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Abstract: This article is based on new developments on a neutrosophic triplet group (NTG) and
applications earlier introduced in 2016 by Smarandache and Ali. NTG sprang up from neutrosophic
triplet set X: a collection of triplets (b, neut(b), anti(b)) for an b ∈ X that obeys certain axioms
(existence of neutral(s) and opposite(s)). Some results that are true in classical groups were
investigated in NTG and were shown to be either universally true in NTG or true in some peculiar
types of NTG. Distinguishing features between an NTG and some other algebraic structures such as:
generalized group (GG), quasigroup, loop and group were investigated. Some neutrosophic triplet
subgroups (NTSGs) of a neutrosophic triplet group were studied. In particular, for any arbitrarily
fixed a ∈ X, the subsets Xa = {b ∈ X : neut(b) = neut(a)} and ker fa = {b ∈ X| f (b) = neut( f (a))}
of X, where f : X → Y is a neutrosophic triplet group homomorphism, were shown to be NTSG and
normal NTSG, respectively. Both Xa and ker fa were shown to be a-normal NTSGs and found to
partition X. Consequently, a Lagrange-like formula was found for a finite NTG X; |X| = ∑

a∈X
[Xa :

ker fa]| ker fa| based on the fact that | ker fa|
∣∣|Xa|. The first isomorphism theorem X/ ker f ∼= Im f

was established for NTGs. Using an arbitrary non-abelian NTG X and its NTSG Xa, a Bol structure
was constructed. Applications of the neutrosophic triplet set, and our results on NTG in relation to
management and sports, are highlighted and discussed.
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1. Introduction

1.1. Generalized Group

Unified gauge theory has the algebraic structure of a generalized group abstrusely, in its physical
background. It has been a challenge for physicists and mathematicians to find a desirable unified
theory for twistor theory, isotopies theory, and so on. Generalized groups are instruments for
constructions in unified geometric theory and electroweak theory. Completely simple semigroups
are precisely generalized groups (Araujo et al. [1]). As recorded in Adeniran et al. [2], studies on
the properties and structures of generalized groups have been carried out in the past, and these have
been extended to smooth generalized groups and smooth generalized subgroups by Agboola [3,4],
topological generalized groups by Molaei [5], Molaei and Tahmoresi [6], and quotient space of
generalized groups by Maleki and Molaei [7].
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Definition 1 (Generalized Group(GG)). A generalized group X is a non-void set with a binary operation
called multiplication obeying the set of rules given below.

(i) (ab)c = a(bc) for all a, b, c ∈ X.
(ii) For each a ∈ X there is a unique e(a) ∈ X such that ae(a) = e(a)a = a (existence and uniqueness of

identity element).
(iii) For each a ∈ X, there is a−1 ∈ X such that aa−1 = a−1a = e(a) (existence of inverse element).

Definition 2. Let X be a non-void set. Let (·) be a binary operation on X. Whenever a · b ∈ X for all a, b ∈ X,
then (X, ·) is called a groupoid.

Whenever the equation c · x = d (or y · c = d) have unique solution with respect to x (or y) i.e., satisfies
the left (or right) cancellation law, then (X, ·) is called a left (or right) quasigroup. If a groupoid (X, ·) is both
a left quasigroup and right quasigroup, then it is called a quasigroup. If there is an element e ∈ X called the
identity element such that for all a ∈ X, a · e = e · a = a, then a quasigroup (X, ·) is called a loop.

Definition 3. A loop is called a Bol loop whenever it satisfies the identity

((ab)c)b = a((bc)b).

Remark 1. One of the most studied classes of loops is the Bol loop.

For more on quasigroups and loops, interested readers can check [8–15].
A generalized group X has the following properties:

(i) For each a ∈ X, there is a unique a−1 ∈ X.
(ii) e(e(a)) = e(a) and e(a−1) = e(a) if a ∈ X.

(iii) If X is commutative, then X is a group.

1.2. Neutrosophic Triplet Group

Neutrosophy is a novel subdivision of philosophy that studies the nature, origination, and ambit of
neutralities, including their interaction with ideational spectra. Florentin Smarandache [16] introduced
the notion of neutrosophic logic and neutrosophic sets for the first time in 1995. As a matter of fact,
the neutrosophic set is the generalization of classical sets [17], fuzzy sets [18], intuitionistic fuzzy
sets [17,19], and interval valued fuzzy sets [17], to cite a few. The growth process of neutrosophic
sets, fuzzy sets, and intuitionistic fuzzy sets are still evolving, with diverse applications. Some recent
research findings in these directions are [20–27].

Smarandache and Ali [28] were the first to introduce the notion of the neutrosophic triplet, which
they had earlier talked about at a conference. These neutrosophic triplets were used by them to
introduce the neutrosophic triplet group, which differs from the classical group both in fundamental
and structural properties. The distinction and comparison of the neutrosophic triplet group with the
classical generalized group were given. They also drew a brief outline of the potential applications
of the neutrosophic triplet group in other research fields. For discussions of results on neutrosophic
triplet groups, neutrosophic quadruples, and neutrosophic duplets of algebraic structures, as well as
new applications of neutrosophy, see Jaiyéo. lá and Smarandache [29]. Jaiyéo. lá and Smarandache [29]
were the first to introduce and study inverse property neutrosophic triplet loops with applications to
cryptography for the first time.
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Definition 4 (Neutrosophic Triplet Set-NTS). Let X be a non-void set together with a binary operation ?

defined on it. Then X is called a neutrosophic triplet set if, for any a ∈ X, there is a neutral of ‘a’ denoted by
neut(a) (not necessarily the identity element) and an opposite of ‘a’ denoted by anti(a), with neut(a), anti(a) ∈
X such that

a ? neut(a) = neut(a) ? a = a and a ? anti(a) = anti(a) ? a = neut(a).

The elements a, neut(a) and anti(a) are together called neutrosophic triplet, and represented by
(a, neut(a), anti(a)).

Remark 2. For an a ∈ X, each of neut(a) and anti(a) may not be unique. In a neutrosophic triplet set (X, ?),
an element b (or c) is the second (or third) component of a neutrosophic triplet if a, c ∈ X (a, b ∈ X) such that
a ? b = b ? a = a and a ? c = c ? a = b. Thus, (a, b, c) is a neutrosophic triplet.

Example 1 (Smarandache and Ali [28]). Consider (Z6,×6) such that Z6 = {0, 1, 2, 3, 4, 5} and ×6 is
multiplication in modulo 6. (2, 4, 2), (4, 4, 4), and (0, 0, 0) are neutrosophic triplets, but 3 will not give rise to a
neutrosophic triplet.

Definition 5 (Neutrosophic Triplet Group—NTG). Let (X, ?) be a neutrosophic triplet set. Then (X, ?) is
referred to as a neutrosophic triplet group if (X, ?) is a semigroup. Furthermore, if (X, ?) obeys the commutativity
law, then (X, ?) is referred to as a commutative neutrosophic triplet group.

Let (X, ?) be a neutrosophic triplet group. Whenever neut(ab) = neut(a)neut(b) for all a, b ∈ X,
then X is referred to as a normal neutrosophic triplet group.

Let (X, ?) be a neutrosophic triplet group and let H ⊆ X. H is referred to as a neutrosophic triplet
subgroup (NTSG) of X if (H, ?) is a neutrosophic triplet group. Whence, for any fixed a ∈ X, H is called
a-normal NTSG of X, written H

a
/ X if ay anti(a) ∈ H for all y ∈ H.

Remark 3. An NTG is not necessarily a group. However, a group is an NTG where neut(a) = e, the general
identity element for all a ∈ X, and anti(a) is unique for each a ∈ X.

Example 2 (Smarandache and Ali [28]). Consider (Z10,⊗) such that c⊗ d = 3cd mod 10. (Z10,⊗) is a
commutative NTG but neither a GG nor a classical group.

Example 3 (Smarandache and Ali [28]). Consider (Z10, ?) such that c ? d = 5c + d mod 10. (Z10, ?) is a
non-commutative NTG but not a classical group.

Definition 6 (Neutrosophic Triplet Group Homomorphism). Let f : X → Y be a mapping such that X
and Y are two neutrosophic triplet groups. Then f is referred to as a neutrosophic triplet group homomorphism
if f (cd) = f (c) f (d) for all c, d ∈ X. The kernel of f at a ∈ X is defined by

ker fa = {x ∈ X : f (x) = neut( f (a))}.

The Kernel of f is defined by
ker f =

⋃
a∈X

ker fa

such that fa = f |Xa , where Xa = {x ∈ X : neut(x) = neut(a)}.

Remark 4. The definition of neutrosophic triplet group homomorphism above is more general than that
in Smarandache and Ali [28]. In Theorem 5, it is shown that, for an NTG homomorphism f : X → Y,
f (neut(a)) = neut( f (a)) and f (anti(a)) = anti( f (a)) for all a ∈ X.
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The present work is a continuation of the study of a neutrosophic triplet group (NTG) and its
applications, which was introduced by Smarandache and Ali [28]. Some results that are true in classical
groups were investigated in NTG and will be proved to be either generally true in NTG or true in
some classes of NTG. Some applications of the neutrosophic triplet set, and our results on NTG in
relation to management and sports will be discussed.

The first section introduces GG and NTG and highlights existing results that are relevant to
the present study. Section 2 establishes new results on algebraic properties of NTGs and NTG
homomorphisms, among which are Lagrange’s Theorem and the first isomorphism theorem,
and presents a method of the construction of Bol algebraic structures using an NTG. The third section
describes applications of NTGs to human management and sports.

2. Main Results

We shall first establish the relationship among generalized groups, quasigroups, and loops with
a neutrosophic triplet group assumed.

Lemma 1. Let X be a neutrosophic triplet group.

1. X is a generalized group if it satisfies the left (or right) cancellation law or X is a left (or right) quasigroup.
2. X is a generalized group if and only if each element x ∈ X has a unique neut(x) ∈ X.
3. Whenever X has the cancellation laws (or is a quasigroup), then X is a loop and group.

Proof. 1. Let x have at least two neutral elements, say neut(x), neut(x)′ ∈ X. Then xx = xx ⇒
xx anti(x) = xx anti(x)⇒ x neut(x) = x neut(x)′

left quasigroup
=⇒

left cancellation law
neut(x) = neut(x)′. Therefore,

X is a generalized group. Similarly, X is a generalized group if it is has the right cancellation law
or if it is a right quasigroup.

2. This follows by definition.
3. This is straightforward because every associative quasigroup is a loop and group.

2.1. Algebraic Properties of Neutrosophic Triplet Group

We now establish some new algebraic properties of NTGs.

Theorem 1. Let X be a neutrosophic triplet group. For any a ∈ X, anti
(
anti(a)

)
= a.

Proof. anti
(
anti(a)

)
anti(a) = neut

(
anti(a)

)
= neut(a) by Theorem 1 ([29]). After multiplying by a,

we obtain [
anti

(
anti(a)

)
anti(a)

]
a = neut(a)a = a. (1)

LHS = anti
(
anti(a)

)(
anti(a)a

)
= anti

(
anti(a)

)
neut(a)

= anti
(
anti(a)

)
neut

(
anti(a)

)
= anti

(
anti(a)

)
neut

(
anti

(
anti(a)

))
= anti

(
anti(a)

)
.

(2)

Hence, based on Equations (1) and (2), anti
(
anti(a)

)
= a.

Theorem 2. Let X be a neutrosophic triplet group such that the left cancellation law is satisfied,
and neut(a) = neut

(
a anti(b)

)
if and only if a anti(b) = a. Then X is an idempotent neutrosophic triplet

group if and only if neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.

Proof. neut(a)anti(b) = anti(b)neut(a) ⇔ (a neut(a))anti(b) = a anti(b)neut(a) ⇔ a anti(b) =

a anti(b)neut(a) ⇔ neut(a) = neut
(
a anti(b)

)
⇔ a anti(b) = a ⇔ a anti(b)b = ab ⇔ a neut(b) =

ab⇔ anti(a)a neut(b) = anti(a)ab⇔ neut(a)neut(b) = neut(a)b⇔ neut(b) = b⇔ b = bb.
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Theorem 3. Let X be a normal neutrosophic triplet group in which neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.
Then, anti(ab) = anti(b)anti(a) ∀ a, b ∈ X.

Proof. Since anti(ab)(ab) = neut(ab), then by multiplying both sides of the equation on the right by
anti(b)anti(a), we obtain[

anti(ab)ab
]
anti(b)anti(a) = neut(ab)anti(b)anti(a). (3)

Going by Theorem 1([29]),[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)a

(
b anti(b)

)
anti(a) = anti(ab)a(neut(b)anti(a))

= anti(ab)(a anti(a))neut(b) = anti(ab)
(
neut(a)neut(b)

)
= anti(ab)neut(ab) = anti(ab)neut

(
anti(ab)) = anti(ab).

(4)

Using Equations (3) and (4), we obtain[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)⇒

neut(ab)
(
anti(b)anti(a)

)
= anti(ab)⇒ anti(ab) = anti(b)anti(a).

It is worth characterizing the neutrosophic triplet subgroup of a given neutrosophic triplet group
to see how a new NTG can be obtained from existing NTGs.

Lemma 2. Let H be a non-void subset of a neutrosophic triplet group X. The following are equivalent.

(i) H is a neutrosophic triplet subgroup of X.
(ii) For all a, b ∈ H, a anti(b) ∈ H.

(iii) For all a, b ∈ H, ab ∈ H, and anti(a) ∈ H.

Proof. (i)⇒ (ii) If H is an NTSG of X and a, b ∈ H, then anti(b) ∈ H. Therefore, by closure property,
a anti(b) ∈ H ∀ a, b ∈ H.

(ii)⇒ (iii) If H 6= ∅, and a, b ∈ H, then we have b anti(b) = neut(b) ∈ H, neut(b)anti(b) = anti(b) ∈ H,
and ab = a anti(anti(b)) ∈ H, i.e., ab ∈ H.

(iii)⇒ (i) H ⊆ X, so H is associative since X is associative. Obviously, for any a ∈ H, anti(a) ∈ H.
Let a ∈ H, then anti(a) ∈ H. Therefore, a anti(a) = anti(a)a = neut(a) ∈ H. Thus, H is an
NTSG of X.

Theorem 4. Let G and H be neutrosophic triplet groups. The direct product of G and H defined by

G× H = {(g, h) : g ∈ G and h ∈ H}

is a neutrosophic triplet group under the binary operation ◦ defined by

(g1, h1) ◦ (g2, h2) = (g1g2, h1h2).

Proof. This is simply done by checking the axioms of neutrosophic triplet group for the pair (G×H, ◦),
in which case neut(g, h) =

(
neut(g), neut(h)

)
and anti(g, h) =

(
anti(g), anti(h)

)
.

Lemma 3. Let H = {Hi}i∈Ω be a family of neutrosophic triplet subgroups of a neutrosophic triplet group
X such that

⋂
i∈Ω

Hi 6= ∅. Then
⋂

i∈Ω

Hi is a neutrosophic triplet subgroup of X.
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Proof. This is a routine verification using Lemma 2.

2.2. Neutrosophic Triplet Group Homomorphism

Let us now establish results on NTG homomorphisms, its kernels, and images, as well as
a Lagrange-like formula and the First Isomorphism Theorem for NTGs.

Theorem 5. Let f : X → Y be a homomorphism where X and Y are two neutrosophic triplet groups.

1. f (neut(a)) = neut( f (a)) for all a ∈ X.
2. f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is a neutrosophic triplet subgroup of X, then f (H) is a neutrosophic triplet subgroup of Y.
4. If K is a neutrosophic triplet subgroup of Y, then ∅ 6= f−1(K) is a neutrosophic triplet subgroup of X.
5. If X is a normal neutrosophic triplet group and the set X f = {(neut(a), f (a)) : a ∈ X} with the product

(neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)), then

X f is a neutrosophic triplet group.

Proof. Since f is an homomorphism, f (ab) = f (a) f (b) for all a, b ∈ X.

1. Place b = neut(a) in f (ab) = f (a) f (b) to obtain f
(
a neut(a)

)
= f (a) f (neut(a)) ⇒ f (a) =

f (a) f (neut(a)). Additionally, place b = neut(a) in f (ba) = f (b) f (a) to obtain f
(
neut(a)a

)
=

f (neut(a)) f (a)⇒ f (a) = f (neut(a)) f (a). Thus, f (neut(a)) = neut( f (a)) for all a ∈ X.
2. Place b = anti(a) in f (ab) = f (a) f (b) to obtain f

(
a anti(a)

)
= f (a) f (anti(a)) ⇒

f (neut(a)) = f (a) f (anti(a)) ⇒ neut( f (a)) = f (a) f (anti(a)). Additionally, place b = anti(a)
in f (ba) = f (b) f (a) to obtain f

(
anti(a)a

)
= f (anti(a)) f (a) ⇒ f (neut(a)) = f (a) f (anti(a)) ⇒

neut( f (a)) = f (anti(a)) f (a). Thus, f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is an NTSG of G, then f (H) = { f (h) ∈ Y : h ∈ H}. We shall prove that f (H) is an NTSG of

Y by Lemma 2.
Since f (neut(a)) = neut( f (a)) ∈ f (H) for a ∈ H, f (H) 6= ∅. Let a′, b′ ∈ f (H). Then a′ = f (a)
and b′ = f (b). Thus, a′ anti(b′) = f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ f (H).
Therefore, f (H) is an NTSG of Y.

4. If K is a neutrosophic triplet subgroup of Y, then ∅ 6= f−1(K) = {a ∈ X : f (a) ∈ K}. We shall
prove that f (H) is an NTSG of Y by Lemma 2.
Let a, b ∈ f−1(K). Then a′, b′ ∈ K such that a′ = f (a) and b′ = f (b). Thus, a′ anti(b′) =

f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ K ⇒ a anti(b) ∈ f−1(K). Therefore, f−1(K) is
an NTSG of X.

5. Given the neutrosophic triplet group X and the set X f = {(neut(a), f (a)) : a ∈ X} with the
product (neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)). X f is a groupoid.
(neut(a), f (a))(neut(b), f (b)) · (neut(z), f (z)) = (neut(ab), f (ab))(neut(z), f (z)) =

(neut(abz), f (abz))
= (neut(a), f (a))(neut(bz), f (bz)) = (neut(a), f (a)) · (neut(b), f (b))(neut(z), f (z)).
Therefore, X f is a semigroup.
For (neut(a), f (a)) ∈ X f , let neut(neut(a), f (a)) =

(
neut(neut(a)), neut( f (a))

)
. Then

neut(neut(a), f (a)) =
(
neut(a), ( f (neut(a))

)
∈ X f . Additionally, let anti(neut(a), f (a)) =(

anti(neut(a)), anti( f (a))
)
. Then anti(neut(a), f (a)) =

(
neut(a), f (anti(a))

)
∈ X f .

Thus, (neut(a), f (a))neut(neut(a), f (a)) = (neut(a), f (a))
(
neut(a), ( f (neut(a))

)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (neut(a))

)
=

(
neut(a anti(a)), f (a neut(a))

)
=(

neut(neut(a)), f (a neut(a))
)

= (neut(a), f (a)) ⇒ (neut(a), f (a))neut(neut(a), f (a)) =

(neut(a), f (a)) and similarly, neut(neut(a), f (a))(neut(a), f (a)) = (neut(a), f (a)).
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On the other hand, (neut(a), f (a))anti(neut(a), f (a)) = (neut(a), f (a)) ·
(
neut(a), f (anti(a))

)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (anti(a))

)
=

(
neut(a anti(a)), f (a anti(a))

)
=(

neut(neut(a)), f (neut(a))
)
=
(
neut(a), ( f (neut(a))

)
= neut(neut(a), f (a)) ⇒ (neut(a), f (a)) ·

anti(neut(a), f (a)) = neut(neut(a), f (a)) and similarly, anti(neut(a), f (a)) · (neut(a), f (a)) =

neut(neut(a), f (a)).

Therefore, X f is a neutrosophic triplet group.

Theorem 6. Let f : X → Y be a neutrosophic triplet group homomorphism.

1. ker fa
a
/ X.

2. Xa
a
/ X.

3. Xa is a normal neutrosophic triplet group.
4. anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.
5. Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, |Xa| = ∑c∈Xa |c ker fa| = [Xa : ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the
index of ker fa in Xa, i.e., the number of distinct left cosets of ker fa in Xa.

7. X =
⋃

a∈X
Xa.

8. If X is finite, |X| = ∑
a∈X

[Xa : ker fa]| ker fa|.

Proof. 1. f (neut(a)) = neut( f (a)) = neut(neut( f (a))) = neut( f (neut(a))) ⇒ neut(a) ∈ ker fa ⇒
ker fa 6= ∅. Let c, d ∈ ker fa, then f (c) = f (d) = neut( f (a)). We shall use Lemma 2.
f (c anti(d)) = f (c) f (anti(d)) = f (c)anti( f (d)) = neut( f (a))anti(neut( f (a))) =

neut( f (a))neut( f (a)) = neut( f (a))⇒ c anti(d) ∈ ker fa.
Thus, ker fa is a neutrosophic triplet subgroup of X. For the a-normality, let d ∈
ker fa, then f (d) = neut( f (a)). Therefore, f (ad anti(a)) = f (a) f (d) f (anti(a)) =

f (a)neut( f (a))anti( f (a)) = f (a)anti( f (a)) = neut( f (a))⇒ ad anti(a) ∈ ker fa for all d ∈ ker fa.
Therefore, ker fa

a
/ X.

2. Xa = {c ∈ X : neut(c) = neut(a)}. neut(neut(a)) = neut(a)⇒ neut(a) ∈ Xa. Therefore, Xa 6= ∅.
Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). (cd)neut(a) = c(d neut(a)) = c(d neut(d)) =
cd, and neut(a)(cd) = (neut(a)c)d = (neut(c)c)d = cd. Therefore, neut(cd) = neut(a).
neut(anti(c)) = anti(neut(c)) = anti(neut(a)) = neut(a) ⇒ anti(c) ∈ Xa. Thus, Xa is
a neutrosophic triplet subgroup of X.
neut(anti(a)) = neut(a) ⇒ anti(a) ∈ Xa. Therefore, (ac anti(a))neut(a) =

(ac)
(
anti(a)neut(a)

)
= ac anti(a), and neut(a)(ac anti(a)) = neut(a)a(c anti(a)) = ac anti(a).

Thus, neut(ac anti(a)) = neut(a)⇒ ac anti(a) ∈ Xa. Therefore, Xa
a
/ X.

3. Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). Therefore, neut(cd) = neut(a) =

neut(a)neut(a) = neut(c)neut(d). Thus, Xa is a normal NTG.
4. For all c, d ∈ Xa, neut(c)anti(d) = neut(a)anti(d) = neut(d)anti(d) = anti(d) =

anti(d)neut(d) = anti(d)neut(a) = anti(d). Therefore, based on Point 3 and Theorem 3,
anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.

5. Define a relation � on Xa as follows: c � d if anti(c)d ∈ ker fa for all c, d ∈ Xa. anti(c)c =

neut(c) = neut(a)⇒ anti(c)c ∈ ker fa ⇒ c � c. Therefore, � is reflexive.

c � d ⇒ anti(c)d ∈ ker fa
by 4.⇒ anti(anti(c)d) ∈ ker fa ⇒ anti(d)c ∈ ker fa ⇒ d � c. Therefore,

� is symmetric.
c � d, d � z ⇒ anti(c)d, anti(d)z ∈ ker fa ⇒ anti(c)d anti(d)z = anti(c)neut(d)z =

anti(c)neut(a)z = anti(c)z ∈ ker fa ⇒ c � z. Therefore, � is transitive and � is an
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equivalence relation.
The equivalence class [c] fa = {d : anti(c)d ∈ ker fa} = {d : c anti(c)d ∈ c ker fa} = {d :
neut(c)d ∈ c ker fa} = {d : neut(a)d ∈ c ker fa} = {d : d ∈ c ker fa} = c ker fa. Therefore,
Xa/ �= {[c] fa}c∈Xa = {c ker fa}c∈Xa .
Thus, Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, then | ker fa| = |c ker fa| for all c ∈ Xa. Thus, |Xa| = ∑c∈Xa |c ker fa| = [Xa :
ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the index of ker fa in Xa, i.e., the number of
distinct left cosets of ker fa in Xa.

7. Define a relation ∼ on X: c ∼ d if neut(c) = neut(d). ∼ is an equivalence relation on X, so
X/ ∼= {Xc}c∈X and, therefore, X =

⋃
a∈X

Xa.

8. Hence, based on Point 7, if X is finite, then |X| = ∑
a∈X
|Xa| = ∑

a∈X
[Xa : ker fa]| ker fa|.

Theorem 7. Let a ∈ X and f : X → Y be a neutrosophic triplet group homomorphism. Then

1. f is a monomorphism if and only if ker fa = {neut(a)} for all a ∈ X;
2. the factor set X/ ker f =

⋃
a∈X

Xa/ ker fa is a neutrosophic triplet group (neutrosophic triplet factor group)

under the operation defined by
c ker fa · d ker fb = (cd) ker fab.

Proof. 1. Let ker fa = {neut(a)} and let c, d ∈ X. If f (c) = f (d), this implies that f (c anti(d)) =
f (d)anti( f (d)) = f (d anti( f (d)))⇒ f (c anti(d)) = neut( f (d))⇒ c anti(d) ∈ ker fd ⇒

c anti(d) = neut(d) = neut(anti(d)). (5)

Similarly, f (anti(d)c) = neut( f (d))⇒ anti(d)c ∈ ker fd ⇒

anti(d)c = neut(anti(d)). (6)

Using Equations (5) and (6), c = anti(anti(d)) = d. Therefore, f is a monomorphism.

Conversely, if f is mono, then f (d) = f (c) ⇒ d = c. Let k ∈ ker fa, a ∈ X.
Then f (k) = neut( f (a)) = f (neut(a))⇒ k = neut(a). Therefore, ker fa = {neut(a)} for all
a ∈ X.

2. Let c ker fa, d ker fb, z ker fc ∈ X/ ker f =
⋃

a∈X Xa/ ker fa.

Groupoid: Based on the multiplication c ker fa · d ker fb = (cd) ker fab, the factor set X/ ker f is
a groupoid.

Semigroup:
(
c ker fa · d ker fb

)
· z ker fc = (cdz) ker fabc = c ker fa

(
d ker fb · z ker fc

)
.

Neutrality: Let neut(c ker fa) = neut(c) ker fneut(a). Then c ker fa · neut(c ker fa) = c ker fa ·
neut(c) ker fneut(a) = (c neut(c)) ker fa neut(a) = c ker fa and similarly, neut(c ker fa) ·
c ker fa = c ker fa.

Opposite: Let anti(c ker fa) = anti(c) ker fanti(a). Then c ker fa · anti(c ker fa) = c ker fa ·
anti(c) ker fanti(a) = (c anti(c)) ker fa anti(a) = neut(c) ker fneut(a). Similarly,
anti(c ker fa)) · c ker fa = neut(c) ker fneut(a).

∴
(
X/ ker f , ·

)
is an NTG.
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Theorem 8. Let φ : X → Y be a neutrosophic triplet group homomorphism. Then X/ ker φ ∼= Im φ.

Proof. Based on Theorem 6(7), X =
⋃

a∈X
Xa. Similarly, define a relation≈ on φ(X) = Im φ: φ(c) ≈ φ(d)

if neut(φ(c)) = neut(φ(d)). ≈ is an equivalence relation on φ(X), so φ(X)/ ≈= {φ(Xc)}c∈X and

Im φ =
⋃

c∈X
φ(Xc). It should be noted that Xa

a
/ X in Theorem 6(2).

Let φ̄a : Xa/ ker φa → φ(Xa) given by φ̄a(c ker φa) = φ(c). It should be noted that, by Theorem 6(1),

ker φa
a
/ X. Therefore, c ker φa = d ker φa ⇒ anti(d)c ker φa = anti(d)d ker φa = neut(d) ker φa =

ker φa ⇒ anti(d)c ker φa = ker φa ⇒ φ(anti(d)c) = neut(φ(a)) ⇒ anti(φ(d))φ(c) = neut(φ(a)) ⇒
φ(d)anti(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ neut(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ φ(neut(d))φ(c) =

φ(d)φ(neut(a)) ⇒ φ(neut(d) c)) = φ(d neut(a)) ⇒ φ(neut(a) c)) = φ(d neut(a)) ⇒ φ(neut(c) c)) =
φ(d neut(c))⇒ φ(c) = φ(d)⇒ φ̄a(c ker φa) = φ̄a(d ker φa). Thus, φ̄a is well defined.

φ̄a(c ker φa) = φ̄a(d ker φa)⇒ φ(c) = φ(d)⇒ anti(φ(d))φ(c) = anti(φ(d))φ(d) = neut(φ(d))⇒
φ(anti(d))φ(c) = neut(φ(d)) = φ(neut(d)) = φ(neut(a)) = neut(φ(a)) ⇒ φ(anti(d) c) =

neut(φ(a)) ⇒ anti(d) c ∈ ker φa ⇒ d anti(d) c ∈ d ker φa ⇒ neut(d) c ∈ d ker φa ⇒ neut(a) c ∈
d ker φa ⇒ c ∈ d ker φa

Theorem 6(1)
=⇒ c ker φa = d ker φa. This means that φ̄a is 1-1. φ̄a is obviously onto.

Thus, φ̄a is bijective.
Now, based on the above and Theorem 7(2), we have a bijection

Φ =
⋃

a∈X
φ̄a : X/ ker φ =

⋃
a∈X

Xa/ ker φa → Im φ = φ(X) =
⋃

a∈X
φ(Xa)

defined by Φ(c ker φa) = φ(c). Thus, if c ker φa, d ker φb ∈ X/ ker φ, then

Φ
(

c ker φa · d ker φb

)
= Φ

(
cd ker φab

)
= φ(cd) = φ(c)φ(d) = Φ

(
c ker φa

)
Φ
(
d ker φb

)
.

∴ X/ ker φ ∼= Im φ.

2.3. Construction of Bol Algebraic Structures

We now present a method of constructing Bol algebraic structures using an NTG.

Theorem 9. Let X be a non-abelian neutrosophic triplet group and let A = Xa × X for any fixed a ∈ X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. Let a, b, c ∈ A. By checking, it is true that a ◦ (b ◦ c) 6= (a ◦ b) ◦ c. Therefore, (A, ◦) is
non-associative. Xa is a normal neutrosophic triplet group by Theorem 6(3). A is a groupoid.

Let us now verify the Bol identity:

((a ◦ b) ◦ c) ◦ b = a ◦ ((b ◦ c) ◦ b)

LHS = ((a ◦ b) ◦ c) ◦ b =
(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.
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Following Theorem 6(4),

RHS = a ◦ ((b ◦ c) ◦ b) =(
h1h2h3h2, h2h3h2g1 anti

(
h2h3h2

)
h2h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) anti(h2)h2h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(h2)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(a)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)anti(h3)h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(h3)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(a)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.

Therefore, LHS = RHS. Hence, (A, ◦) is a Bol groupoid.

Corollary 1. Let H be a subgroup of a non-abelian neutrosophic triplet group X, and let A = H × X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. A subgroup H is a normal neutrosophic triplet group. The rest of the claim follows from
Theorem 9.

Corollary 2. Let H be a neutrosophic triplet subgroup (which obeys the cancellation law) of a non-abelian
neutrosophic triplet group X, and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. By Theorem 1(3), H is a subgroup of X. Hence, following Corollary 1, (A,◦) is a Bol groupoid.

Corollary 3. Let H be a neutrosophic triplet subgroup of a non-abelian neutrosophic triplet group X that has
the cancellation law and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol loop.

Proof. By Theorem 1(3), X is a non-abelian group and H is a subgroup of X. Hence, (A, ◦) is a loop
and a Bol loop by Theorem 9.
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3. Applications in Management and Sports

3.1. One-Way Management and Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people.
A working unit or subgroup with a leader ‘a’ is denoted by Xa.

neut(x) for any x ∈ X represents a co-worker (or co-workers) who has (have) a good (non-critical)
working relationship with x, while anti(x) represents a co-worker (or co-workers) whom x considers
as his/her personal critic(s) at work.

Hence, Xa can be said to include both critics and non-critics of each worker x. It should be
noted that in Xa, neut(a) = neut(x) for all x ∈ Xa. This means that every worker in Xa has a good
relationship with the leader ‘a’.

Thus, by Theorem 6(7)—X =
⋃

a∈X
Xa and |X| = Σa∈X |Xa|—the company or work place X can be

said to have a good division of labor for effective performance and maximum output based on the
composition of its various units (Xa). See Figure 1.

X (company)

Xa1

Working Unit Working Unit

Xa2

a2

Leader

neut(x) x anti(x) . . .

Xa3 . . .

Working Unit

Figure 1. One-way management and division of labor.

3.2. Two-Way Management Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people at
a location A and another company or work place consisting of people Y with |Y| number of people at
another location B. Assume that both companies are owned by the same person f . Hence, f : X → Y
can be considered as a movement (transfer) or working interaction between workers at A and at B.
The fact that f is a neutrosophic triplet group homomorphism indicates that the working interaction
between X and Y is preserved.

Let ‘a’ be a unit leader at A whose work correlates to another leader f (a) at B.
Then Ker fa represents the set of workers x in a unit at A under the leadership of ‘a’ such that there are
other, corresponding workers f (x) at B under the leadership of f (a). Here, f (x) = neut( f (a)) means
that workers f (x) at B under the leadership of f (a) are loyal and in a good working relationship.
The mapping fa shows that the operation of a subgroup leader (the operation is denoted by ‘a’) is
subject to the modus operandi of the owner of the two companies, where the owner is denoted by f .

The final formula |X| = ∑
x∈X

[Xa : ker fa]|ker fa| in Theorem 6(8) shows that the overall performance

of the set of people X is determined by how the unit leaders ‘a’ at A properly harmonize with the unit
leaders at B in the effective administration of ker fa and Xa (Figure 2).
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X (Company)

Xa1

Working Unit

ker f

ker fa1 ker fa2

a2

Leader

neut(x) x anti(x) . . .

ker fa3 . . .

Xa2 . . .

Location A

Location B

Company Owner f

Y (Company)

Im f

f (x) f (a1)

Leader

f (a2) . . .

Figure 2. Two-way management division of labor.

3.3. Sports

In the composition of a team, a coach can take Xa as the set of players who play in a particular
department (e.g., forward, middle field, or defence), where a is the leader of that department.
Let neut(x) represent player(s) whose performance is the same as that of player x, and let anti(x)
represent player(s) that can perform better than player x. It should be noted that the condition
neut(x) = neut(a) for all x ∈ Xa means that the department Xa has player(s) who are equal in
performance; i.e., those whose performance are equal to that of the departmental leader a. Hence,
a neutrosophic triplet (x, neut(x), anti(x)) is a triple from which a coach can make a choice of his/her
starting player and make a substitution. The neutrosophic triplet can also help a coach to make
the best alternative choice when injuries arise. For instance, in the goal keeping department (for
soccer/football), three goal keepers often make up the team for any international competition. Imagine
an incomplete triplet (x, neut(x), ?), i.e., no player is found to be better than x, which reduces to
a duplet.

Xa can also be used for grouping teams in competitions in the preliminaries. If x = team,
then anti(x) = teams that can beat x and neut(x) = teams that can play draw with x. Therefore,
neutrosophic triplet (x, neut(x), anti(x)) is a triplet with which competition organizers can draw teams
into groups for a balanced competition. The Fédération Internationale de Football Association (FIFA)
often uses this template in drawing national teams into groups for its competitions. Club teams from
various national leagues, to qualify for continental competitions (e.g., Union of European Football
Associations (UEFA) Champions League and Confederation of African Football (CAF) Champions
League), have to be among the five. This implies the application of duplets, triplets, quadruples,
etc. (Figure 3).
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x neut(x)

anti(x)

Figure 3. Sports.
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