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Abstract: In this manuscript, two generalizations of fuzzy sets, intuitionistic fuzzy sets and picture
fuzzy sets, known as spherical fuzzy sets and T-spherical fuzzy sets, are discussed and a numerical and
geometrical comparison among them is established. A T-spherical fuzzy set can model phenomena
like voting using four characteristic functions denoting the degree of vote in favor, abstinence,
vote in opposition, and refusal with an infinite domain, whereas an intuitionistic fuzzy set can
model only phenomena of yes or no types. First, in this manuscript, some similarity measures in
the frameworks of intuitionistic fuzzy sets and picture fuzzy sets are discussed. With the help of
some numerical results, it is discussed that existing similarity measures have some limitations and
could not be applied to problems where information is provided in T-spherical fuzzy environment.
Therefore, some new similarity measures in the framework of spherical fuzzy sets and T-spherical
fuzzy sets are proposed including cosine similarity measures, grey similarity measures, and set
theoretic similarity measures. With the help of some results, it was proved that the proposed
similarity measures are a generalization of existing similarity measures. The newly-defined similarity
measures were subjected to a well-known problem of building material recognition and the results
are discussed. A comparative study of new and existing similarity measures was established and
some advantages of the proposed work are discussed.

Keywords: intuitionistic fuzzy set; picture fuzzy set; spherical fuzzy set; T-spherical fuzzy set;
similarity measures; pattern recognition

1. Introduction

The study of fuzzy set (FS) theory was initiated in Reference [1] where the membership
degree s of an element of a set was defined by a characteristic function on a unit interval [0, 1]
and the non-membership degree could be obtained by subtracting membership grade form 1.
Atanassov [2] extended Zadeh’s concept of FS to intuitionistic fuzzy set (IFS) where the membership
and non-membership degrees, i.e., s and d, are defined independently but with a constraint that
their sum must belong to the interval [0, 1], i.e., sum(s, d) ∈ [0, 1]. Further, the term 1− sum(s, d)
was referred to as hesitancy degree. Due to the restriction of Atanassov’s model of IFS, values
cannot be assigned to its characteristic functions, as sometimes the sum (s, d) exceeds [0, 1] interval.
Therefore, Yager [3,4] proposed the framework of Pythagorean FSs, enlarging the domain of IFSs as
the constraint of Pythagorean FS becomes sum

(
s2, d2) ∈ [0, 1]. The domain of characteristic functions

of IFS and Pythagorean FSs are depicted in Figure 1. For some developments in these areas we refer
readers to References [5–10].
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Atanassov’s model of IFSs successfully improved Zadeh’s model of FSs, but in a scenario when 
there are more than two independent situations like in voting (vote in favor, abstinence, vote against 
and refusal), IFSs failed to describe the situation. Realizing this, in Reference [11], Cuong developed 
a structure known as a picture fuzzy set (PFS), having three characteristic functions denoted by ,  
and  with a condition that their sum must belong to [0,1], i.e., 	( , , ) ∈ [0,1]. The term 1 −	( , , ) was referred to as the refusal degree of an element of PFSs. The domain of characteristic 
functions of PFSs is depicted in Figure 2. For some relevant work one may refer to [12–17]. 
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PFSs extended the frameworks of FSs and IFSs, but still there is a limitation of this structure, i.e., 
the domain of PFSs is restricted and grades of characteristic functions cannot be assigned 
independently. Observing the structure of [2,3,11], Mahmood et al. [18] proposed a novel framework 
of spherical fuzzy set (SFS) as a generalization of PFSs by increasing the domain of PFSs. In the 
structure of SFSs the characteristic functions are denoted by ,  and  with a constraint that the 
sum of ,  and  may exceeded from the unit interval but their square must belong to the unit 
interval, i.e., 	( , , ) ∈ [0, 1]. This new constraint made the domain of SFSs larger than PFSs 
as depicted in Figure 3. Sometimes, if = 0.7, = 0.6 and = 0.9 is assumed, even squaring is not 
enough because (0.7, 0.6, 0.9) = 1.66 ≰ 1. To deal with such situations, Mahmood et al. [18] 
proposed a generalization of SFSs known as T-spherical fuzzy set (TSFS) which has no limitation at 
all as a TSFS is characterized by ,  and  with a condition that 	( , , ) ∈ [0, 1] where ∈ℤ . Regarding this new constraint, for a triplet (0.7, 0.6, 0.9)  and = 5 : (0.7 , 0.6 , 0.9 ) =

Figure 1. Comparison of spaces of intuitionistic fuzzy sets and Pythagorean fuzzy sets [9].

Atanassov’s model of IFSs successfully improved Zadeh’s model of FSs, but in a scenario when
there are more than two independent situations like in voting (vote in favor, abstinence, vote against
and refusal), IFSs failed to describe the situation. Realizing this, in Reference [11], Cuong developed a
structure known as a picture fuzzy set (PFS), having three characteristic functions denoted by s, i and d
with a condition that their sum must belong to [0, 1], i.e., sum (s, i, d) ∈ [0, 1]. The term 1− sum (s, i, d)
was referred to as the refusal degree of an element of PFSs. The domain of characteristic functions of
PFSs is depicted in Figure 2. For some relevant work one may refer to [12–17].
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Figure 2. Space of pictorial membership grades [18].

PFSs extended the frameworks of FSs and IFSs, but still there is a limitation of this structure, i.e.,
the domain of PFSs is restricted and grades of characteristic functions cannot be assigned independently.
Observing the structure of [2,3,11], Mahmood et al. [18] proposed a novel framework of spherical fuzzy set
(SFS) as a generalization of PFSs by increasing the domain of PFSs. In the structure of SFSs the characteristic
functions are denoted by s, i and d with a constraint that the sum of s, i and d may exceeded from the
unit interval but their square must belong to the unit interval, i.e., sum

(
s2, i2, d2) ∈ [0, 1]. This new

constraint made the domain of SFSs larger than PFSs as depicted in Figure 3. Sometimes, if s = 0.7, i = 0.6
and d = 0.9 is assumed, even squaring is not enough because sum(0.7, 0.6, 0.9) = 1.66 � 1. To deal
with such situations, Mahmood et al. [18] proposed a generalization of SFSs known as T-spherical fuzzy
set (TSFS) which has no limitation at all as a TSFS is characterized by s, i and d with a condition that
sum (sn, in, dn) ∈ [0, 1] where n ∈ Z. Regarding this new constraint, for a triplet (0.7, 0.6, 0.9) and n = 5:
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sum
(
0.75, 0.65, 0.95) = 0.83632 ∈ [0, 1]. This example supported the claim of Mahmood et al. indicating

that TSFS is a generalization of IFS, PFS and SFS having no limitations. A comparison of PFSs with SFSs
and TSFSs is shown in Figures 3–5.
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The aim of this article was to develop some similarity measures for the defined TSFSs. A similarity
measure provided the similarity degree of two objects i.e., how similar two objects are. The study of
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similarity measures in the framework of FSs [1] and IFSs [2] has an extensive history as it is widely applied
in cluster analysis [19,20], data mining [21,22], pattern recognition [23–29], information retrieval [30–32],
medical diagnosis [33], and multi-attribute decision making [34] etc. Due to its application in different
situations, considerable attention has been given to similarity measures. Xu and Chen [35] provided an
overview of similarity measures of IFSs, Xu discussed correlation coefficients for IFS [36], the authors of [37]
studied similarity measures of hesitant fuzzy sets (HFSs), Reference [14] investigated correlation coefficients
for PFSs, Reference [38] focused on applications of correlation coefficients, and Reference [14,39–41]
discussed several similarity and distance measures and studied some correlation coefficients for PFSs.

In this manuscript, it is observed that the similarity measures developed in References [28,37,40]
have some limitations and cannot be applied to problems where information is provided in T-spherical
fuzzy environment. To resolve this issue, some novel similarity measuring tools including cosine
similarity measures, set-theoretic similarity measures, and grey similarity measures are proposed for
TSFSs which are generalizations of the similarity measures developed in References [28,37,40]. It is also
proposed that existing similarity measures become special cases of the developed similarity measures
showing the novelty and diversity of proposed similarity measures. A building material recognition
problem was solved by applying the new similarity measures and the results are discussed.

This article is divided into different sections. In Section 1, some prerequisites of the proposed work
have been comparatively discussed. In Section 2, some very basic definitions are studied. In Section 3,
new similarity measures are defined including cosine similarity measures, set-theoretic similarity
measures and grey similarity measures. Section 4 is based on the application of proposed similarity
measures in pattern recognition where a building material recognition problem is solved. The article
ends with a comparative analysis of existing and new work along with some limitations of existing
work and advantages of the work proposed are discussed.

2. Preliminaries

In this section, some notions of IFSs, Pythagorean FSs, PFSs, SFSs and TSFSs are comparatively
examined. It is discussed how TSFSs generalize all existing structures. The notions discussed in
this section provided a foundation for our work. For undefined terms and notions, one may refer to
References [1–4,28,37,40].

Definition 1. [2] An IFS on a universe of discourse X is of the form I = {〈x, s(x), d(x)〉} such that s and d
denote the affiliation and non-affiliation of x ∈ X respectively on a unit interval [0, 1] and 0 ≤ Sum (s, d) ≤ 1
and r(x) = 1− Sum (s, d) is the hesitancy degree of x in S. The duplet (s, d) is considered as an intuitionistic
fuzzy number (IFN).

Definition 2. [3] A Pythagorean FS on a universe of discourse X is of the form P = {〈x, s(x), d(x)〉}
such that s and d denote the affiliation and non-affiliation of x ∈ X respectively on a unit interval [0, 1] and
0 ≤ Sum

(
s2, d2) ≤ 1 and r(x) = 1− Sum

(
s2, d2) is the hesitancy degree of x in S. The duplet (s, d) is

considered as a Pythagorean fuzzy number.

Definition 3. [11] A PFS on a universe of discourse X is of the form P = {〈x, s(x), i(x), d(x)〉} such that
s, i and d denote the affiliation, abstinence and non-affiliation of x ∈ X respectively on a unit interval [0, 1]
and 0 ≤ Sum (s, i, d) ≤ 1 and r(x) = 1− Sum (s, i, d) is the refusal degree of x in S. The triplet (s, i, d) is
considered as a picture fuzzy number (PFN).

Definition 4. [18] A SFS on a universe of discourse X is of the form S = {〈x, s(x), i(x), d(x)〉} such that
s, i and d denote the affiliation, abstinence and non-affiliation of x ∈ X respectively on a unit interval [0, 1]
and 0 ≤ Sum

(
s2, i2, d2) ≤ 1 and r(x) =

√
1− Sum (s2, i2, d2) is the refusal degree of x in S. The triplet

(s, i, d) is considered as a spherical fuzzy number (SFN).



Symmetry 2018, 10, 193 5 of 14

Definition 5. [18] A TSFS on a universe of discourse X is of the form P = {〈x, s(x), i(x), d(x)〉} such that
s, i and d denote the affiliation, abstinence and non-affiliation of x ∈ X respectively on a unit interval [0, 1]
and 0 ≤ Sum (sn, in, dn) ≤ 1 for n ∈ Z and r(x) = n

√
1− Sum (sn, in, dn) is the refusal degree of x in S.

The triplet (s, i, d) is considered as a T-spherical fuzzy number (TSFN).

Remark 1. In Definition 5, if

• We place n = 2 then TSFS becomes SFS.
• We place n = 1 then TSFS becomes PFS.
• We place n = 2 and i = 0 then TSFS becomes Pythagorean FS.
• We place n = 1 and i = 0 then TSFS becomes IFS.
• We place n = 1 and i = d = 0 then TSFS becomes FS.

This proved that the frame work of TSFS is the most generalized among the existing structures.

Theorem 1. [18] The SFSs have a larger space of than that of space of PFSs.

Theorem 2. [18] The TSFSs have a larger space of than that of space of SFSs.

Theorem 3. [18] The TSFSs have a larger space of than that of space of PFSs.

Definition 6. [28] For two IFNs P = (sP, dP) and Q =
(
sQ, dQ

)
on a universe of discourse X, a cosine

similarity measure is defined as:

Ç1
IFS(P, Q) =

1
m

m

∑
i=1

sP(xi)·sQ(xi) + dP(xi)· dQ(xi)√
s2

P(xi) + d2
P(xi)·

√
s2

Q(xi) + d2
Q(xi)

(1)

Definition 7. [37] For two IFNs P = (sP, dP) and Q =
(
sQ, dQ

)
on a universe of discourse X and

i = 1− s− d, a set-theoretic similarity measure is defined as:

Ç2
IFS(P, Q) =

1
m

m

∑
i=1

sP(xi)·sQ(xi) + iP(xi)·iQ(xi) + dP(xi)· dQ(xi)

max
(

s2
P(xi) + d2

P(xi) + i2P(xi), s2
Q(xi) + d2

Q(xi) + i2Q(xi)
) (2)

Definition 8. [37] For two IFNs P = (sP, dP) and Q =
(
sQ, dQ

)
on a universe of discourse X and

i = 1− s− d, the grey similarity measure is defined as:

Ç3
IFS(P, Q) =

1
3m

m

∑
i=1

(
∆smin + ∆smax

∆si + ∆smax
+

∆dmin + ∆dmax

∆di + ∆dmax

)
(3)

where ∆si =
∣∣sP(xi)− sQ(xi)

∣∣ and ∆di =
∣∣dP(xi)− dQ(xi)

∣∣ further ∆smin = min
{∣∣sP(xi)− sQ(xi)

∣∣}
and ∆dmin = min

{∣∣dP(xi)− dQ(xi)
∣∣} also ∆smax = max

{∣∣sP(xi)− sQ(xi)
∣∣} and ∆dmax =

max
{∣∣dP(xi)− dQ(xi)

∣∣}.

Definition 9. [40] For two PFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

cosine similarity measure is defined as:

Ç1
PFS(P, Q) =

1
m

m

∑
i=1

sP(xi)·sQ(xi) + iP(xi)·iQ(xi) + dP(xi)· dQ(xi)√
s2

P(xi) + i2P(xi) + d2
P(xi) ·

√
s2

Q(xi) + i2Q(xi) + d2
Q(xi)

(4)
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Definition 10. [40] For two PFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

set-theoretic similarity measure is defined as:

Ç2
PFS(P, Q) =

1
m

m

∑
i=1

sP(xi)·sQ(xi) + iP(xi)·iQ(xi) + dP(xi)· dQ(xi)

max
(

s2
P(xi) + i2P(xi) + d2

P(xi), s2
Q(xi) + i2Q(xi) + d2

Q(xi)
) (5)

Definition 11. [40] For two PFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, the

grey similarity measure is defined as:

Ç3
PFS(P, Q) =

1
3m

m

∑
i=1

(
∆smin + ∆smax

∆si + ∆smax
+

∆imin + ∆imax

∆ii + ∆imax
+

∆dmin + ∆dmax

∆di + ∆dmax

)
(6)

where ∆si =
∣∣sP(xi)− sQ(xi)

∣∣, ∆ii =
∣∣iP(xi)− iQ(xi)

∣∣ and ∆di =
∣∣dP(xi)− dQ(xi)

∣∣ further ∆smin =

min
{∣∣sP(xi)− sQ(xi)

∣∣}, ∆imin = min
{∣∣iP(xi)− iQ(xi)

∣∣} and ∆dmin = min
{∣∣dP(xi)− dQ(xi)

∣∣}
also ∆smax = max

{∣∣sP(xi)− sQ(xi)
∣∣}, ∆imax = max

{∣∣iP(xi)− iQ(xi)
∣∣} and ∆dmax =

max
{∣∣dP(xi)− dQ(xi)

∣∣}.

The similarity measures discussed in this section are limited and can handle the data provided
in the framework of IFSs or PFSs. Therefore, in this manuscript, some new similarity measures in
the environment of TSFSs shall be proposed as a generalization of similarity measures defined in
Equations (1)–(6).

3. Similarity Measures

In this section, some similarity measures are developed in the environment of TSFSs including
cosine similarity measure, grey similarity measure, and set theoretic similarity measures adopted
from [28,37,40]. It is proved that the similarity measures developed here are generalizations of existing
similarity measures (Equations (1)–(6)) and can also be applied to those areas where existing similarity
measures failed to be applied.

3.1. Cosine Similarity Measures

Following the work of [28,37,40], we developed similarity measures for TSFSs. We claimed
that the proposed similarity measures are generalizations of the similarity measures discussed in
Equations (1) and (4).

Definition 12. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

cosine similarity measure is defined as:

Ç1
TSFS(P, Q) = 1

m

m
∑

i=1

sn
P(xi)·sn

Q(xi)+ inP(xi)·inQ(xi)+ dn
P(xi)·dn

Q(xi)√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2 ·
√(

sn
Q(xi)

)2
+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2
(7)

The following properties hold true for the cosine similarity measure of three TSFNs P = (sP, iP, dP),
Q =

(
sQ, iQ, dQ

)
and R = (sR, iR, dR).

1. 0 ≤ Ç1
TSFS(P, Q) ≤ 1.

2. Ç1
TSFS(P, Q) = Ç1

TSFS(Q, P).
3. Ç1

TSFS(P, Q) = 1 if P = Q and i = 1, 2, 3, . . . m.
4. If P v Q v R. Then Ç1

TSFS(P, R) ≤ Ç1
TSFS(P, Q), Ç1

TSFS(P, R) ≤ Ç1
TSFS(Q, R).
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Proof. The proofs of first and second are obvious. To prove the third part, take P = Q i.e.,
sP(xi) = sQ(xi), iP(xi) = iQ(xi), dP(xi) = dQ(xi), hence Equation (7) implies

Ç1
TSFS(P, Q) = 1

m

m
∑

i=1

sn
P(xi)·sn

P(xi)+ inP(xi)·inP(xi)+ dn
P(xi)·dn

P(xi)√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2·
√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2

= 1
m

m
∑

i=1

(sn
P(xi))

2
+(inP(xi))

2
+(dn

P(xi))
2

(sn
P(xi))

2
+(inP(xi))

2
+(dn

P(xi))
2

= 1

�

The fourth part is obvious as geometrically, the angle of P, R is greater than that of P, Q and Q, R.

Definition 13. The distance measure of the angle between two TSFNs P and Q is defined as:

d’(P, Q) = arccos
(

Ç1
TSFS(P, Q)

)

The following properties hold true for the distance measure of three TSFNs P = (sP, iP, dP),
Q =

(
sQ, iQ, dQ

)
and R = (sR, iR, dR).

1. If 0 ≤ Ç1
TSFS(P, Q) ≤ 1. Then d’(P, Q) ≥ 0.

2. If Ç1
TSFS(P, Q) = Ç1

TSFS(Q, P). Then d’(P, Q) = d’(Q, P).
3. If Ç1

TSFS(P, Q) = 1 for P = Q and i = 1, 2, 3, . . . m. Then d’(P, Q) = 0.
4. If P v Q v R. Then d’(P, R) ≤ d’(P, Q) + d’(Q, R).

Proof. The proofs of Part (1) – (3) are obvious. To prove Part (4), let P v Q v R. Then the distance
measures of P, Q and R are:

d’(P(xi), Q(xi)) = arccos
(

Ç1
TSFS(P(xi), Q(xi))

)
d’(Q(xi), R(xi)) = arccos

(
Ç1

TSFS(Q(xi), R(xi))
)

d’(P(xi), R(xi)) = arccos
(

Ç1
TSFS(P(xi), R(xi))

)
where i = 1, 2, 3, . . . m and

Ç1
TSFS(P(xi), Q(xi)) =

1
m

m
∑

i=1

sn
P(xi)·sn

Q(xi)+ inP(xi)·inQ(xi)+ dn
P(xi)·dn

Q(xi)√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2 ·
√(

sn
Q(xi)

)2
+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2

Ç1
TSFS(Q(xi), R(xi)) =

1
m

m
∑

i=1

sn
Q(xi)·sn

R(xi)+ inQ(xi)·inR(xi)+ dn
Q(xi)·dn

R(xi)√(
sn

Q(xi)
)2

+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2
·
√
(sn

R(xi))
2
+(inR(xi))

2
+(dn

R(xi))
2

Ç1
TSFS(P(xi), R(xi)) =

1
m

m
∑

i=1

sn
P(xi)·sn

R(xi)+ inP(xi)·inR(xi)+ dn
P(xi)·dn

R(xi)√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2 ·
√
(sn

R(xi))
2
+(inR(xi))

2
+(dn

R(xi))
2

�

If P = [sP(xi), iP(xi), dP(xi)], Q =
[
sQ(xi), iQ(xi), dQ(xi)

]
and R =

[
sQ(xi), iQ(xi), dQ(xi)

]
are

considered as three vectors in a plane such that P(xi) v Q(xi) v R(xi) and using triangular inequality,
we have d’(P(xi), R(xi)) ≤ d’(P(xi), Q(xi)) + d’(Q(xi), R(xi)) and hence (4) holds true.



Symmetry 2018, 10, 193 8 of 14

In the following, w = (w1, w2, w3 . . . wm)
T represents a weight vector such that wi ∈ [0, 1] and

m
∑

i=1
wi = 1

Definition 14. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

weighted cosine similarity measure is defined as:

1 

 

Ѡ Ç1
TSFS(P, Q) = 1

m

m
∑

i=1
wi

sn
P(xi)·sn

Q(xi)+ inP(xi)·inQ(xi)+ dn
P(xi)·dn

Q(xi)√
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2 ·
√(

sn
Q(xi)

)2
+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2
(8)

By taking wi =
1
m the Equation (8) reduces to Equation (7).

The following properties hold true for the weighted cosine similarity measures of three TSFNs P =

(sP, iP, dP), Q =
(
sQ, iQ, dQ

)
and R = (sR, iR, dR).

1. 0 ≤

1 

 

Ѡ Ç1
TSFS(P, Q) ≤ 1.

2.

1 

 

Ѡ Ç1
TSFS(P, Q) =

1 

 

Ѡ Ç1
TSFS(Q, P).

3.

1 

 

Ѡ Ç1
TSFS(P, Q) = 1 iff P = Q and i = 1, 2, 3, . . . m.

4. If P v Q v R. Then

1 

 

Ѡ Ç1
TSFS(P, R) ≤

1 

 

Ѡ Ç1
TSFS(P, Q),

1 

 

Ѡ Ç1
TSFS(P, R) ≤

1 

 

Ѡ Ç1
TSFS(Q, R).

Proof. Proofs are straightforward. �

3.2. Set-Theoretic Similarity Measures

For two TSFNs, in view of [28,37,40] some set-theoretic similarity measures and weighted
set-theoretic similarity measures are developed in this section.

Definition 15. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

set-theoretic similarity measure is defined as:

Ç2
TSFS(P, Q) = 1

m

m
∑

i=1

sn
P(xi)·sn

Q(xi)+ inP(xi)·inQ(xi)+ dn
P(xi)·dn

Q(xi)

max
(
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2
,
(

sn
Q(xi)

)2
+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2
) (9)

Definition 16. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, a

weighted set-theoretic similarity measure is defined as:

1 

 

Ѡ Ç2
TSFS(P, Q) = 1

m

m
∑

i=1
wi

sn
P(xi)·sn

Q(xi)+ inP(xi)·inQ(xi)+ dn
P(xi)·dn

Q(xi)

max
(
(sn

P(xi))
2
+(inP(xi))

2
+(dn

P(xi))
2
,
(

sn
Q(xi)

)2
+
(

inQ(xi)
)2

+
(

dn
Q(xi)

)2
) (10)

Equation (10) reduces to Equation (9) if we place wi =
1
m .

The following properties hold true for the set-theoretic similarity measure of two TSFNs P = (sP, iP, dP),
Q =

(
sQ, iQ, dQ

)
.

1. 0 ≤ Ç2
TSFS(P, Q) ≤ 1.

2. Ç2
TSFS(P, Q) = Ç2

TSFS(Q, P).
3. Ç2

TSFS(P, Q) = 1 if P = Q and i = 1, 2, 3, . . . m.

The following three properties hold true for the weighted set-theoretic similarity measure of two TSFNs
P = (sP, iP, dP), Q =

(
sQ, iQ, dQ

)
and R = (sR, iR, dR).
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1. 0 ≤

1 

 

Ѡ Ç2
TSFS(P, Q) ≤ 1.

2.

1 

 

Ѡ Ç2
TSFS(P, Q) =

1 

 

Ѡ Ç2
TSFS(Q, P).

3.

1 

 

Ѡ Ç2
TSFS(P, Q) = 1 if P = Q and i = 1, 2, 3, . . . m.

3.3. Grey Similarity Measure

Following, the similarity measures proposed in References [28,37,40] and the grey similarity
measures in the environment of TSFSs are developed as a generalization of existing grey similarity
measures defined in Equations (3) and (6).

Definition 17. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, the

grey similarity measure is defined as:

Ç3
TSFS(P, Q) =

1
3m

m

∑
i=1

(
∆smin + ∆smax

∆si + ∆smax
+

∆imin + ∆imax

∆ii + ∆imax
+

∆dmin + ∆dmax

∆di + ∆dmax

)
(11)

where ∆sn
i =

∣∣∣sn
P(xi)− sn

Q(xi)
∣∣∣, ∆in

i =
∣∣∣in

P(xi)− in
Q(xi)

∣∣∣ and ∆dn
i =

∣∣∣dn
P(xi)− dn

Q(xi)
∣∣∣ further ∆sn

min =

min
{∣∣∣sn

P(xi)− sn
Q(xi)

∣∣∣}, ∆in
min = min

{∣∣∣in
P(xi)− in

Q(xi)
∣∣∣} and ∆dn

min = min
{∣∣∣dn

P(xi)− dn
Q(xi)

∣∣∣}
also ∆sn

max = max
{∣∣∣sn

P(xi)− sn
Q(xi)

∣∣∣}, ∆in
max = max

{∣∣∣in
P(xi)− in

Q(xi)
∣∣∣} and ∆dn

max =

max
{∣∣∣dn

P(xi)− dn
Q(xi)

∣∣∣}.

The following properties hold true for the Grey similarity measure of two TSFNs P = (sP, iP, dP),
Q =

(
sQ, iQ, dQ

)
.

1. 0 ≤ Ç3
TSFS(P, Q) ≤ 1.

2. Ç3
TSFS(P, Q) = Ç3

TSFS(Q, P).
3. Ç3

TSFS(P, Q) = 1 if P = Q and i = 1, 2, 3, . . . m.

Whenever the weight of the elements is considered as a real-life phenomenon, attributes have
different importance in different situations and therefore need to be weighted. Consequently, we
developed weighted similarity measures described as follows:

Definition 18. For two TSFNs P = (sP, iP, dP) and Q =
(
sQ, iQ, dQ

)
on a universe of discourse X, the

weighted grey similarity measure is defined as:

1 

 

Ѡ Ç3
TSFS(P, Q) =

1
3

m

∑
i=1

wi

(
∆smin + ∆smax

∆si + ∆smax
+

∆imin + ∆imax

∆ii + ∆imax
+

∆dmin + ∆dmax

∆di + ∆dmax

)
(12)

where ∆sn
i =

∣∣∣sn
P(xi)− sn

Q(xi)
∣∣∣, ∆in

i =
∣∣∣in

P(xi)− in
Q(xi)

∣∣∣ and ∆dn
i =

∣∣∣dn
P(xi)− dn

Q(xi)
∣∣∣ further ∆sn

min =

min
{∣∣∣sn

P(xi)− sn
Q(xi)

∣∣∣}, ∆in
min = min

{∣∣∣in
P(xi)− in

Q(xi)
∣∣∣} and ∆dn

min = min
{∣∣∣dn

P(xi)− dn
Q(xi)

∣∣∣}
also ∆sn

max = max
{∣∣∣sn

P(xi)− sn
Q(xi)

∣∣∣}, ∆in
max = max

{∣∣∣in
P(xi)− in

Q(xi)
∣∣∣} and ∆dn

max =

max
{∣∣∣dn

P(xi)− dn
Q(xi)

∣∣∣}.

If we consider wi =
1
m , Equations (12) reduces to Equation (11).

The following properties hold true for the weighted grey similarity measure of two TSFNs P = (sP, iP, dP),
Q =

(
sQ, iQ, dQ

)
.

1. 0 ≤

1 

 

Ѡ Ç3
TSFS(P, Q) ≤ 1.

2.

1 

 

Ѡ Ç3
TSFS(P, Q) =

1 

 

Ѡ Ç3
TSFS(Q, P).

3.

1 

 

Ѡ Ç3
TSFS(P, Q) = 1 if P = Q and i = 1, 2, 3, . . . m.
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In this section, we have noted that the proposed similarity measures are a generalization of all
existing relevant similarity measures, i.e., the proposed similarity measures can deal with any type of
data that could be handled with similarity measures of IFSs and PFSs, but conversely, the similarity
measures of IFSs and PFSs are unable to handle data in the environment of TSFSs.

4. Application in Building Material Recognition

The tools of similarity measures have applications in pattern classification. In such a phenomenon,
the class of an unknown pattern or object is found using some similarity measuring tools and some
preferences of decision makers. In this section, the similarity measures developed so far in Section 3 are
applied to a building material recognition problem where the class of an unknown building material
needed to be evaluated. The results obtained using the similarity measures of TSFSs are then analyzed
for description of the advantages of proposed work and the limitations of existing work. To explain
the phenomenon, an illustrative example adapted from Reference [40] is discussed.

Example 1. Consider TSFNs Pi(i = 1, 2, 3, 4) representing four building materials and let X =

{xi : i = 1, 2, 3, . . . 7} be the space of attributes having weights w = (0.16, 0.12, 0.09, 0.18, 0.20, 0.10, 0.15)T.
We assume another unknown material P with the hypothetical information listed in Table 1. With the help of
defined similarity measures for TSFSs we shall identify the class of unknown building material from four materials
denoted by Pi(i = 1, 2, 3, 4). Using the recognition principle developed in [28,40], the evaluation of class of P to Pi
is established.

k = arg Max
1≤i≤4

{OÇTSFS} (13)

All the numbers in Table 1 are purely TSFNs for n = 4 which means that the tools of IFSs and
PFSs could not handle such type of data as their structures are limited. Even SFSs could not handle this
type of data as in SFSs we have n = 2. This shows the strength and diverse nature of TSFSs. Now, the
different similarity measuring tools defined in Section 3 are applied to the given data in Table 1 and
the results are provided in Table 2.

Table 1. Data on building materials.

P1 P2 P3 P4 P

x1 (0.56, 0.47, 0.22) (0.81, 0.3, 0.37) (0.43, 0.43, 0.55) (0.57, 0.51, 0.39) (0.34, 0.56, 0.78)
x2 (0.11, 0.11, 0.11) (0.59, 0.66, 0.66) (0.91, 0.34, 0.68) (0.56, 0.76, 0.31 ) (0.47, 0.38, 0.84 )
x3 (0.35, 0.45, 0.61) (0.42, 0.56, 0.71) (0.81, 0.41, 0.35) (0.27, 0.59, 0.72) (0.55, 0.44, 0.65)
x4 (0.33, 0.54, 0.31 ) (0.59, 0.45, 0.9) (0.44, 0.55, 0.77) (0.46, 0.46, 0.45) (0.76, 0.46, 0.85)
x5 (0.35, 0.2, 0.64) (0.16, 0.33, 0.42) (0.55, 0.44, 0.29) (0.57, 0.66, 0.91) (0.13, 0.35, 0.57)
x6 (0.47, 0.37, 0.68) (0.68, 0.46, 0.88) (0.47, 0.66, 0.75) (0.41, 0.73, 0.41) (0.24, 0.54, 0.45)
x7 (0.78, 0.55, 0.03) (0.49, 0.54, 0.39) (0.58, 0.34, 0.23) (0.21, 0.43, 0.13) (0.82, 0.46, 0.69)

Table 2. Similarity Measures of Pi with P.

Similarity Measures (P1, P) (P2, P) (P3, P) (P4, P)

1 

 

Ѡ Ç1
TSFS 0.612207 0.690072 0.64601 0.603693

1 

 

Ѡ Ç2
TSFS 0.3197 0.367149 0.26296 0.160122

1 

 

Ѡ Ç3
TSFS 0.762518 0.792809 0.796319 0.750893

Analyzing Table 2, it seems that material P2 is close to P as the similarity measure of (P2, P) is
larger than of all other pairs if we apply cosine or set theoretic similarity measure. However, if we
apply grey similarity measure, it seems that the values of (P2, P) and (P3, P) can be considered nearly
equal or the similarity of (P3, P) is slightly higher than that of (P2, P), so by grey similarity measure,
P has a relatively larger similarity measure to the class of P3. Thus, it is concluded that based on cosine
or set-theoretic similarity measure, the unknown material P belongs to the class of P2 type material
while based on grey similarity measure, the material P belongs to P3 type material.
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5. Comparative Study and Advantages

The similarity measures developed in this manuscript are generalizations of similarity measures
proposed in [28,37,40]. The following remarks proved that the similarity measures defined in
Equations (7)–(12) are generalizations of the similarity measures of References [28,37,40].

Remark 2. By placing n = 2, Equations (7) and (8) reduce to similarity measures of SFSs and by placing n = 1,
Equations (7) and (8) reduce to similarity measures of PFSs [40]. Similarly, placement of iP = iQ = 0 and
n = 1 reduces Equations (7) and (8) to similarity measures for IFSs [28]. This shows that similarity measures
proposed in Equations (7) and (8) are generalizations of existing similarity measures.

Remark 3. By placing n = 2, Equations (9) and (10) reduce to similarity measures of SFSs and by placing
n = 1, Equations (9) and (10) reduce to similarity measures of PFSs [40]. Similarly, placement of rP = rQ = 0
and n = 1 reduces Equations (9) and (10) to similarity measures of IFSs [37]. This shows that similarity
measures proposed in Equations (9) and (10) are generalizations of existing similarity measures.

Remark 4. By placing n = 2, Equations (11) and (12) reduce to similarity measures of SFSs and by placing
n = 1, Equations (11) and (12) reduce to similarity measures of PFSs [40]. Similarly, placement of rP = rQ = 0
and n = 1 reduces Equations (11) and (12) to similarity measures of IFSs [37]. This shows that similarity
measures proposed in Equations (11) and (12) are generalizations of existing similarity measures.

The main advantage of the similarity measures proposed in the environment of SFSs and TSFSs is
that these similarity measures can handle the data provided in References [28,37,40].

Now, the building material recognition problem from Reference [40] is solved using similarity
measures for TSFSs for n = 1.

Example 2. In this problem from [40], four building materials are denoted by Pi(i = 1, 2, 3, 4). The weighted
similarity measures of TSFSs defined in Equations (8), (10) and (12) are applied on the data provided
in Table 3 to evaluate the class of unknown building material P. The weight vector in this case is
(0.12, 0.15, 0.09, 0.16, 0.20, 0.10, 0.18)T .

All data in Table 3 is picture fuzzy environment, so using the similarity measures defined in
Equations (8), (10), and (12) and taking n = 1 results in:

Table 3. Data of Patterns [40].

P1 P2 P3 P4 P

x1 (0.17, 0.53, 0.13) (0.51, 0.24, 0.21) (0.31, 0.39, 0.25) (1, 0, 0) (0.91, 0.03, 0.05)
x2 (0.10, 0.81, 0.05) (0.62, 0.12, 0.07) (0.60, 0.26, 0.11) (1, 0, 0) (0.78, 0.12, 0.07 )
x3 (0.53, 0.33, 0.09) (1, 0, 0) (0.91, 0.03, 0.02) (0.85, 0.09, 0.05) (0.90, 0.05, 0.02)
x4 (0.89, 0.08, 0.03) (0.13, 0.64, 0.21) (0.07, 0.09, 0.07) (0.74, 0.16, 0.1) (0.68, 0.08, 0.21)
x5 (0.42, 0.35, 0.18) (0.03, 0.82, 0.13) (0.04, 0.85, 0.10) (0.02, 0.89, 0.05) (0.05, 0.87, 0.06)
x6 (0.08, 0.89, 0.02) (0.73, 0.15, 0.08) (0.68, 0.26, 0.06) (0.08, 0.84, 0.06) (0.13, 0.75, 0.09)
x7 (0.33, 0.51, 0.12) (0.52, 0.31, 0.16) (0.15, 0.76, 0.07) (0.16, 0.71, 0.05) (0.15, 0.73, 0.08)

The results obtained in Table 4 are similar to those obtained in Reference [40] which strengthened
our claim that the similarity measures of TSFSs can handle the data provided in the environment of
PFSs. Similarly, by placing iA = iB = 0 and n = 1 it is claimed that the similarity measures defined
in Equations (7)–(12) could handle the data provided in the environment of IFSs. Conversely, the
similarity measures of IFSs and PFSs could not handle the data provided in TSF environment as a
TSFN cannot be considered as an IFN or PFN in general.
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Table 4. Similarity Measures of Pi with P.

Similarity Measures (P1, P) (P2, P) (P3, P) (P4, P)

1 

 

Ѡ Ç1
TSFS 0.715235 0.763072 0.855508 0.993654

1 

 

Ѡ Ç2
TSFS 0.5556 0.65557 0.693305 0.919909

1 

 

Ѡ Ç3
TSFS 0.708292 0.785837 0.915441 0.941545

Another advantage of proposed similarity measures is that in the environment of TSFSs there is no
restriction for assigning values to membership functions while in the environment of IFSs, Pythagorean
FSs and PFSs some restrictions in assigning membership values as described in Section 1 must be faced.

6. Conclusions

This article described the background of IFSs, Pythagorean FSs and PFSs in detail for observing
the limited nature of their structures. It is discussed how the shortcomings that exists in current
structures are improved using the framework of SFSs and TSFSs with the help of diagrams and
numerical examples. Then, some similarity measures of IFSs and PFSs have been observed and their
limitations were discussed. To generalize these similarity measures, some new similarity measures
were developed. The generalization of new similarity measures was discussed with the help of some
remarks and examples showing its diverse structure. The new similarity measures of TSFSs was
applied to a problem of building material recognition where the information was provided in form of
PFNs and the results obtained was found to be similar to previously existing results. Another problem
in the environment of TSFSs was solved using new similarity measures and it was discussed that the
existing similarity measures could not handle this type of data. The idea of SFSs and TSFSs is novel
and some other tools of similarity and distance measures, correlation coefficients could be developed
in near future. Further, some aggregation operators could be developed for TSFSs and applied in
decision making problems, clustering problems, etc.
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