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Abstract: For a long time, object detection has been a popular but difficult research problem in the
field of pattern recognition. In recent years, object detection algorithms based on convolutional neural
networks have achieved excellent results. However, neural networks are computationally intensive
and parameter redundant, so they are difficult to deploy on resource-limited embedded devices.
Especially for two-stage detectors, operations and parameters are mainly clustered on feature fusion
of proposals after the region of interest (ROI) pooling layer, and they are enormous. In order to deal
with these problems, we propose a subnetwork—efficient feature fusion module (EFFM) to reduce the
number of operations and parameters for a two-stage detector. In addition, we propose a multi-scale
dilation region proposal network (RPN) to further improve detection accuracy. Finally, our accuracy
is higher than Faster RCNN based on VGG16, the number of operations is only half of the latter,
and the number of parameters is only one third.
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1. Introduction

Artificial neural networks and pattern recognition have accomplished remarkable things up to
now. Object detection is an important subproblem in the field of pattern recognition. The development
of neural networks and object detection algorithms has a long history. Since AlexNet was proposed [1],
which was based on ImageNet in 2012 and obtained state-of-the-art results, neural networks have
once again caught researcher’s attention. Various network structures have emerged from time to
time. The Region Convolutional Neural Network (RCNN) was presented by Ross Girshick [2] in
2014. Benefitting from the powerful feature extraction capability of neural networks, the field of
object detection has achieved a landmark breakthrough, with world records set by PASCAL VOC,
COCO and other datasets being surpassed one by one. Meanwhile, Faster RCNN [3], YOLO [4],
SSD [5] and other excellent object detection algorithms [6–10] are constantly presented within a short
time. Then, VGG16 [11] and GoogLeNet [12] surpassed the ImageNet challenge record again in
2014. In particular, object detection algorithms reached a higher level of accuracy after ResNet [13]
was released in 2016. However, as network structures are becoming more accurate, operations and
parameters are also increasing rapidly.

Object detection algorithms are mainly divided into one-stage detectors and two-stage detectors.
Two-stage detectors start with generating object proposals, and then localize and classify numbers
of proposals. Two-stage detectors are more accurate than one-stage detectors and have stronger
generalization abilities. Two-stage detectors include Faster RCNN/Region-based Fully Convolutional
Networks (R-FCN)/HyperNet/Networks on Convolutional feature maps (NoCs) [3,6–8]. In a variety
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of object detection algorithms, NoCs adopted GoogLeNet as a feature extractor. Faster RCNN adopted
ZFNet [14] and VGG16 as a feature extractor. In the R-FCN [6], the author replaced VGG16 with ResNet
and adopted fully convolutional networks, achieving higher precision. Some research shows that
VGGNet and ResNet is not an efficient network model [15]. They consume larger operations and more
redundant parameters than other models.

In addition, two-stage detectors often extract hundreds or even thousands of object proposals,
and each object proposal needs to be classified and localized. This module mainly uses two large
fully connected layers or large convolutional layers [3,6], which often consume plentiful operations
and parameters. They have the disadvantage of computationally intensive and parameter redundant,
which focuses on the feature fusion module after the region of interest (ROI) pooling layer.

One-stage detectors consider object detection as a regression problem. They usually achieve
real-time detection. One-stage detectors mainly include YOLO/YOLOv2/SSD. In the last two years,
some progress has been made in improving efficiency [4,5,16] in the field of object detection and
convolutional neural networks. YOLO adopted darknet, similar to GoogLeNet, as a feature extractor
and has achieved good results in speed and accuracy. In YOLOv2 [17], the author proposed DarkNet19,
which runs faster, and SSD adopted VGG16 as a feature extractor. However, they have deficiencies
that detection accuracy is not high enough, especially for small targets.

Moreover, some researchers have proposed methods to quantify weight, making it possible to
compress neural network weight to eight or even one bit [18], as well as hash coding [19]. There are
also some methods for pruning weight [20] or filter [21] that greatly reduce the number of parameters.
Some researchers presented a new algorithm for training the PNN neural network with fewer
neurons [22]. Of course, there are also some hardware acceleration methods proposed [23]. In this
paper, we mainly talk about designing efficient and compressed network structures based on two-stage
detector—Faster RCNN.

In the meantime, most of the two-stage detectors generate object proposals by the last convolutional
layer of feature extractor, resulting in a low recall rate of object proposals. HyperNet proposed a Hyper
feature to fuse multi-scale features [7]. Gated Bi-Directional CNN presented a two-way gated network
to selectively pass information in different scale context windows [24]. Some researchers detected areas
of interest with heuristic methods [25]. However, they bring about too many operations and parameters.

In this paper, in order to reduce a large number of operations and parameters, we present
an efficient feature fusion module (EFFM) for two-stage object detectors to classify and localize object
proposals. We adopt pointwise convolution to fuse local channel information and reduce channel
dimensionality, and adopt grouped convolution to extract features and grouped fully connected layers
to fuse features. In order to improve recall rate of object proposals, we propose multi-scale dilation
region proposal network (RPN). We adopt dilated convolution and multi-scale features to expand
the receptive field. Furthermore, we adopt global feature weighting to enhance the network’s feature
extraction capability. In order to improve the efficiency of the feature extractor, we prune GoogLeNet to
inception4e as a feature extractor.

The remainder of the paper is organized as follows. In Section 2, the related works are presented.
Section 3 describes our methodology. Section 4 presents our experimental results. Section 5 concludes
with a summary of our work.

2. Related Work

Knowledge Distillation [26]: The method is known as “teacher–student network”. The “teacher
network” is often a more complex network with excellent performance and generalization capabilities.
This network can be used as the soft targets and teach the “student network”, which is simpler
and less computationally intensive. By learning the category distribution of the “teacher network”,
the knowledge of the “teacher network” is refined into a smaller model. Then, “student network”
has similar performance to the “teacher network”. This method significantly reduces the number of
operations and parameters. However, there are also some deficiencies. This method can only be used



Symmetry 2018, 10, 235 3 of 13

for classification tasks with softmax loss function, hindering its application (e.g., object detection).
Another disadvantage is that the assumption of the model is too strict, which degrades its performance.

NoCs [8]: The authors proposed a object detection framework based on the region proposal
network. NoCs adopted GoogLeNet and ResNet as feature extractor. With the neural networks
deepening, the accuracy of object detection algorithms is also improving. However, researchers do not
pay much attention to feature fusion after the ROI pooling layer. The role of feature fusion module is
to classify and localize object proposals. The feature fusion module are usually multi-layer perceptrons
in the Fast/Faster RCNN. Therefore, NoCs explores the effects of different feature fusion modules
and find they are as important as generating object proposals. However, NoCs only explores the
importance of classifying and localizing object proposals. The feature fusion modules they proposed
are more complex convolutional neural network and consumes larger operations and more redundant
parameters than Faster RCNN.

HyperNet [7]: In order to combine multi-scale feature information in the region proposal network,
HyperNet proposed different sampling strategies for different layers. They added a pooling layer at
the lower convolutional layer. For higher convolutional layers, they added deconvolution operation
(Deconv) for upsampling. A convolutional layer is applied after each sampling. The convolutional
layers not only extract feature information, but also integrate them into hyper feature maps. Finally,
multi-scale feature maps are normalized using local response normalization (LRN) and concatenate
them to one single output cube. However, although HyperNet improves the detection accuracy,
it brings a large number of operations and parameters in the region proposal network, and is unable to
achieve real-time detection.

Deep Compression [20]: Deep compression combines pruning, trained quantization and Huffman
coding to dramatically reduce the number of parameters. Pruning is cutting unimportant connections
to reduce redundancy. Generally, if the absolute value is less than a certain threshold, it is treated as
insignificant weight and set to zero. Quantization uses the K-means algorithm to cluster weight,
and homogeneous weight are replaced with the same quantified weight. Huffman coding uses
different lengths to represent different weights. Although deep compression can greatly reduce
the number of parameters, the pruned matrix is a large number of sparse matrices, especially
for the convolutional layer, which currently lacks of good support for sparse basic linear algebra
subprograms and corresponding hardware. At the same time, the quantization could not accelerate
the training process.

3. Methods

3.1. Faster R-CNN Analysis

According to the design methods for Faster RCNN [3], it mainly contains three parts: feature
extractor, region proposal network (RPN), and feature fusion module after the region of interest (ROI)
pooling. Feature extractors are actually convolutional neural networks. RPN mainly outputs a set of
rectangular object proposals, which is inspired by fully convolutional networks [27]. ROI pooling layers
turn feature maps into fixed-length feature vector and greatly reduce the number of operations [28,29].
The feature fusion module is mainly to extract and fuse the feature information after ROI pooling, and
then finally classify and localize the targets.

In the Faster RCNN, the feature extractor adopts ZFNet, VGG_CNN_M_1024 and VGG16.
VGG_CNN_M_1024 is pruned by VGG16. RPN generates anchors based on convolutional layers in
order to obtain object proposals. The feature fusion module uses two large fully connected layers.

Next, we will analyze the proportion of operations and parameters of three parts. We know
that Faster RCNN needs to extract 300 proposals for classification and localization, while one-stage
detector only takes one step. Our study found that two-stage detectors have enormous operations
and parameters due to a large number of object proposals. Here, we take Faster RCNN based on
VGG16 as a example. As can be seen in Figure 1, the number of operations and parameters of feature
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extractor, RPN, and feature fusion module accounts for 29.6%, 0.9%, 69.5%, and 10.7%, 1.7%, 87.5%,
respectively. Figure 1 shows that the number of operations and parameters are mainly clustered in the
feature fusion module after the ROI pooling layer. Thus, we want to significantly reduce the number
of operations and parameters for the two-stage object detectors, we should design a more efficient
feature fusion module.

Feature extractor

29.6 %

RPN
0.9 %

Feature fusion

69.5 %

(a)

Feature extractor

10.7 %

RPN

1.7 %

Feature fusion

87.5 %

(b)

Figure 1. Operations and parameters proportion of Faster RCNN. The feature fusion module consists
of two fully connected layers. RPN is mainly a layer of convolution. The feature extractor is VGG16.
(a) operations proportion; (b) parameters proportion.

3.2. Network Architecture

In order to reduce the number of operations and parameters and ensure detection accuracy
simultaneously, we propose a subnetwork—efficient feature fusion module (EFFM) to classify and
localize targets and multi-scale dilation RPN to generate object proposals, as shown in Figure 2. In our
network structure, we prune GoogLeNet to an inception4e layer as our feature extractor. In the
multi-scale dilation RPN, we fuse the feature information of multi-scale feature maps, and use dilated
convolution to expand the receptive field, and then connect global feature weighting module to
improve the recall rate of object proposals. We generate 2000 proposals by the multi-scale dilation
RPN and select 300 proposals to classify and localize. In the EFFM, convolution layers are composed
of grouped convolution, local channel fusion and grouped fully connected layer. Below, we will detail
the EFFM and multi-scale dilation RPN.

3.3. Efficient Feature Fusion Module

At present, the feature fusion methods mainly include fully connected layers and convolutional
layers plus global average pooling.

The roles of fully connected layers are: first, high-level features extracted by convolutional layers
are dimensionally transformed into the target space for classification. Second, in the process of
transfer learning, fully connected layers achieve higher accuracy when transferring from the source
domain to the target domain. However, fully connected layers have the disadvantage of parameter
redundancy [20].

As for fully convolution networks, the first few convolutional layers extract shallow features,
while the middle convolutional layers mainly extract more abstract high-level features, and the last
convolutional layers fuse the previous feature information and reduce dimensions through global
average pooling layer. However, convolutional layers have less parameters but larger operations.
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Figure 2. Network architecture. Our structure is mainly divided into multi-scale dilation RPN, efficient
feature fusion module and feature extractor (GoogLeNet). FC means fully connected layer, conv means
convolutional layer.

Many network structures are only considered for reducing the number of parameters, and they
neglected to improve inference speed. In order to make two-stage detector’s accuracy, operations
and parameters reach a good trade-off, we combine the advantage of convolutional layers and fully
connected layers and propose a subnetwork—efficient feature fusion module (EFFM). This module
effectively fuses feature information and greatly reduces a large number of operations and
parameters simultaneously.

Next, we will introduce EFFM in detail. In the two-stage detectors, we only have a 7 × 7 feature
map after the ROI pooling layer, and the size of the feature map is relatively small. Therefore, as shown
in Figure 3, we first adopted a pointwise convolution with 512 channels to fuse channel information
and 480 channels to reduce dimensions. We greatly reduce the number of operations by choosing
pointwise convolution rather than larger convolution kernel. Naturally, we also adopt a 3 × 3 grouped
convolution with 512 channels to extract spatial information after dimensionality reduction. In order
to reduce the number of operations and parameters, we divide the 3 × 3 convolution into four groups.
Each group has 128 channels. If we choose 5 × 5 convolution kernel to extract spatial information,
we would need to fill the feature map to size of 9 × 9. The feature map becomes 81 pixels after being
filled, and 32 useless pixels are added compared to before. Therefore, in this case, we should consider
more about local channel information fusion. Grouped convolution has little loss of accuracy, but it
can greatly reduce the number of operations.

For convolutional neural networks, the number of parameters is mainly clustered on the first fully
connected layer. For example, if you input a image with size of 224 × 224, after five times of pooling,
the size of the feature map will reduce to size of 7 × 7. Assume that the number of channels in the
last convolutional layer is 512, and the number of channels in the first fully connected layer is 4096.
There are 102,760,448 parameters in the first fully connected layer. Moreover, research shows a large
number of parameters of fully connected layers close to zero due to regularization [30]. As shown in
Figure 3, we design more compact fully connected layers to ensure parameters utilization are more
efficient. We divide the first fully connected layer with 1024 channels into four groups. Each group only
has 256 channels. The number of first fully connected layer’s parameters will be reduced to a quarter of
the original. To ensure the integrity of information, we then connect a larger fully connected layer with
4096 channels to merge the final feature information. The second fully connected layer will not bring
too many operations and parameters compared to the first fully connected layer. For example, the first
fully connected layer is of size 4096, the second fully connected layer is of size 4096, and there are
only 16,777,216 parameters in the second fully connected layer. Compared with pruning [20], grouped
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fully connected layers not only greatly reduce the number parameters, but also obtain a dense matrix
instead of a sparse matrix, which is more suitable for hardware deployment.

1×1 Conv

4096 FC Layer

ROI pooling

bboxcls

Grouped FC Layer

Grouped 3×3 
Conv Layer

1×1 Conv

Figure 3. Efficient feature fusion module (EFFM) details. EFFM is mainly divided into convolutional
layers and fully connected layers. We use dimensionality reduction and grouping to reduce a lot of
operations and parameters.

3.4. Multi-Scale Dilation RPN

Faster RCNN only considers high-level feature information. This makes it easy to neglect low-level
and high-resolution information, which leads to missing small targets. RPN is inspired by fully
convolutional networks. Therefore, we adopt dilated convolution and multi-scale feature information,
which make it possible to integrate more scale information and improve the recall rate of object
proposals. Compared to the normal convolution kernel, dilated convolution has a hyper-parameter
called dilation rate, which refers to the size of kernel intervals, as shown in Figure 4. Dilated convolution
can expand the local receptive field. For example, a convolution kernel size of 3 × 3 (dilation: 2) can
obtain a 7 × 7 receptive field [31]. Compared with max pooling, dilated convolution does not loss the
feature information, which is beneficial to image segmentation and proposal generation.

Conv
Kernel:  3 × 3

Dilation Rate = 1

Conv
Kernel:  3 × 3

Dilation Rate = 2

Feature map Feature map

Figure 4. Dilated convolution with size of 3 × 3 and different dilation rates. (Left): dilation rate = 1,
receptive field = 3 × 3; (Right): dilation rate = 2, receptive field = 7 × 7. The entire gray box represents
the feature map, and the red boxes represent the convolutional kernel.

In addition, we can improve detection accuracy by incorporating deep but highly semantic,
intermediate but really complementary, and shallow but naturally high-resolution features of the
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image [7]. In the multi-scale dilation RPN, we merge the feature maps of Conv2, Inception3b,
and Inception4e by max pooling or deconvolution to the same size. After the Conv2 layer, we used
a convolutional layer with 256 channels and a 3 × 3 kernel to extract feature and max pooling to
reduce the feature maps to half of the original. After the inception3b layer, we directly connected
a convolutional layer with 320 channels and 3 × 3 kernel to extract feature. After the inception4e layer,
we connected a convolutional layer with 512 channels and 3 × 3 kernel to extract features, and then
adopt deconvolution to upsample the feature maps to twice of the original. Then, we concatenate all
the layers into the global feature weighting module.

The convolutional kernel is usually regarded as a local receptive field that fuses spatial information
and channel information. We often acquire different sizes of spatial information by changing the size of
the convolutional kernel. For channel information fusion, there are many ways, such as adding bitwise,
grouping, and shuffle. In the RPN, Faster RCNN adopted convolutional layers with 512 channel
and 3 × 3 kernel to generate object proposals. In order to enhance feature extraction capabilities of
RPN, we performed a global feature weighting module between multi-scale feature maps and the first
convolutional layer of RPN, as shown in Figure 5. The global feature weighting module uses a global
average pooling layer to represent the weight of each feature channel and becomes a 1088-dimensional
vector, and then nonlinearly transforms the weight through a 64-dimensional fully connected layer.
Finally, a sigmoid gate function predicts the final weight of each channel [32]. We significantly improve
detection accuracy while hardly increasing operations and parameters by adopting global feature
weighting module. After the global feature weighting module, we connect two convolutional layers
with 512 channels and 3× 3 kernel. In order to reduce the size of feature map, the second convolutional
layer’s stride is 2.

In the multi-scale dilation RPN, We first generated about 2000 anchors in the last convolutional
layer. The loss function is the same as the Faster RCNN. The last two convolutional layers connect to
the loss layer and predict anchors. Each point of the feature map is nine different anchors. We randomly
select 300 proposals in all anchors to classify and localize.

Proposals

Global Pooling FC Layer

Global Feature Weighting

Conv Layer
Gate Function

Max 
Pooling

Deconv

Dilation 
Conv

Conv2 Inception3b Inception4e

Figure 5. Multi-scale dilation region proposal network (RPN). This module incorporates feature
information of Conv2/ Inception3b/Inception4e, and adopts dilated convolution to expand the
receptive field, and finally connects a global feature weighting module.

4. Experiments and Results

4.1. Comparison with Faster RCNN

We performed a large number of experiments on the PASCAL VOC2007 and PASCAL VOC2012.
PASCAL VOC2007 contains 5 k trainval images, 5 k test images and 20 categories. PASCAL VOC2012
contains more data on the basis of PASCAL VOC2007.

In order to take full advantage of the PASCAL VOC dataset, we combined VOC2007 with VOC2012
train/val images. The test process is based on VOC2007 test images. We implemented the experiment
with Caffe (version: 1.0.0-rc3, University of California, Berkeley, CA, US). Training parameters are
basically the same as Faster RCNN. Our initial learning rate is 0.001, which is reduced by one tenth
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every 30,000 iterations and weight decay is 0.0005. In order to ensure fair comparison, our test images
are resized to 224 × 224. In the following, we will analyze the experimental results for detection
accuracy, operations, model size, speedup rate, compression ratio, power consumption, parameter
utilization and memory usage.

Table 1 shows the detection accuracy of various network structures. In Table 1, the CNN Model is
the feature extractor and represents the network model. For example, GoogLeNet is our structure’s
feature extractor, and it represents our network structure. ZF, VGG_M_1024 and VGG16 are Faster
RCNN’s feature extractor, and they represent Faster RCNN based on ZF, VGG_M_1024 and VGG16,
respectively. We only pruned GoogLeNet to the layer whose feature map is of size 14 × 14, mainly to
ensure a large enough receptive field. The proposals refer to the number of object proposals extracted
by a region proposal network. Our network model’s proposals extracted by the multi-scale dilation
RPN. VOC07 refers to our testing on the PASCAL VOC2007 testing set and training on the PASCAL
VOC2007 training set. VOC07 + VOC12 refers to that we our testing on the PASCAL VOC2007
testing set and training on the PASCAL VOC2007 training set plus the PASCAL VOC2012 training
set. The mAP refers to mean average precision.

From Table 1, we can see that our network structure’s accuracy is 69.8% and 72.6% in the PASCAL
VOC2007 training set and PASCAL VOC2007 plus 2012 training set, respectively. Our accuracy is
slightly higher than Faster RCNN based on VGG16 (69.45%, 72.08%) and far higher than Faster RCNN
based on ZF (59.01%, 60.7%) and VGG_M_1024 (60.27%, 62.19%). The VOC07 + VOC12 training set is
generally 2% more accurate than the VOC07 training set. From the comparison of accuracy, we can
see that our EFFM effectively classify and localize object proposals, and multi-scale dilation RPN
effectively generate object proposals.

Table 1. Detection accuracy (test dataset: VOC2007). We extract 300 object proposals, the training sets
are PASCAL VOC07 trainval and PASCAL VOC07 + 12 trainval respectively.

CNN Model Proposals mAP (VOC07) (%) mAP (VOC07 + VOC12) (%)

ZF 300 59.01 60.7
VGG_M_1024 300 60.27 62.19

GoogLeNet 300 69.8 72.6
VGG16 300 69.45 72.08

Next, we will analyze the operations and model size of each neural network. Here, we do not
calculate the runtime directly, mainly because Caffe does not provide good support for some neural
computing modules, such as groups and deconvolution. Therefore, theoretical operations should be
a better comparison. At the same time, we mainly calculate the sum of multiply-add because this is
the main part of operations on neural networks. The x-coordinate of Figure 6 shows the operations.
As shown in Figure 6, the operations of our structure are only 30.5 G-Ops and similar to the Faster
RCNN based on VGG_M_1024 (25.72 G-Ops) and only half of the Faster RCNN based on VGG16
(51.8 G-Ops). From the experimental results, we can see that our EFFM greatly reduced the number
of operations.

In Figure 6, the size of the blobs is proportional to the model size. Model size represents the
number of parameters in each network. A legend is described in the bottom right corner, spanning
from 20 × 106 to 500 × 106 bytes. Model size mainly comes from the size of the Caffemodel. As we can
see from Figure 6, the model size of Faster RCNN based on ZFNet, VGG_CNN_M_1024, and VGG16,
which use a large number of fully connected layers, is of size 227M, 334M, 523M, respectively, and go
far beyond our network structure. They consume lots of memory and storage space, while our structure
is only 156 M, one third of the Faster RCNN based on VGG16. From the experimental results, we can
see that our EFFM greatly reduced the number of parameters.

Next, we will analyze speedup rate and compression ratio of our network structure based on the
above experimental results. Compared with Faster RCNN based on VGG16, the speedup rate of our
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network structure is approximately 1.7. This result is calculated based on the operations, not actual
runtime. The specific runtime will be discussed in Section 4.2. Our network structure’s compression
ratio is about 3.35 compared with the Faster RCNN based on VGG16. This result is calculated based
on the size of the Caffemodel.

From Figure 6, we can see there exists a positive correlation between operations and model size.
Faster RCNN based on VGG16 and ZFNet, whose operations and model size are quite enormous
relative to detection accuracy, are not efficient enough. According to previous experience, the larger
network has better detection accuracy. However, from our experimental results and analysis, we can
greatly reduce the number of operations and parameters without losing accuracy by using an efficient
feature fusion module and multi-scale dilation RPN.

20 25 30 35 40 45 50 55
operations[G-Ops]

60
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72
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de
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ct
io

n 
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cu
ra

cy
[%

]

20M 50M 100M 300M 500M
ZF

VGG_M_1024

GoogLeNet VGG16

Figure 6. Comparison of operations and model size. This chart show the comparison between detection
accuracy, operations and parameters. ZF, VGG_M_1024, VGG16 and GoogLeNet are feature extractors
and represent corresponding object detection algorithms. ZF, VGG_M_1024, VGG16 are based on the
Faster RCNN. GoogLeNet represents our network model.

Figure 7a compares power consumption in the forward calculation process. The experimental results
were recorded every second. We used a NVIDIA TitanX graphics card (Santa Clara, CA, USA). Hundreds
of experimental data were obtained. The final results consist of average value. From Figure 7a, we can
see that the power consumption of Faster RCNN based on VGG16 is relatively high, about 165 W.
In addition, our network structure maintains a lower level, only about 137 W. Due to the high power
consumption of the NVIDIA TitanX, the power consumption can be significantly reduced with a low
power NVIDIA Jetson TK1 or Field Programmable Gate Array (FPGA). Here, we only make a relative
comparison based on our hardware platform.

Next, we will analyze the parameter utilization further. We adopted accuracy contribution per
unit parameters (Acpup) to qualitatively analyze the relationship between detection accuracy and the
number of parameters. Acpup is the ratio of detection accuracy to the number of parameters, and its
unit is percent per Megabit (%/M). Figure 7b shows the comparison of Acpup among different network
structures. As can be seen from Figure 7b, parameter utilization of our structure is much higher than
other models, about 0.465. Furthermore, Faster RCNN based on VGG16 is the lowest, just 0.138. From
the comparison of two figures, we can find that power consumption is a negative correlation with
parameter utilization. Figure 8 mainly shows the comparison of memory usage. Here, the main
reference to the experimental data is memory usage of the graphics card in the forward calculation
process. Our network structure’s memory usage is about 3000 M, much less than Faster RCNN based
on VGG16. Since memory optimization of Caffe is not good enough. In fact, we can reduce memory
usage further according to the specific network structure and hardware during actual deployment.
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From the above experimental analysis, we can see that our network structure can achieve good
progress in terms of power consumption, parameter utilization and memory usage compared with the
Faster RCNN.
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Figure 7. The relationship between power consumption and parameter utilization. (a) power consumption:
comparison of power consumption with various network structures; (b) parameter utilization: comparison
of parameter utilization with various network structures.
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Figure 8. Comparison of memory usage (forward calculation process) with various network structures.

4.2. Comparison with Other Two-Stage Detectors

Here, we will make a comparison with other two-stage detectors and analyze similarities and
differences. Two-stage detectors are mainly divided into feature extractor, object proposal network
and feature fusion module. We mainly discuss them based on these three parts.

As can be seen from Table 2, compared to our efficient feature fusion module (EFFM), NoCs uses
one or two convolutional layers with 256 channels and 3 × 3 kernel, plus two fully connected layers
with 4096 channels. NoCs explored different design methods of convolutional neural networks in the
feature fusion module. HyperNet has achieved higher detection accuracy by designing a hyper feature
in the region proposal network. However, due to the large number of operations and parameters in
the hyper feature and feature fusion module, it runs slower. The HyperNet also uses convolutional
layers plus large fully connected layers in the feature fusion module, like NoCs. The Faster RCNN
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only adopts the last layer of the feature extractor to generate proposals in the region proposal network.
The feature fusion module uses two large fully connected layers of size 4096 × 4096.

As can be seen from Table 3, our network has achieved a good balance between accuracy, speed
and model size. Our detection accuracy is 72.6%, only second to HyperNet (74.8%). The runtime of
our network structure is about 11 frames per second, which is higher than other two-stage detectors.
Moreover, because Caffe does not provide good support for some neural computing units (e.g., grouped
convolution, grouped fully connected layers) and our network’s operations are only about half of other
network structures, our structure’s runtime can optimize further. Our network structure’s model size
is only 156 M, which is much smaller than other detectors.

Table 2. Comparison of network structures with other two-stage detectors. We mainly divide two-stage
detectors into three parts: feature extractor, proposal network and feature fusion module.

Detector Feature Extractor Proposal Network Feature Fusion

Our Network GoogLeNet multi-scale dilation RPN EFFM
NoCs (1) GoogLeNet RPN c256-f4096-f4096-f21
NoCs (2) GoogLeNet RPN c256-c256-f4096-f4096-f21

Faster RCNN VGG16 RPN f4096-f4096-f21
HyperNet VGG16 Hyper feature c256-f4096-f4096-f21

Table 3. Comparison of operations, fps and model size with other two-stage detectors. The Detector
corresponds to the network structure in Table 2, respectively. We trained on PASCAL VOC07 + 12
trainval set and tested on PASCAL VOC2007 test set. The mAP refers to mean average precision.
The fps means frame per second.

Detector mAP (%) Operations (G-Ops) fps (s) Model Size (M)

Our Network 72.6 30.5 11 156
NoCs (1) 72.6 58.3 7 298
NoCs (2) 68.9 66.97 6 300

Faster RCNN 72.08 51.8 7 523
HyperNet 74.8 - 5 -

5. Conclusions

In order to solve the low efficiency problem of object detection algorithms based on convolutional
neural networks, this paper proposed an effective feature fusion module after an ROI pooling layer and
multi-scale dilation region proposal network. We reduced a large number of operations and parameters
while improving detection accuracy simultaneously and achieved a good trade-off in terms of detection
accuracy, operations and parameters. We also analyzed the detection accuracy, operations, model size,
speedup rate, compression ratio, power consumption, parameter utilization, and memory usage of
various network structures. In many aspects, we surpassed other two-stage detectors. However,
there are still some issues that need further study on achieving a higher compression ratio and giving
full play to a speedup rate for specific hardware. In the future, we will continue to research the method
of model compression (e.g., combine channel pruning [21] and weight pruning [20]) and deploy to
specific hardware (e.g., Nvidia Jetson TK1, FPGA even Advanced RISC Machine (ARM)) so that object
detection algorithms based on neural networks can be more widely applied on mobile devices and
embedded terminals without losing detection accuracy.
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