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Abstract: It is a primary challenge in the fault diagnosis community of the gearbox to extract the weak
fault features under heavy background noise and nonstationary conditions. For this purpose, a novel
weak fault detection approach based on majorization—-minimization (MM) and asymmetric convex
penalty regularization (ACPR) is proposed in this paper. The proposed objective cost function (OCF)
consisting of a signal-fidelity term, and two parameterized penalty terms (i.e., one is an asymmetric
nonconvex penalty regularization term, and another is a symmetric nonconvex penalty regularization
term).To begin with, the asymmetric and symmetric penalty functions are established on the basis
of an L1-norm model, then, according to the splitting idea, the majorizer of the symmetric function
and the majorizer of the asymmetric function are respectively calculated via the MM algorithm.
Finally, the MM is re-introduced to solve the proposed OCFE. As examples, the effectiveness and
reliability of the proposed method is verified through simulated data and gearbox experimental real
data. Meanwhile, a comparison with the state of-the-art methods is illustrated, including nonconvex
penalty regularization (NCPR) and L1-norm fused lasso optimization (LFLO) techniques, the results
indicate that the gear chipping characteristic frequency 13.22 Hz and its harmonic (2f, 3f, 4f and 5f)
can be identified clearly, which highlights the superiority of the proposed approach.

Keywords: sparse regularization; majorization minimization (MM); asymmetric convex penalty
regularization (ACPR); gearbox weak; gearbox

1. Introduction

Gearboxes are widely used in transmission systems with rotating machinery, due to its advantages,
such as a high transmission ratio and large load capacity, which plays an important role in modern
industrial applications. Unexpected bearing failure caused by a harsh working environment and
intricate running conditions may result in catastrophic incidents, significant economic losses, and even
human casualties. Thus, timely and precise condition-based monitoring (CBM) and health assessments
of rotating machines are of great significance in practice, performed online or offline, to avoid a
mechanical breakdown, especially in the early stages of failure [1-3].

The vibration signal generated by localized faults is a typical non-linear and non-stationary signal;
thus, fault feature extraction based on vibration signal has become the mainstream technique in the fault
diagnosis field. However, the observed vibration signals are usually corrupted by severe background
noise and interference components. For the purpose of detecting fault from rotating machines, over
the past decades, numerous diagnostic techniques have been developed. For example, some methods
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are used via signal transforms, such as wavelet/wavelet packet transform [4—6], short-time Fourier
transform [7,8], or tunable Q-factor wavelet transform (TQWT) [9,10]. Some methods are used via
signal adaptive decomposition, such as empirical mode decomposition (EMD) [11,12], local mean
decomposition (LMD) [13,14], and variational mode decomposition (VMD) [15,16]; in addition, some
methods are used by intelligent supervised learning techniques, such as artificial neural network
(ANN) [17,18], deep learning (DL) [19,20], just to mention a few. These methods have achieved
successful applications in fault diagnosis of rotating machinery to some extent.

Compared to the above conventional fault feature extraction approaches, most recently, sparse
coding techniques (SCT) or sparse representation (SR) as a new fault detection method was introduced
for fault feature extraction and condition monitoring [21,22]. By applying the SR approach, the observed
vibration signals can be represented as a linear combination of a few sparse bases (e.g., wavelet base) or
sparse atoms generated by an over-complete dictionary (OCD), so the instantaneous fault impulses can
be substituted by a few sparse coefficients. Zhou et al. [23] proposed shift-invariant dictionary learning
(SIDL) and a hidden Markov model (HMM) to address bearing fault diagnosis and identify fault types.
Further, Yang et al. [24] and Feng et al. [25] proposed a shift-invariant K-singular value decomposition
(SI-K-SVD) method combined with a sparse representation algorithm to extract the fault impulse
of wind turbine generator bearing and planetary gearbox fault, respectively. Qin [26] developed
the model-based impulsive wavelet basis and Fourier basis for the weak repetitive transient feature
extraction of a rolling bearing. The adaptive impulse dictionary, double-dictionary matching pursuit
(DDMP), and step-impulse dictionary were introduced for detecting the physical defect size of the
inner and outer race of a rolling bearing in [27-29]. Ding et al. [30] employed the time-frequency (TF)
dictionary and orthogonal matching pursuit (OMP) to extract the fault feature information of single
row cylindrical roller bearings based on acoustic signals. Li et al. [31] introduced a novel dictionary
learning method called the impulse-step impact dictionary, based on a nonconvex optimization
approach; the results demonstrate the method’s superiority in weak fault feature extraction via
accelerated lifetime testing experiment, compared with OMP, L1-norm convex penalty regularization,
and the spectral Kurtogram (SK) method.

Although the above SR and its extension, combined with the redundant dictionary, have achieved
satisfactory applications in fault diagnosis, those algorithms have some common drawbacks:

(1) Unique dictionaries” atoms and optimal wavelet basis cannot simultaneously match the natural
structure of every real vibration signal well;

(2) A large number of observed signals should be collected to form a training dictionary before
diagnosis, which is always infeasible in practical applications;

(3) Computational complexity and time-consuming problems occur simultaneously in dictionary
training, such as with the K-SVD training and SI-K-SVD dictionaries training [31].

In an attempt to overcome the above shortcomings of an over-complete dictionary (OCD) and
estimate the fault characteristics more accurately, the family of low-rank matrix approximation
(LRMA) methods were introduced in recent years, Thus the reconstruction problem of dictionary
atoms is translated into an optimization or inverse regularization problem. In [32], Ding et al.
propose an algorithm that combines alternating the direction method of multipliers (ADMM) and the
majorization-minimization (MM) method to compute a low-rank matrix optimization model. In [33]
and [34], He et al. develop nonconvex penalty regularization and a sparsity-based group-sparse signal
denoising (OGS) approach to extract the single and compound features of outer and inner race defects.
In [35], Zhang et al. proposed a novel convex penalty regularization method called Kurtosis-based
weighted sparse decomposition (Kur-WSD) on the basis of the L1-norm method to detect the inner
fault of an alternating current motor. In [36], Du et al. propose a rigorously weighted low-rank sparse
detection framework to explore the physical/internal mechanisms of bearing faults and implement
fault diagnosis of a wind turbine.
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Unfortunately, the above low-rank matrix approximation approach still suffers from the following
challenges, which have restricted its application development:

(1) Generally, the penalty functions that are established in a low-rank matrix approximation (LRMA)
model are symmetric functions, e.g., the absolute value function (AVF); the common drawback is
that this penalty function is non-differentiable at the zero point, which can lead to some numerical
issues, such as a local optimum and early termination of algorithm.

(2) In a conventional low-rank matrix approximation (LRMA) method, the convex regularizer,
such as the L1-norm, usually underestimates the sparse signal when the absolute value function
(AVF) is used as a sparsity regularizer; the nonconvex regularizer suffers from several issues,
such as a strict convexity problem of objective cost function (OCF), a non-convergence problem,
etc. Additionally, both the convex and nonconvex regularizers shrink all the coefficients equally
and remove too much energy from the useful signal, resulting in the estimation of the fault signal
becoming more challenging.

(3) When the useful fault characteristics signals are very weak but additive noise extremely strong,
the conventional LRMA method cannot estimate low-dimensional feature distribution accurately.

Aiming at the issue of estimating the weak fault signal from its noisy observations,
and enlightened by the LRMA method, a novel detection approach based on asymmetric convex
penalty regularization (ACPR) and majorization-minimization (MM) is proposed in this paper, using
the weak chipping fault of a gearbox as a research object. The proposed ACPR method neither relies
on the reconstruction of dictionary atoms, nor requires a large number of sample data to form a certain
training dictionary; meanwhile, the numerical issues, such as being non-differentiable at zero point,
are addressed by introducing the asymmetric convex penalty function. In the modeling solution
process, MM is implemented to solve a relatively complicated sparsity-based optimization problem.
Finally, the proposed method is validated via the weak fault feature of the simulation and the gearbox
dataset collected in the lab experiment; the results of fault frequency and its harmonics indicate that
the ACPR method is superior to the other LRMA methods, such as nonconvex penalty regularization
(NCPR) and L1-norm fused lasso optimization (LFLO) techniques.

The layout of this work is organized as follows. Section 2 introduces the MM algorithm. Section 3
introduces the algorithm and theoretical derivation of asymmetric convex penalty regularization
(ACPR). The simulation evaluation of the proposed method is presented in Section 4. In Section 5,
the practical diagnosis results and the discussion of the gearbox using the proposed approach with
other LRMA methods are presented. Conclusions are drawn in Section 6.

2. Majorization-Minimization Algorithm

Before the derivation of the proposed algorithm, a review to the majorization-minimization (MM)
algorithm is given. Usually, the MM algorithm is used to reduce the computational complexity—in other
words, for a minimization problem that is too complex to solve directly, the MM method can simplify it
into a series of simpler problems by constructing the majorization functions [37-39].

Suppose F(u) is the minimization problem, which is too complex to solve directly. The MM
algorithm constructs a simple function G(u, u5), G(u, u¥), which is called the majorization function of
F(u) at the k-th iteration point u*. More specifically, consider the minimization problem

u°Pt = argminF(u) (1)
u
By using the MM method, the above problem can be described by the following iteration:

pkH1) — argn},i“G(uf“(k)) @
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where k is the iteration number and G(u, 1) is a continuously differentiable function, satisfying

G(u,v) i (u),forall u,v, 3)

G(u,u) = F(u)

Note that the majorizer G(u, v) reaches F(u) for u = v. According to Equations (2) and (3), we have

F
F

F(uM ) < G(u*, ub) < G(uk, u*) = F(uF) (4)

This iteration briefly describes the MM approach for minimizing a minimization problem function.
The MM algorithm consists of two processes: the construction of the majorization function and the
optimization of the majorization function. The main steps of the MM algorithm can be summarized as
follows:

(1) Initialize u° and k = 0;

(2) Construct a majorization function G(u, uky;

(3) Operate the iteration u*x+1) = argmuinG(u, ulky;

(4) If the stopping criterion is satisfied, then output u°P!; otherwise, k = k + 1, and go to step (2);
(5)  Output u°Pt.

3. Asymmetric Convex Penalty Regularization Algorithm

3.1. Sparse Representation and Filter Banks

Generally, the noisy noisy vibration signal vy of rotating machinery, such as a rolling bearing,
contains three parts: the fault transient impulses x, the systematic natural vibration signal f, and the
additive noise w, i.e.,

y=x+f+w )

The core work of the fault diagnosis is to extract the fault transient impulses x from the noisy
observation y. Assuming that fault transient component impulses and the systematic natural vibration

signal are estimated, we have
A

sz,f%f (6)

Assuming that the estimation of fault transient impulses x is obtained as x, we can estimate signal

f as follows:
A
f = LPF(y - %) @)

A
where LPF is a specified low-pass filter. Substituting Equation (7) into f ~ f, we have
A
LPF(y— %) ~ f ®)
Substituting y = x + f 4+ w into LPF(y — g\c) ~ f, we have

A
y—Xx)+w
)Ry—x—w

y =~ x+ LPF
= LPF(y —

~~

)

=>

Substituting X ~ x into LPF (y— 3/2) ~ Yy —x —w, we have

LPF(y — %) ~y—%—w< (I— LPF)(y — ) ~w (10)
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Defining HPF = I — LPF = H, thus, we get
A A
HPF(y —x)~w=H(y—x) R w (11)

On the other hand, it should be noted that Equation (5) belongs to a highly underdetermined
equation, i.e., an ill-posed or N-P hard problem [40-42], for which there are infinite sets of solutions
because the number of unknowns is greater than the number of equations. Usually, convex
optimization approaches are commonly used to estimate a transient component from the noisy
signal; based on the aforementioned work, the estimation of x can be formulated as the constrained
optimization problem, i.e.,

A .1
x = argmin{ |H(y — )3 + A|[Dx]} (12)
where H is a specified high-pass filter (i.e., the HPF in Equation (11)), A is a regularization parameter,
-1, 1
and D is a matrix defined as D = o , which controls the sparsity of the

-1, 1
approximating value of x. If x is a sparse signal, i.e., most of the amplitude values in x tend to zero,
then the problem in Equation (12) can also be solved by the L1-norm fused lasso optimization (LFLO)
algorithm, i.e.,

A . 1 2
x = argmin{ 5 [|[H(y — x)|[3 + Aol|x[ly +A1[[Dx[|y } (13)

where Ag and A; are regularization parameters. The solution of the LFLO algorithm can be given by a
soft-threshold function [43]. In that case, we have

x = soft(tvd(y, A2), A1) (14)

where function tvd (-, -) is the total variation de-noising (TVD) algorithm [44-46], and the soft-threshold
function is defined as follows

— A, > A
soft(x,A) = *= Ay A (15)
0, x| <A
In addition, the high-pass filter H described above could be formulated as follows [45-47]:
H=A"'B (16)

where A and B are Toeplitz matrices.

3.2. Asymmetric Convex Penalty Regularization Model

Compared with optimization algorithms Equations (12) and (13), in order to estimate the fault
transient impulses x precisely, this work introduces a novel penalty regularization method, i.e.,
an asymmetric and symmetric nonconvex penalty regularization model:

A _ . ) N-1
x = argmin{F(x) = 5||[H(y — x)||5+ Ao ¥ 0c(xy;7)
X n=0
M N-1 (17)
+X A L ¢([Dix],) >}
i=1 n=0
where F(x) is the proposed objective cost function (OCF), the penalty function 6, (x,; ) is a asymmetric
and differentiable function, and ¢([D;x],) is a symmetric and differentiable function, if the term
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[ -1,1
M =2, the matrix D1 is defined as D = o , and the matrix D, is defined as
i -1,1
-1, 2, -1 |
-1, 2, -1 . . .
D; = . The innovations of the novel compound regularizer model
-1, 2, -1 |

are as follows:

(I)  The M-term compound regularizers estimate the fault transient impulses;

(I) The compound regularizers model consists of symmetric and asymmetric penalty functions,
wherein the symmetric penalty function is a differentiable function, compared with the
nondifferentiable function ||x;|| ati=0.

(III) The MM algorithm is introduced for the solution of the proposed compound regularization method.

Based on this, therefore, the core tasks of the proposed algorithm are (1) how to construct a
symmetric and differentiable penalty function; (2) how to construct an asymmetric and differentiable
penalty function; and (3) how to solve the proposed method based on the MM algorithm and the
estimation x, and make diagnosis results more accurately than the traditional LFLO and nonconvex
penalty regularization approaches.

For the first task, traditional LFLO regularization approach uses the absolute value function (AVF)

pa(x) = ||x|| as the penalty function; however, the common drawback of ¢4 (x) = ||x| is that this
function is non-differentiable at zero point, which can cause some numerical problems. To address this
issue, some non-linear approximation functions of ¢4 (x) = ||x|| are proposed, i.e.,
Pp(x) = \/Ix" +e (18)
Or
¢c(x) = |x| —elog(|x[ +¢) (19)

Note that when € = 0, then the ¢p(x) and ¢.(x) degrade into the AVF ¢4 (x), and while the e > 0,
the ¢p(x) and ¢.(x) are differentiable at the zero point. The functions ¢4 (x), ¢p(x), ¢:(x), and their
first-order derivatives are listed in Table 1.

Table 1. Symmetric penalty functions and their derivatives.

!

Functions ¢(x) ¢ (x)
pa(x) 1] Signal(x)
$p(x) VI +e x/\/|x]* +¢
¢e(x) |x| — elog(|x| +¢) x/(|x| +¢)

In order for the non-linear approximation functions to maintain the reliable sparsity-inducting
behavior of the original LFLO algorithm, the parameter € should be set to an adequately small positive
value. For example, the parameters ¢ = 107> and ¢ = 10~° are small enough that numerical issues can
be avoided, and their impact on the sparsity promoting can also be ignored.

For the second task, inspired by the AVF ¢4 (x) = ||x||, and in contrast to the symmetric and
differentiable penalty function ¢p(x) and ¢.(x), here a segmented function is proposed as follows:

X, x> ¢
Oe(x) = ¢ f(x), x| <e (20)
—rx, x<e
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where r > 0 is a positive constant. Therefore, the main problem of Equation (20) will transforms into
a task about how to construct the intermediate function f(x), —¢ < x < e. To address this issue,
we seek a majorizer as the approximation function of f(x), —e < x < ¢; here, in order to eliminate the
issue that the penalty function is non-differentiable at zero point, a simple quadratic equation (QE) is
introduced accordingly,

g(x,0) =ax® +bx +c (21)

According to the theory of the majorization—-minimization (MM), we have,

g(v,v) =0(v, 1), §'(v,0) =6'(v,1)
g(s,v) =0(s,r), §'(s,0) =0'(s,7) (22)

The parameters 4, b, ¢ and s are all function of v, and solving for them gives

1+7r 1—7r (1+7)|v|
a= 5= —

= o) ’b:T’C: 1 v (23)
Substituting Equation (23) into g(x,v) = ax? + bx + ¢, we have
1+7r , 1-—71 (1+7)9|
= 24
g('x’ U) 4|,U| X + 2 X + 4 ( )

Similarly, the numerical issue of Equation (24) will appear if the parameter v approaches zero.
To address this issue, the sufficiently small positive value ¢ is used instead of |v|; thus, the segmented
function Equation (20) can be rewritten as,

X, X >¢&
bc(x) = ¢ Lra? + Lrx 4 W x| < (25)
—rX, x<eg

Hence, the new function 6¢(x) is a continuously differentiable function.
The third task will be solved and derived in Section 3.3 using the MM algorithm.

3.3. The Solution of the Proposed Model Based on the Majorization—Minimization Algorithm

In this paper, the majorization-minimization (MM) algorithm is implemented to derive an iterative
solution procedure for the proposed approach [47]. The function G(x, v) is chosen as the majorizer of
F(x). Specifically, the iterative solution procedure can be could be divided into three phases:

(@) The majorizer of the symmetric and differentiable function ¢([D;x],,) based on the MM algorithm.
(b) The majorizer of the asymmetric and differentiable function 6, (x,; r) based on the MM algorithm.
(c) The majorizer of the objective cost function F(x) based on the MM algorithm.

For problem (a), we first seek the majorizer g(x, v) for ¢(x), i.e.,

¢(v,v) = ¢(v), forall x,v (26)
g(x,0) = ¢(x)
Since ¢(x) is symmetric function, we set g(x, v) to be an even second-order polynomial, i.e.,
g(x,0) =mx*>+b (27)
Thus, according to Equation (26), as well as ¢(v,v) = ¢(v) and ¢’(v,v) = ¢'(v), we have

mx® 4+ b = ¢(v) and 2mv = ¢’ (v) (28)
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The parameters m and b can be computed as

m= % and b = ¢(v) — gcp'(v) (29)
Substituting Equation (29) into Equation (27), we have
s(x,0) = 210 1 9(0) - 2/ (0) 0)

In summation, we obtain

Lg(n,on) = L (200 0,2 1 p(04) — %4/ (vn)]

= 3T E0 x4 Llg(on) — 44/ (0n)]

X?[A( )]nx+6( v)

¢(xn)

(31)

N|—

>

ek

0

n

where [A(v)], = 4)/1(}—3”) is diagonal matrix and ¢;(D;v) = ¥ [¢([D;v],,) — %4}'([&‘0],1)]. Therefore,

based on Equation (31), we obtain

% (D) 1700 (Dix) + L [¢([Dio],,) — Peg! (1Dso],)]]
" (32)

L(D;x)"[A(Dv)](Dix) + ¢;(Dv)]

ki

Y I
MzltzlMz
o

g
Rt

3

Il

o
=
S
=
=

—

where [A(Djv)],, = ¢'(IDivly) 44 5 diagonal matrix and c¢(D;v) = Y [¢([D;v],,) — %(])’([Div]n)].

[Div],,
For problem (b), we assume that go(x, v) is the majorizer of the asymmetric and differentiable

1+4r .2 (1+r

function 6 (x,;7); since f(x) = 5Lx* + 12’x—|— ,|Ix]| <&, we have

go(x,0) = 1EF 2+12’x+ 1+r > f(x), ov>e 3
_ 1+r 24 Lr 1+r )o B (33)
go(x,0) = X2+ Ly — > f(x), v<—¢
when v < —g¢, then
go(x,0) — f(x) = (4 — L) + (v —e) 14~ “
_ (nE—g)(ee=?) (34)
- 4ve
when v < ¢, then
go(x,v) — f(x) = (L — LE)x? — (v +e) LfE
(1+7) (v+¢) (ve+x2) -0 (35)
T dwe
Therefore, the majorizer of the asymmetric and differentiable function 6, (x,; r) is obtained:
$o(x,0) = il + 1hx + ol B, o] > e 36)
go(x,v) = 1;’x2+%x+s%, lo| <e
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In summation, we obtain

lego(xn, vy) = xT[T(0)]x + bTx +c(v)

= (37)

> ) Gs(xn/ 7’)

n=0
where I'(v) is a diagonal matrix, i.e., [[(v)],, = (1+71)/4|v4|, |vn| > eand [[(v)], = (147)/4e, |va] <,
and [b], = (1—r)/2.
For problem (c), based on Equations (32) and (37), the majorizer of F(x) based on the MM algorithm
is given by
G(x,0) = 3| H(y — )15 + Aox" [[(0)]x + Aob"x

M, (38)
+ L |3 (D) A D)) (Dix)] + €(0)
i=
Minimizing G(x, v) with respect to x yields
x = HTH + 2A¢T(v) + Z ADT[A(D)D;)  (HT Hy — Agb) (39)
i=1
Here, substituting H = BA~! into Equation (39), we have
M -1
x = A{B"B+A"(2A¢I'(v) + ¥ A;D][A(D;v)]D;)A}  x (BTBA™'y — A0A"D)
i=1
(40)

= A(BTB+ATMA) ' (BTBA~ly — A,ATD)
=AQ YBTBA 'y — 1pATD)

M
where matrix M = 2A0T (v) + Y A;D/ [A(D;v)]D; and matrix Q = BB + ATMA.
i—1

1=
Finally, by using the above formulas, the fault transient impulses x can be obtained by the
following iterations:

M® = 21,1 (x®) + Z AD][A(D;x")]D; (41)
i=1

Q") =B™B+ATMM A (42)

(k1) — A[Q(k)]’l(BTBA—ly _ /\OATb) (43)

In conclusion, the complete steps of the proposed algorithm are summarized as follows:

(1) Input: signaly, r > 1, matrix A, matrix B, A;,i =0,1,..., M, k=0;
(2) E=BTBA 'y —AATb

(3) Initialize x = y;

(4) Repeat the following iterations:

[I'(U)]n = (1 + 7’)/4|Un|r |on| > €
[T(0)], = (1+7)/4¢ |va] <&

ADw)], = PP 1o

[Div],

M®) =221 (x®)) + Z ADT[A(Dix")|D;;
i=1
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QW = BTB+ATMW4;
2+ A[Q(k)}_lg;
(5) If the stopping criterion is satisfied, then output signal x—otherwise, k = k + 1, and go to step (4).
(6) Output: signal x.
3.4. Parameter Selection

In this section, when M = 2, the regularization parameters A; are set as:

AO = IB()U
)\1 = ﬁ10’ = "}/(1 — ‘BO)(T (44)
/\2 = IB()O’

where 0 is the standard deviation (SD) of the additive noise, fy and B; are the constants, so as to
maximize the signal-to-noise (SNR); here, parameters By and vy are typically set up to be constant
value, i.e., By =[0.5, 1], v = [7.5, 8]. In practice, the SD of the background noise in Equation (44) can be
computed using both the fault signal and healthy data under same operating environment. Moreover,
when the healthy data is not available or is unknown, the standard deviation of the background noise
can still be estimated by the following formula:

¢ = MAD(y)/0.6745 (45)

which is a traditional estimator of the noise level that used for wavelet denoising [48], where MAD(y)
represents the median absolute deviation (MAD) of signal y, i.e.,

MAD(y) = median(|y; — median(y)|),i =1,2,...,N (46)

4. Numerical Simulation

A simulation experiment was utilized to investigate the effectiveness of the proposed approach
for extracting fault characteristic frequencies. Generally, the localized gear fault signal consists
of three typical parts: periodic impulses caused by the localized fault, natural modulated signals
due to systematic components, and additive background noise. Take the gearbox structure as an
under-damped second-order nonlinear mass-spring-damper (UD-SO-NMSD) system, and its synthetic
response function can be described by following formula:

=

(t) = x1(to) + x2(t) + x3(t)

x1(tg) = Apexp(—a x 27 futy) X sin(27f, X V1 — a’ty)
xp(t) = Aqsin(27tfit) X cos(27fot)

x3(t) = sigma X randn(1, N)

(47)

where Ag = 1 m/s? is the intensity of the fault impulse impact, A; = 0.1 m/s? is the intensity of the
systematic vibration signal, and the damping ratio is 2 = 0.1; in addition, f, = 2000 Hz represents
the natural frequency of excited structure, the length of vibration signal is N = 8192, the rotating
frequencies are f1 = 280 Hz and f, = 400 Hz, and the sampling frequency f; = 20 KHz. Additionally, in
this simulated case, the additive white noise x3(t) with SDs sigma = 0.5, sigma = 0.7, and sigma = 0.9
are respectively added to the simulated signal, in order to test the noise tolerance of the proposed
ACPR method. Therefore, it can be calculated that the gear fault frequency is 100 Hz (because the
repetition interval T = 0.01, the sampling point of a single period is NT = round(fs*T), and the sampling
time series is fy = (0:NT-1)/fs; therefore, the resonant frequency is 100 Hz). Figure 1a,b depict the
obtained periodical impulse of the gear fault and natural modulated signal, respectively.
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Figure 1. Simulated synthetic signal. (a) Faulty periodical transient impulses of a gearbox; and (b) the
systematic natural modulated signal.

As a benchmark approach for gearbox fault detection, the Hilbert envelope spectrum has been
effectively applied to fault diagnosis of rotating machinery, such as gears and rolling bearings. In this
section, comparisons are made between the raw envelope spectrum method and envelope spectrums
based on the proposed ACPR, on nonconvex penalty regularization (NCPR), and on the LFLO method,
by analyzing simulated signals. In order to compare the diagnosis effect of the ACPR, NCPR, and LFLO
methods, the evaluating parameters below are considered in Table 2. Here, according to Equation
(44), we will take the constant parameters to be fy = 0.7 and <y = 7.5. The parameters of the proposed
ACPR can be obtained as follows: the standard deviation o = 0.5, regularization term parameters
A=07x%x05=0351=75x(1—-07) x05=1.125,and A, =0.7 x 0.5=0.35.

Table 2. Parameter settings of the proposed asymmetric convex penalty regularization (ACPR) method

for gear fault detection.

Regularization Regularization Regularization . .
Parameter A Parameter A¢ Parameter A, M-Term Iteration Times
Ap=0.35 A =1.125 Ay =0.35 2 50

The simulated synthetic signal under noise a standard deviation sigma of 0.5, obtained from
Equation (47), is shown in Figure 2a. From Figure 2a, it can be seen that the periodic impulses are
completely buried in background noise. The Hilbert envelope spectrum of the raw synthetic signal
is illustrated in Figure 2b, in which the fault frequencies 100 Hz and 200 Hz can be recognized from
the envelope spectrum; however, those frequencies are clouded by the interference components.
The resulting fault signal extracted through ACPR and its envelope spectrums are depicted in
Figure 2¢,d, revealing frequency information related to faults. Meanwhile, the resulting impulses
components extracted through NCPR and LFLO and their envelope spectrums are exhibited in
Figure 2e-h, respectively. As observed, in the case of SD = 0.5, all these results proved that the above
three approaches can provide excellent performance in extracting the fault information, in contrast to
the results from direct envelope spectrum analysis.
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Figure 2. A simulated synthetic signal, its detected impulses, and its envelope spectrum, using the
proposed non-convex penalty regularization and L1-norm fused lasso optimization (LFLO) method,
when noise standard deviation is 0.5. (a) Simulated synthetic signal; (b) envelope spectrum of the
simulated synthetic signal; (c) detected impulses using the proposed ACPR method; (d) envelope
spectrum of detected impulses using proposed ACPR method; (e) detected impulses using the
nonconvex penalty regularization (NCPR) method; (f) envelope spectrum of detected impulses using
the NCPR method; (g) detected impulses using the LFLO method; (h) envelope spectrum of detected
impulses using the LFLO method.

Next, with the purpose of testifying to the noise tolerance performance of the proposed ACPR,
the vibration signals with different standard deviations (i.e., 0.7 and 0.9) are simulated and compared.
The NCPR and LFLO methods are also used to process the simulated heavy noisy vibration signals,
for comparison. The extraction results with different methods are illustrated in Figures 3 and 4,
respectively. As shown in Figure 3e,g and Figure 4e,g, most of noise harmonic interferences are
removed; meanwhile, the energy of the useful fault periodic impulses is also reduced dramatically.
It can be seen that, with the standard deviations (SD) of sigma increasing, the characteristic frequencies
and their harmonic components cannot be accurately and clearly extracted by the NCPR and LFLO
methods. Hence, the NCPR and LFLO methods are no longer effective for such a signal. Thankfully,
the proposed ACPR is an appealing solution for the problem. It can be concluded that for the extraction
results shown in Figures 3b—d and 4b—d, the ACPR method is superior to the NCPR and LFLO methods
in terms of increasing noise. Table 3 shows the running time of the proposed ACPR algorithm and
other benchmarking methods. In this work, the simulation and experimental data were carried out by
MATLAB, on a computer with Windows 10, quad-core processors at 2.9 GHz CPU, and 16 GB RAM.

In conclusion, when applied to the noisy signals, the proposed ACPR is more stable with regards
to noise perturbation than the other two methods, at least when the noise standard deviation equals
0.7 and 0.9.
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Figure 3. A simulated synthetic signal, its detected impulses, and its envelope spectrum, using the
proposed non-convex penalty regularization and LFLO methods, when noise standard deviation
sigma is 0.7. (a) Simulated synthetic signal; (b) envelope spectrum of simulated synthetic signal;
(c) detected impulses using the proposed ACPR method; (d) envelope spectrum of detected impulses
using the proposed ACPR method; (e) detected impulses using the NCPR method; (f) envelope
spectrum of detected impulses using the NCPR method; (g) detected impulses using the LFLO method;
and (h) envelope spectrum of detected impulses using the LFLO method.
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Figure 4. The simulated synthetic signal, its detected impulses, and its envelope spectrum, using the
proposed non-convex penalty regularization and LFLO methods, when the noise standard deviation
sigma is 0.9. (a) Simulated synthetic signal; (b) envelope spectrum of the simulated synthetic signal;
(c) detected impulses using the proposed ACPR method; (d) envelope spectrum of detected impulses
using the proposed ACPR method; (e) detected impulses using the NCPR method; (f) envelope
spectrum of detected impulses using the NCPR method; (g) detected impulses using the LFLO method;
and (h) envelope spectrum of detected impulses using the LFLO method.
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Table 3. The running time of the proposed algorithm and benchmarking methods.

Noise Standard Deviation ACPR Algorithm NCPR Algorithm LFLO Algorithm

sigma = 0.5 0.288113 s 0.05391 s 0.000486 s
sigma = 0.7 0.283184 s 0.073986 0.000743 s
sigma = 0.9 0.308288 s 0.052860 s 0.000524 s

5. Experimental Validation

The experimental vibration data were collected via a two-class standard cylinder spur gear
reducer [49,50]. The gearbox consists of an input shaft, an idler shaft, and an output shaft. The physical
experimental rig and schematic diagram of the gearbox are shown in Figures 5 and 6, respectively.
There are 16 and 40 teeth of helical gear in the input and output shafts, respectively, and the two
gears on the idler shaft have 48 teeth and 24 teeth. The first- and second-stage reduction gear ratios
are 1.5 and 1.667, respectively. In this experiment, two triaxial accelerometers with three channels
were mounted to the housing with magnetic bases, near the idler shaft (see Figure 5d,e), and the
acquisition system was Endevco with 10 mv/g. An artificial fault (chipping failure with a small area)
was produced on the tooth of a helical gear (i.e., 24 teeth in the idler shaft), and the vibration signal
was picked up from the bearing pedestal with a sample frequency of 66.667 kHz. The shaft rotational
speed was 2400 rpm (i.e., 40 Hz) with a low load, the sampling time was set to 4 seconds, and the
characteristic defect frequency was 13.33 Hz (40 Hz x 16/48 = 13.33 Hz). It should be pointed out that
the collected signals were not pre-filtered, and hence contains many interference factors and heavy
background noise, which render more challenges for the implementation of weak fault detection.

More details about the experimental description and experiment parameters can be found at
the website [49].

Figure 5. Experimental setup for the gearbox multiple faults. (a) Overview of the experimental

apparatus; (b) the internal structure the gearbox; (c) the internal structure of the gear meshing; (d) the
installation location of input shaft accelerometer; (e) the installation location of the output shaft
accelerometer; and (f) the gears with failure [49,50].
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Figure 6. Schematic of the experimental apparatus [49,50].

The raw vibration signal, (here in order to get a more complex vibration signal, a Gaussian white
noise with amplitude sigma = 0.04 was added to the original signals) with a length of 4 s, is shown
in Figure 7a, in which the periodic impulsive symptoms cannot be unraveled due to high level of
noise and harmonic interference. Furthermore, no sign of the gear fault is revealed by its Hilbert
envelope demodulation shown in Figure 7b—that is, the weak gear chipping characteristic frequency
is completely submerged in the strong noise interference. Thus, an advanced signal processing method
for weak fault detection should be developed.
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Figure 7. The raw vibration signal and its Hilbert envelope spectrum. (a) The raw vibration signal and
(b) the Hilbert envelope spectrum of that raw vibration signal.

The proposed ACPR method was adopted to process the raw vibration signal for the detected
feature information. Since the standard deviation(SD)of the background noise was unknown, it could

be calculated by the equation ;= MAD(y)/0.6745 = 0.0409. Therefore, the related parameter
specification for the ACPR approach is summarized in Table 4. Figure 8 depicts the extracted fault
signal and its envelope spectrum. Compared with the original envelope spectrum shown in Figure 7b,
it can be clearly seen that the gear chipping characteristic frequency was 13.22 Hz (close to the
theoretical fault frequency of gear chipping, which was 13.33 Hz), and its higher orders (2f, 3f, 4f,
and 5f) were obvious and had a satisfying distribution pattern. Therefore, it can be concluded that a
localized fault exists on the helical gear with 24 teeth in the idler shaft.
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Table 4. Parameter settings of the proposed ACPR method for gear fault detection.

Regularization Regularization Regularization M-Term
Parameter A Parameter Aq Parameter A,

Ag =0.02863 A1 =0.09203 Ap =0.02863 2 50
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Figure 8. The fault information extracted through the proposed approach. (a) The time-domain
waveform of the extracted fault signal and (b) the envelope spectrum of the extracted fault signal.

For the sake of comparing the diagnosis results obtained by the NCPR and LFLO methods,
the parameters like regularization coefficients and penalty parameters were also calculated.
The parameters of the algorithm are also given in Table 4. The detected fault components and related
spectrum by the NCPR and LFLO methods are demonstrated in Figures 9 and 10. From Figures 9
and 10, however, only one higher order line (39.42 Hz) associated with the gear chipping fault can be
observed, so the fundamental frequency of failure of 13.33 Hz cannot be reliably identified. This may
because of the fact that the gear chipping fault, in this case, was quite weak and was submerged by
strong noise. Therefore, it can be verified that the proposed ACPR method has an excellent performance
with regards to recognizing the fault information of weak gearbox failure, in comparison with the
NCPR and LFLO methods.
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Figure 9. The fault information extracted through the NCPR approach. (a) The time-domain waveform
of extracted fault signal and (b) the envelope spectrum of the extracted fault signal.
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Figure 10. The fault information extracted through the LFLO approach. (a) The time-domain waveform
of the extracted fault signal and (b) the envelope spectrum of the extracted fault signal.

6. Conclusions

Aiming at the issue of estimating the sparse low-rank matrix (i.e., the weak fault signal) from its
noise observation, this paper proposes a novel weak fault feature extraction approach for a gearbox,
combining majorization—-minimization (MM) and asymmetric convex penalty regularization (ACPR)
algorithms. In this work, the observed noisy signal was modeled as the sum of the fault’s transient
impulses, the systematic natural vibration signal, and the additive noise; thus, the ill-posed problem of
sparse representation was translated into a regularization inverse problem. The proposed objective
function better estimates sparse low-rank matrices (SLRM) than the nonconvex and convex methods,
which utilize the sum of the signal-fidelity term and the two parameterized penalty terms.

In terms of an algorithm solution, the asymmetric penalty function was established on the basis
of the L1-norm model and simple quadratic equation forms, and a symmetric penalty function was
established on the basis of the L1-norm model, respectively. Then, the majorizers of the symmetric and
asymmetric functions were calculated via the majorization-minimization (MM) algorithm. Afterward,
the efficient iterative algorithm was derived by the MM algorithm. Meanwhile, we show how to
set the model parameters of the proposed objective cost function (OCF), in order to ensure that
the objective function is strictly convex. Finally, the effectiveness of the proposed ACPR method is
demonstrated by the simulation signal and practical gearbox fault data, compared with two state-of-art
methods, especially for the measured signal with heavy background noise. specifically, the gear
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chipping characteristic frequency 13.22 Hz and its harmonic (2f, 3f, 4f and 5f) can be detected obviously.
The diagnosis results show that the fault frequency and its harmonics could be detected clearly by the
proposed method.

The proposed approach has great potential for online or offline detection for gearboxes, especially
in the early stages of failure or when the background noise is heavy and uncorrelated interference
is very strong. The proposed ACPR approach uses symmetric and asymmetric penalty functions
to promote the positivity of the estimated fault signal; however, it should be noted that the
periodic transient characteristics of fault impulses cannot be revealed by the current proposed
methodology. Hence, future work will focus on formulating an improved algorithm to address this
issue, which makes periodic transient impulses as similar to the signal’s physical structure as possible.

For the applicability of the proposed algorithm, this algorithm might be applied to other rotating
machinery, such as a rolling bearing or rotor, and even mechanical processing (e.g., turning chatter,
milling chatter, tool wear etc.).
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