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Abstract: In many developing or underdeveloped countries, limited medical resources and large
populations may affect the survival of mankind. The research for the medical information system
and recommendation of effective treatment methods may improve diagnosis and drug therapy for
patients in developing or underdeveloped countries. In this study, we built a system model for the
drug therapy, relevance parameter analysis, and data decision making in non-small cell lung cancer.
Based on the probability analysis and status decision, the optimized therapeutic schedule can be
calculated and selected, and then effective drug therapy methods can be determined to improve
relevance parameters. Statistical analysis of clinical data proves that the model of the probability
analysis and decision making can provide fast and accurate clinical data.
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1. Introduction

Life, in developing countries, cannot be protected by medicine, because the medical technology is
underdeveloped, and the population is large. One of the results is that patients with a light illness may
get serious and even disastrous infections. Finally, developing countries have to expend a great amount
of personnel and finances to solve the problem. In 2003, the Severe Acute Respiratory Syndromes
(SARS) virus affected Asia and caused serious consequences [1]. Over thousands of people were
affected, and many of them died of this epidemic disease. The same situation happens in many
Africa countries. The Ebola virus [2] broke out in 2015 because the first few patients did not obtain
timely treatment. In those countries, underdeveloped medical technology and few doctors accelerated
virus diffusion.

China is a developing country in Asia, and it has the highest population in the world. According
to statistical data from China’s Ministry of Health in 2015, a country with a population of more
than 1.4 billion, over an average of 5800 people may share only one doctor. For a doctor in the
big city, he or she may treat over 57 patients per day. At the end of 2015, a hospital treats over
1 million patients on average, especially in super cities, such as Beijing and Shanghai, an advanced
hospital treats over 3.8 million patients a year. The same situation happens in many developing or
underdeveloped countries.

Besides large population, limited medical resources and underdeveloped medical technology can
also affect high death rate in many developing countries, especially related to the cancer research field.
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In China, lung cancer has become the first leading cause of death in these years, which has experienced
a dramatic increase in the cigarette smoking rate during the past two decades [3]. Non-small cell
lung cancer (NSCLC) accounts for 85% of lung cancer and the five-year survival rate is only 15%.
Approximately 70% of patients with lung cancer commonly present with locally advanced or distant
metastasis at the time of diagnosis, which was a difficult condition to manage, due to the lack of
effective treatments [4]. However, if a patient can be diagnosed in the early stage, the 5-year survival
rate can be raised to 80% [5,6]. Therefore, the early diagnosis of lung cancer has important significance
for the prognosis of this tumor.

Moreover, many effective therapeutic methods cannot be popularized. On the one hand, limited
medical technology with some doctors in underdeveloped area or hospitals cannot judge complicated
cancer tumor. On the other hand, even if they know how to make a correct conclusion, underdeveloped
medical technology and cannot burden advanced medical technology.

When we face some complex environments, such as large population, medical resources,
and malignant disease, developing countries should improve those problems by information
science technology.

How to design decision-making and auxiliary system serving for developing or underdeveloped
counties is very big challenging problem, because over 3 billon people live in developing or
underdeveloped counties.

The development of medical information systems in developing and underdeveloped countries
can generate good results. With effective medical resources and through a medical information system,
the doctor can perform decision analysis. The probability of getting sick assists doctors in disease
diagnosis and decision making, thereby shortening treatment time and preventing misdiagnosis.
According to decision analysis in medical systems, this feature may be applied in mobile heath
when hospitals, doctors, patients, and their relationships combine a communication system in
wireless networks. Doctors, patients, and their relationships only carry their mobile devices, they
can transmit health information to any roles in this system and share effective messages anywhere,
even without a signal. Medical systems may diagnose diseases and electronic records after they have
received effective messages. A medical information system does not only quickly and effectively
provide medical information to the patient and family, but also reduces the pressure of obtaining
resources, such as hospital choice.

In this research, we build a system model on drug therapy, relevance parameters analysis, data
decision making on non-small cell lung cancer (NSCLC), which will be used to calculate the transition
probability of the disease in four different stages, and acquire the optimized therapeutic schedule. The
main objectives of this paper are

(1) to establish a kind of condition based on the evolution stages of NSCLC, to divide NSCLC disease
diagnosis parameters evolution process;

(2) to use effective parameter selection method on big data for mining the maximum effects of three
kinds of related parameters in each of the evolutionary processes;

(3) to effectively reduce the probability of malignant disease development through effective
combination of drug therapy methods; and

(4) to prove, by clinical data statistical analysis, that the model of the probability analysis and
decision making can provide fast and accurate clinical data for decision-making advice.

2. Related Works

Many research methods with computer science are widely applied in the medical field.
Pujol et al. [7] designed eXiTCDSS medical decision support system. This system uses a case-based

reasoning engine to retrieve similar cases. In eXiTCDSS, cases are stored in a comma-separated value
(CSV) format. A case consists of multiple attributes; each property is represented by a column in
the CSV. The property type includes the Boolean, text type, and type. The weight of each type is
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per-allocated to case similarity calculation. In this system, the cases in every attribute are associated
with the elements in the clinical diagnosis and treatment process; therefore, eXiTCDSS is mainly used
in medical decisions to support workflow.

Susana et al. [8] compares the cases based on the inductive and deductive reasoning characteristics,
and put forward a combination of advantages from both systems to support the diagnosis and
treatment process. To increase the basis for case reasoning method, Pfister et al. [9] recommended
treatment availability and used the explanation, in text form, of the relationship between the patient
and the explained recommended precedent. Literature [10] found that based on case reasoning and
other methods, such as BP (brief introduction of back propagation) neural network, the combination of
models has a better performance in liver disease diagnosis.

Tan et al. [11] introduced the time series data of breathing patterns based on case reasoning
to improve diagnosis decision making. By integrating, first, the system in HIS of knowledge,
the discovered model defines a series of breathing patterns related to the diagnosis, and calculates
the new breathing pattern of the patient and the similarity system classification model, in advance, to
obtain the final diagnosis.

Chen et al. [12] proposed a method based on text similarity and on the use of Word Net.
This paper proposes a method based on the dictionary similarity calculation method of similarities
between entities in different ontologies. In addition, a kind of algorithm [13], which is based on the
rules of ontology matching algorithm, is the core idea that uses the association rules of discovery
algorithm, and finds hidden relevance in ontology. In literature [14], the inclusion relation existing
in the real world was concluded to be far greater than equivalence relation; thus, the discovery
of the hierarchical relationships between things is important. Therefore, it puts forward a hybrid,
extensible, and asymmetric matching algorithm. Through association rule mining, this algorithm can
determine the level of the relationship between entities. In the literature [15], the author discussed the
difference between open and closed world; this paper further proposed a horn rule mining method
based on the open world assumption, which was used to realize the heterogeneous knowledgebase
identity matching. However, this method of gaining confidence in association rules is often inaccurate,
which leads to the emergence of a large number of false connections; thus, its practical application was
not given attention [16–18].

In the literature [19] assumes that cases, such as production function and similar case retrieval
methods, are successful, based on case reasoning method integrated into the key to hospital
information system (HIS). In that study, case data structures are defined and modified by the doctor.
Case data were extracted from the patient’s electronic medical records, in order to realize the reuse of
medical experience. When a new patient is enrolled into the system, the system uses the weighted
K-nearest neighbor algorithm to retrieve the most similar cases. Cases benefit from the production
function, which enhances the flexibility of knowledge extraction; however, the workload of doctors in
the maintenance of the case library is certainly increased [20–23].

The present study will analyze, based on disease stage, effective selection, and associated data
tracking, and effective treatment decision-making model of three aspects of medical information
system design.

3. Model Design

In the study of modern medicine, an intelligent diagnosis assists the doctor in condition analysis
and judgment, which can effectively shorten diagnosis time and reduce the probability of misdiagnosis.
The model proposed an intelligent diagnosis scheme. Meanwhile, the doctors also obtain a secondary
judgment based on this model; they not only establish a comprehensive analysis of patients, but also
provide a secondary diagnosis to provide precise medical treatment.
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3.1. The Process of Drug Therapy and Decision-Making

In NSCLC, conventional clinical staging is most often performed with computed tomography (CT)
of the thorax and upper abdomen. Nevertheless, CT imaging has limited sensitivity for distal metastatic
disease, and is frequently unable to discriminate between malignant and benign lymph nodes. As a
noninvasive and useful inspection method, 18F-FDG PET/CT is commonly referred for evaluation of
primary neoplastic lesions and exploration of any possible metastasis. It has greater sensitivity for
the detection of metabolically active malignant disease, and can lead to changes in initial staging and
treatment plans for NSCLC.

Figure 1 shows the process of drug therapy and decision-making. It can be divided into some steps.

(1) Diagnosis parameter decision-making. In NSCLC, the serum tumor markers are mainly
produced by the tumor cells and in healthy people, and the detailed values are always in
the normal range. However, in patients with malignant tumor, especially for the advanced
cancer patients, the levels of tumor markers have a negative correlation with the survival time.
The main tumor markers related to relevance parameter and decision data with NSCLC include
soluble fragment of cytokeratin (CYFRA21-1), carcinoembryonic antigen (CEA), cancer antigen
(CA)-125, which are always considered as the prognostic indicators, especially in the advanced
stage of NSCLC.
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Figure 1. The process of drug therapy and decision-making.

Given that the three parameters for more than 95% of NSCLCs have an apparent correlation, the
three parameters are calculated for the preliminary evaluation of NSCLC patients at stage one to select
an effective treatment for the next step.

NSCLC stage division usually adopts various machine scanning parameter values to determine
how sick and which stage the patient is in. We set a stage decision value VNSL_par(t), which represents
the diagnosis parameters and decision data in t time diagnosis value of the calculation results.

The diagnosis parameter value VNSL_par(t) includes three parts, namely, cytokeratin (CYFRA21-1)
value of VNSL_CYF(t), carcinoembryonic antigen (CEA) value of VNSL_CEA(t), and cancer antigen
(CA)-125 VNSL_CA(t). Thus, diagnosis parameter value VNSL_par(t) can be represented as
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VNSL_par(t) = δi ×
VNSL_CYF(t)

VNSL_CYF(Aage(y))
+ δj ×

VNSL_CEA(t)

VNSL_CEA(Aage(y))
+ δk ×

VNSL_CA(t)

VNSL_CA(Aage(y))
. (1)

Among them, δi, δj, and δk are influential factors, δi + δj + δk = 1. VNSL_CYF(Aage(y)),
VNSL_CEA(Aage(y)), and VNSL_CA(Aage(y)) are in a certain area for the past five years. Moreover,
cytokeratin (CYFRA21-1), carcinoembryonic antigen (CEA), and cancer antigen (CA)-125 values, age
averaged, and the range of normal parameter values of the region, were determined.

(2) Stage in NSCLC. Combination of detection in tumor markers and PET screening in NSCLC
patients can provide the accuracy of early diagnosis and staging of lung cancer. Most patients
with stage I to II NSCLC benefit from surgical resection, whereas patients with more advanced
disease (stage III to IV) are candidates for nonsurgical treatment. Chemotherapy is beneficial for
palliation in patients with locally advanced and metastatic disease.

In the judgment of NSCLC, VNSL_par(t) can generally be divided into four different critical regions.
Figure 1 shows the four different critical regions. The range of VNSL_par(t) can measure the patient’s
current time t, which is the stage of illness. In NSCLC, we can define ε(si) is value at the threshold,
i = 1, 2, 3, 4. For VNSL_par(t), ε(si) ≤ VNSL_par(t) ≤ ε(si+1). It shows which stage is patient may sicken.

(3) Therapeutic target. This part provides patients with data through the machine regarding the
changes in the diseases associated with NSCLC. For each stage of NSCLC, the therapeutic target
contains the following:

Stage 1: the epidermal growth factor receptor (EGFR) mutations comprised 40% of
NSCLC patients.
RAS mutations in lung adenocarcinoma accounted for approximately 30% of NSCLC
Stage 2: the EGFR mutations constituted 15% of NSCLC patients.
RAS mutations in lung adenocarcinoma constituted approximately 38% of NSCLC
EML4—ALK fusion gene accounted for 25% of NSCLC patients.
Stage 3: EML4—ALK fusion gene, 43% of patients with NSCLC.
C—MET amplification comprised 41% of NSCLC
gene fusion accounted for 12% of NSCLC
Stage 4: C—MET amplification accounted for 28% of NSCLC
ROS1 gene fusion accounted for 56% of NSCLC

During the process of determining NSCLC, the targets for determining the probability of each
possible, all had a relationship with patients in the stage of the disease. Simultaneously, all kinds of
illness, with each stage of the three kinds of NSCLC diagnosis parameters, had a connection. Hence,
for targets to evaluate the probability of PTherapeutic, it can be diagnosed using the stages of disease and
the main parameters for the probabilistic decision weights of the joint. Therefore, we can obtain the
target PTherapeutic through judgment.

PTherapeutic(Tk) = P(Tk

∣∣∣Stage = i, VNSL_CYF(t) = α, VNSL_CEA(t) = β, VNSL_CA(t) = γ) (2)

where Tk are the types of targets, i is the stage of NSCLC, and α, β, γ are the markers of various
diagnostic parameters. We can calculate each stage of NSCLC with the possible target through the
joint probability method.

(4) Drug choice. Through probabilistic decision, we can calculate the different stages of NSCLC, in
which several targets may exist. These targets can be used to select the method for drug treatment.
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Thus, we can design a decision-making method for the main chart of medication and the drug
use set of data collection.

Figure 2 illustrates a set of drug treatment decisions. In decision making, the category of each
target is recorded to select which method to use. In Figure 2, we can build a collection of the decisions.
The decision set includes all kinds of medical records and storage type of the targets, such as their
form of expression of the system stored as a drug (chair). The representation of a dataset is as follows:

Data assembly 1: RGFR { gefeitinib(chair), erlotinib(chair) }
Data assembly 2:RAS { selmetinib (chair), alecitinib (chair) }
Data assembly 3: MELA4-ALK { alecitinib (chair), gefeitinib(chair) }
Data assembly 4: ROS1 { alecitinib (chair), crizotinib (chair), cretinib (chair) }
Data assembly 5: C-MET { gefeitinib(chair), erlotinib(chair), crizotinib (chair) }

The collection system of all kinds of drugs for the patients of possible secondary and medical
treatment options improves the efficiency of drug use.
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3.2. Role of Data Decision Making in Drug Treatment

In Section 3.1, an intelligent diagnosis on the patient enables the doctors to prescribe a regimen
after a period of treatment; the primary diagnosis parameters of the patient, namely, cytokeratin
(CYFRA21-1), carcinoembryonic antigen (CEA), and cancer antigen (CA)—125, may change because of
the influence of drugs.

We set the p(drug(k)) using the parameters of the first k kinds of drug decision probability.
p(drug(k)) can be expressed by

p(drug(k)) =
VNSL_par(t + 1)

VNSL_par(t)
. (3)
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VNSL_par(t + 1) is obtained after drug use k, the main parameter of the weights. According to
Equations (1)–(3) we can obtain the parameter decision probability of the first k drugs:

If p(drug(k)) ≥ χ, then, after k, the main parameters of the weight does not decrease k because the
NSCLC drug treatment has no effect or does not deteriorate;
If 0 ≤ ψ ≤ p(drug(k)) ≤ χ, then, after drug use k, the parameters of the main weight drops; k is the
effect for the treatment of NSCLC, the parameter of the normal weight;
If 0 ≤ p(drug(k)) ≤ ψ, then, after the k, the drug treatment effect, which is the main parameter of
the weight of normal, is obvious, and thus does not require taking medicine.

In many developing counties, patients must take many kinds of drugs which contain antibiotics,
vitamins, and so on. For patients, pesticide effects from those drugs are independent and necessary.
Thus, in the process of treating NSCLC, multiple drug combinations are used to improve the main
diagnostic parameters of NSCLC; therefore, we can calculate the joint probability distribution of a
variety of drug conditions:

Pdrug(1, 2 . . . . . . k) =
N

∏
k=1

p(drug(k)). (4)

We can evaluate the different drug combinations through the joint probability method to improve
the effects of the NSCLC main parameters on the patient.

3.3. Drug Selection of Iterative Optimization

In Section 3.2, we can calculate the effect of drug combination on the diagnosis parameters.
Using the information in the process of data collection, such as drug(1), drug(2), . . . , drug(k) drugs
set, we can design D, which is the training set. We set three kinds of diagnostic parameters in time t of
the optimal probability.

w(t) ≡ P(VNSL_CYF(t) = α, VNSL_CEA(t) = β, VNSL_CA(t) = γ) (5)

We set the treatment of choice after the drug combination probability, and

Pw(D) =
|D|

∏
d=1

Pw(drug(d)). (6)

In each time t, the patients for a medical scheme of statistics, by computing the Pw(D) weights,
may change the three diagnoses in the medical. That is

∂ ln Pw(D)

∂w(t)
=
|D|

∏
d=1

Pw(Xd)

w(t)
. (7)

The next time t + 1, w(t + 1) for optimization use probability

w(t + 1) = w(t) + (ψ)
∂ ln Pw(D)

∂w(t)
. (8)

If at any time t, w(t) ≥ w(t + 1) existed, and the combination of drugs in time t is better than t + 1
time effect, then the system w(t) is recommended for the drug.

If w(t) ≥ w(t + N) existed, following an N time record of the drug combination, treating the
NSCLC effect is optimal at the current stage at time t of the drug combination.

4. Experimental Design

In this paper, all data comes from the mobile health information of the Ministry of
Education–China Mobile Joint Laboratory. Table 1 shows medical systems used by the three hospitals
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in Central South University to collect data. Medical data of these hospitals are transmitted and
exchanged through the medical data center. The medical data center collects data, such as patient
diagnosis, disease, surgery, nursing plan, and drug selection, from different departments for data
classification to provide comprehensive information to medical doctors, nurses, and patients.

It shows recorded data for all patients from the three hospitals in 2002–2015. These data are used
to identify and classify statistical information, which will form the medical data center.

Figure 3 shows data collection in three hospitals. In 15 years, 789,675 patients were admitted
to the three hospitals, and their data formed 5,287,413 valid electronic medical records. The three
hospitals transmitted 1,124,561 diagnosis reports and 1,427,790 clinical diagnoses of doctors.

In the medical system, HIS is hospital information system; EMR is electronic medical record; LIS
is laboratory information system; RIS is radiology information system; and PACS is picture archiving
and communication system. These data records can assist doctors in clinical analysis and research on
typical disease cases, in decision making for big data medical information system, and in probability
analysis as a foundation for research.

Through analysis of big data with NSCLC, 39,483,216, data information was stored in a medical
library of medicine, scientific research, and teaching. A total of 93,218 articles record different
operations performed by different departments and different categories of surgical treatments to
improve the success rate of surgery. A total of 40,631 articles record pharmaceutical information
and properties of drugs selected by doctors to ensure convenient use of hospital drug management
data environment.

Table 1. Three hospitals with different medical systems for data acquisition, with beginning and
ending times.

Hospital Name System Start Time in Collection Finish Time in Collection

Xiang’ya hospital HIS 01-01-2011 07-07-2015
EMR 01-12-2008 11-01-2015

The 2rd Xiang’ya hospital

HIS 01-09-2009 11-05-2015
EMR 25-09-2009 05-27-2015

EMR document file 01-01-2011 05-10-2015
LIS 01-01-2002 05-31-2014
RIS 01-01-2013 12-17-2015

PACS 01-01-2012 12-18-2015

The 3th Xiang’ya hospital
HIS 01-04-2002 12-05-2015

EMR 01-04-2002 12-05-2015
EMR document base 01-05-2014 12-09-2015

At the center of big data medical environment, medical-data decision algorithms can be
established based on depth of machine learning and through data analysis and decision-making.
These algorithms store big data as training set, which is used as carrier of intelligent diagnosis
results obtained through probability analysis during data transmission in a wireless network in
4G/5G environment to patients and doctors, to provide them with probabilistic decision methods for
optimization of diagnosis and treatment.

A large dataset can be created using more than 15 years of data to analyze the development of
NSCLC, data acquisition, and decision-making process, and to provide quick reference opinions for
doctors, improve the promptness of diagnosis, and reduce diagnostic errors.

Table 2 displays the diagnosis parameter and decision data with the normal data in NSCLC.
Table 3 shows the stage partition by diagnose parameters and decision data in NSCLC. The statistics
and analysis of the parameters of the decision-making process are shown as follows.
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Table 2. Diagnose parameter and decision data with normal data in NSCLC.

CYFRA-21-1 (µg/mL) 0–1.80

CEA (µg/L) 0–5.00
CA-125 (KU/L) 0–35.00

Table 3. Stage partition by diagnose parameter and decision data in NSCLC.

Stage 1 18–57

Stage 2 58–119
Stage 3 119–180
Stage 4 >180Symmetry 2018, 10, x FOR PEER REVIEW  9 of 16 

 

 
Figure 3. Data collection in three hospitals. 

Figure 4a shows patients in the analysis of CYFRA-21-1 average performance in three hospitals 
in recent five years. We can see that the normal range of CYFRA-21-1 is between 0 and 1.8. Patients 
with NSCLC showed five sampling results average performance that are larger than normal, with an 
average of more than 35. CYFRA-21-1 indicated that the patients were in the abnormal state in recent 
five years with NSCLC. 

Figure 4b shows patients in the analysis of CEA average performance in three hospitals in the 
recent five years. We can see that the normal range of CEA is between 0 and 5.0. Patients with NSCLC 
showed, 16 times, sampling results average performance that are larger than normal, with an average 
of more than 80. CEA indicated that the patients were in the abnormal state in recent five years with 
NSCLC. 

Figure 4c shows patients in the analysis of CA-125 average performance in three hospitals in the 
recent five years. We can see that the normal range of CA-125 is between 0 and 35.0. Patients with 
NSCLC showed, 5 times, sampling results average performance that are larger than normal, with an 
average of more than CA-125. CEA indicated that the patients were in the abnormal state in recent 
five years with NSCLC. 

Figure 3. Data collection in three hospitals.

Figure 4a shows patients in the analysis of CYFRA-21-1 average performance in three hospitals in
recent five years. We can see that the normal range of CYFRA-21-1 is between 0 and 1.8. Patients with
NSCLC showed five sampling results average performance that are larger than normal, with an
average of more than 35. CYFRA-21-1 indicated that the patients were in the abnormal state in recent
five years with NSCLC.
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Figure 4b shows patients in the analysis of CEA average performance in three hospitals in the
recent five years. We can see that the normal range of CEA is between 0 and 5.0. Patients with NSCLC
showed, 16 times, sampling results average performance that are larger than normal, with an average
of more than 80. CEA indicated that the patients were in the abnormal state in recent five years
with NSCLC.

Figure 4c shows patients in the analysis of CA-125 average performance in three hospitals in the
recent five years. We can see that the normal range of CA-125 is between 0 and 35.0. Patients with
NSCLC showed, 5 times, sampling results average performance that are larger than normal, with an
average of more than CA-125. CEA indicated that the patients were in the abnormal state in recent five
years with NSCLC.

According to the analysis of the patients’ diagnostic parameters, and through Equation (2), we can
calculate their decision value VNSL_par(t). Assuming diagnostic parameters of correlation parameters
of patients with the same weight, that is, the three parameters in judging NSCLC stage are divided into
the same weight, and the patient has high correlation parameter decision values shown in Figure 5.
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According to Equation (2) calculation, we can obtain diagnosis decision-making analyses in the
recent five years. In the whole process, we set three diagnostic parameters with similar weighting
factors, namely αi = αj = αk = 1

3 . Thus, we can calculate the different decision parameters data
decision values of diagnosis for patients in three hospitals.

In Figure 5, in the last five years, among the NSCLC patients between 2201 and 2015, 2,011,201
of the statistical data includes cases diagnosed using the decision of the second period; among
these, 2011 has 80.71. The average of the decision-making parameters increased to 93.85 in 2012,
indicating a growth of 13.68%. In 2013, the three hospitals of NSCLC patients demonstrated an average
decision-making parameter of 124.32; moreover, the growth ratio increased by 32.6% in 2012 during
the three periods of NSCLC. Then, in 2014 and 2015, the average decision parameters for patients with
NSCLC decreased to 96.12 and 91.12, respectively.

In Figure 5, for nearly five years of the study, the NSCLC cases were mostly in the second stage.
According to the analysis of large decision-making data, hospitals and doctors have prepared
beforehand for the medication and therapy of patients, especially for NSCLC, regarding second
disease drug storage, and have provided a good reference.

Table 4 lists the 30 patients in the hospital after the diagnosis and decision parameters of the
process in the sample set. The sensitivity of the system involves the effective adjustment, improvement,
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and multiple patient data sampling of mixed modes, which are advantageous for the mechanism
in the decision-making process, to cover a wide range and for rapid analysis; moreover, these were
conducted on the threshold. Simultaneously, in Equations (4)–(10), we analyzed each treatment point
judgment, and automatically recommend drugs, as presented in Table 4.

Table 4. Data collection in the recent 30 time records.

CYFRA-21-1
(µg/mL)

CEA
(µg/L)

CA-125
(KU/L)

CYFRA-21-1
(µg/mL)

CEA
(µg/L)

CA-125
(KU/L)

Sampling set

1 36.71 3.29 157.64 16 21.66 31.55 818.1
2 33.58 4.12 189.55 17 16.21 24.44 101.8
3 40.23 3.15 156.31 18 27.28 32.71 495.5
4 31.84 3.92 179.32 19 22.98 28.27 145.6
5 34.53 3.44 198.09 20 19.28 31.61 981.7
6 1.20 75.48 576.12 21 33.18 91.41 225.8
7 1.15 82.79 498.32 22 37.95 58.88 348.7
8 0.91 79.32 524.89 23 22.60 64.81 288.8
9 1.01 89.11 489.36 24 24.57 78.91 99.8
10 1.03 84.12 518.88 25 27.61 48.17 157.8
11 1.22 6.77 116.32 26 31.72 21.28 722.8
12 1.41 8.24 97.54 27 36.67 26.91 752.9
13 1.32 16.78 104.58 28 35.11 29.18 714.7
14 1.20 22.12 99.28 29 28.61 24.99 856.8
15 1.19 17.95 89.65 30 21.11 22.14 847.7

Figure 6 reflects the mechanism for nearly 30 patients for the NSCLC records and decision. The use
of datasets imported from the system can quickly analyze the patient decision data for each sampling
point, thereby rapidly distributing the patients in terms of NSCLC stage.
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Figure 7a–c illustrate the performance under different probability parameter controls and
continuous drug selection. In these figures, when χ = 3.0, ψ = 0.4, the decision node is a set of
seven continuous administrations; among them, 1–5, 6–9, and 11–15 form three stages. Moreover, long
continuous clinical stage of the same drug model shows the drugs that improve the stability of NSCLC.
When χ = 6.0, ψ = 0.2, the decision node has five sets of drugs; then, with χ = 3.0, ψ = 0.4,
the sensitivity of the system decreases with the selective reduction of decision making. When
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χ = 1.0, ψ = 0.6, only four drug control node sets are in a state of long-term stability between
11–15. After the adjustment for probability control parameters, the sensitivity of the system reflects the
efficiency for drug decision making.

The control and adjustment of the system state probability parameter may be effective for different
regions, people of different ages and probability diagnoses, and medication recommended analysis, to
promote the early diagnosis of NSCLC. Each phase of the system-recommended medicine has a good
improvement effect.
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Figure 8 shows the accuracy of the diagnostic auxiliary system. From the data history, we
want to know whether a patient has NSCLC or not. From this figure, the decisions by doctors are
very accurately. With small samples (100–500), the accuracy reaches 97%. In big data samples (over
1000), the accuracy also reaches 88%.
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Diagnostic auxiliary system in small samples display inaccuracy. The accuracy rate is only 43–59%.
If there are not enough training data stored in the database, the result is not assisted by doctors. In big
data samples, training data are also increased. The accuracy has improved to over 80% when the
diagnosis data reaches5000.

However, diagnostic system is only an auxiliary system, it does not replace doctors in making
accurate decisions about NSCLC, even if we want to system to merely judge “have” or “not”. However,
we can adopt a diagnostic auxiliary system to assist doctors, decreasing the workload while training
the ever-increasing data, and allowing the accuracy to improve continually.

5. Conclusions

This research provides the foundation for building a model based on probability analysis and
decision-making. It can be used to calculate the four different stages of transition probability of NSCLC.
In each of the evolutionary processes, an effective parameter selection method from large data
is used for mining the maximum effect of three kinds of correlation parameters. According to
probability analysis and status decision, the optimized therapeutic schedule can be calculated and
selected, and then we can choose effective drug therapy methods to improve relevance parameters.
Statistical analysis of clinical data proves that the model of probability analysis and decision making
can provide fast and accurate clinical data.

In the future, through a large collection of various treatment methods and diagnoses, the patient’s
diagnosis can be used for deep learning and data mining, improving the effect of calculation in the
process of diagnosis and providing doctors with accurate rapid diagnostic methods.
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