

Figure 13. The graphical representation of the (a) ABC4 index and (b) GA5 index.

7. Conclusions

In this paper, we have computed some degree-based topological indices, namely the atom bond
connectivity index ABC, the geometric arithmetic index GA, the general Randić index, the GA5 index,
the ABC4 index and the first and second Zagreb indices for the chemical graph of the crystal structure
of titanium difluoride TiF2 and crystallographic structure of cuprite Cu2O.

In the future, we are interested in computing the distance-based and counting-related topological
indices for these structures.
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