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Abstract: Fuzzy sets, rough sets and soft sets are different tools for modeling problems involving
uncertainty. Graph theory is another powerful tool for representing the information by means of
diagrams, matrices or relations. A possible amalgamation of three different concepts rough sets,
soft sets and graphs, known as soft rough graphs, is proposed by Noor et al. They introduced
the notion of vertex, edge induced soft rough graphs and soft rough trees depending upon the
parameterized subsets of vertex set and edge set. In this article, a new framework for studying
the roughness of soft graphs in more general way is introduced. This new model is known as the
modified soft rough graphs orMSR-graphs. The concept of the roughness membership function of
vertex sets, edge sets and of a graph is also introduced. Further, it has been shown thatMSR-graphs
are more robust than soft rough graphs. Some results, which are not handled by soft rough graphs,
can be handled by modified soft rough graphs. The notion of uncertainty measurement associated
withMSR-graphs is introduced. All applications related to decision makings are only restricted to
the information of individuals only, not their interactions, using this technique we are able to involve
the interactions (edges) of individuals with each other that enhanced the accuracy in decisions.

Keywords: soft rough graphs; modified soft rough graphs; graph approximation space; uncertainty;
decision making

1. Introduction

For solving many problems involving uncertainty and vagueness in engineering, social sciences,
economics, computers sciences and in several other areas, our traditional classical methods are not
always absolutely effective. These traditional and conventional mechanism of reasoning, modeling and
computing are usually crisp and deterministic. Zadeh introduced a successful tool known as fuzzy
sets [1], based on the membership function. The situations concerning with the vagueness and
uncertainty were also been tackled by the effective tool of probability. However, this tool is valuable
only when the occurrence of event is totally determined by the chance. In contrast with fuzzy set
theory and probability theory, some other theories like rough set theory, soft set theory, neutrosophic
set theory and an amalgamation of these theories have been studied ([1–7], and the references therein)
to deal with uncertainty.

In 1982, Pawlak [3] introduced the concept of rough sets as a mathematical tool for imprecise and
uncertain data. The basic advantage of this theory is that it does not involve any additional information
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about the data like the membership in fuzzy sets. The rough sets theory defined by Pawlak is based on
partition or an equivalence relation. Many applications of rough set theory, probability theory, and
rough set theory can be seen in the followings [4,5,8–13], these include applications in data mining,
machine learning, pattern recognition and knowledge discovery. The blending of rough sets with
fuzzy sets and referring them to graphs with concepts of fuzzy sets or rough sets can be seen in [14–17].
The above said theories have different approaches to tackle vagueness, imprecision and uncertainty.
Each said theory has its own limitations and restrictions. While dealing with such theories, a question
arises, how to handle multi-attributes? Molodtsov [18] introduced a novel concept of soft sets as a
powerful mathematical tool for dealing multi-attribute uncertainty. This newer concept has enough
parameters, which make it free from those difficulties which the contemporary theories have and
that makes it popular among the experts and researchers working in different fields of research like
operation research, probability theory, smoothness of functions and many more. Later on the theory
has been modified in some aspects to handle many problems [19–21]. A number of applications were
established and used regarding decision making problems and multi-attributes modeling using soft
sets, [22–27].

Feng et al. [28] introduced the concept of soft rough sets which is a blend of soft and rough
sets. Clearly, in a rough set model, an equivalence relation is used to form the granulation structure
of the universe while a soft set can be used to form the granulation structure of the universe in soft
rough model. Huge number of applications, presented by many researchers in data labeling problems,
data mining, attributes reduction problems, knowledge based systems, some can be seen in [23,29–42].

A graph can be used to represent many real life problems in computer science especially, which
are otherwise abstract. Euler, known as father of graph theory, was universally credited when he
settled a famous Kōnigsberg Bridge problem [43] in 1736. After that, many mathematicians applied
graph theory in finite fields, for details readers are referred to ([44], and the references therein).

The concept of soft graphs and their basic operations are defined in [45], which were required to
handle multi-attributes problems related with graph theory. A number of generalizations of soft graphs
are available in [46–48]. Soft sets and rough sets are different approaches that provide efficient tools
for modeling the problems involving uncertainty and granularity in information system. Graphs are
another powerful tool for representing the information by means of diagrams, matrices or relations.
Particularly soft graphs serve this purpose fruitfully. Apparently no direct link exists between above
said theories. However an effort is made by [49] to establish some kind of linkage and to discuss
the uncertainty in soft graphs. He introduced the concept of soft rough graphs, where instead of
equivalence classes, parameterized subsets of vertices and edges serve the aim of finding the lower
and upper approximations. In such process, some unusual situations may occur like the upper
approximation of a non-empty vertex/edge set may be empty. Upper approximation of a subset
K of vertices or edges may not contain K . In our present article we endeavour to search a positive
answer to above unusual situations and shortcomings. To strengthen the concept of soft rough graphs,
a tgeneralized approach is presented, called modified soft rough graphs (MSR-graphs), whose lower
and upper vertex and edge approximations are different from those of Noor [49] but the elemental
concepts are closely akin. It is shown that theMSR-graphs are more precise and finer than soft rough
graphs. Uncertainty measurement is an important issue in the field of rough set theory. There are
many approaches available in literature for reasoning with uncertainty. We have discussed uncertainty
measures associated withMSR-graphs such as information entropy and rough entropy. The notion
of information granules is an important topic in rough set theory, which gives an idea about the
objects which are indistinguishable from each other. Here the concept of granularity measures for
MSR-graphs has been introduced. The layout of this paper is as follows.

In Section 2, some basic concepts are revised. Section 3, is devoted to present the concept
of modified soft rough graphs (MSR-graphs) , lower, upperMSR-vertex approximations, lower,
upperMSR-edge approximations and the roughness membership function for modified soft rough
graphs. Moreover, the notion of MSR-equal relations is proposed and the related properties are
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explored. Section 4 is about uncertainty measurements associated with modified soft rough graphs
and it is shown how these are linked. Section 5 is concerned about the application ofMSR-graphs.
An algorithm is developed in a realistic way to compute the effectiveness of some diseases among
colleagues working in same office. Vertices are denoted by the 20 colleagues and the interaction of
these colleagues are presented by the edges. Measure of optimality ηρ(S)

(
xp
)

, and possibly measure

of optimality η
ρ(S)

(
xp
)

are defined with the help of lower and upperMSR-vertex approximations of
the given graph and using marginal fuzzy sets as weights corresponding to each person, the persons
at high risk for having given diseases are found. Computations are made using MATLAB program.
Results are shown in tables. Conclusion of the paper is presented in Section 6.

2. Preliminaries

In this section, we will review some relevant definitions and concepts which will helpful for rest
of the paper.

Definition 1 ([44]). A graph G∗ is a triple consisting of a vertex set V (G∗), an edge set E (G∗) , and a relation
that associates with each edge two vertices called its endpoints.

Definition 2 ([44]). An edge whose endpoints are equal, is called a loop and multiple edges are edges having
the same pair of endpoints.

Definition 3 ([44]). A graph G∗ is called simple if it has no loops or multiple edges. A simple graph is specified
by its vertex set and edge set, treating the edge set as a set of unordered pairs of vertices and writing e = xy or
e = yx for an edge e having end points x and y.

Definition 4 ([44]). A directed graph or digraph G∗ is a triple containing a vertex set V (G∗), an edge set
E (G∗) , and a function assigning each edge an ordered pair of vertices. The first vertex of the ordered pair is
called the tail of the edge and the second is called the head ; together, they are the endpoints.

Definition 5 ([20]). Let A be the set of parameters. A pair (ξ, A) is called a soft set over the set U of universe,
where ξ : A→ P (U) is a set valued mapping and P (U) is the power set of U.

Definition 6 ([28]). Let S = (ξ, A) be a soft set over U. Then, the pairA = (U, S) is called soft approximation
space. Based on the soft approximation space A, we define

aprxA (X) = {u ∈ U : ∃ α ∈ A, [u ∈ ξ (α) ⊆ X]} ,

aprxA (X) = {u ∈ U : ∃ α ∈ A, [u ∈ ξ (α) , ξ (α) ∩ X 6= ∅]}

assigning to any set X ⊆ U, the sets aprxA (X) and aprxA (X) , are called soft A- lower approximation and
soft A- upper approximation of X, respectively.

The sets
Pos (X) = aprxA (X) ,

Neg (X) = −aprxA (X) ,

and Bnd (X) = aprxA (X)− aprxA (X)

are called the softA-positive region, the softA-negative region, and the softA-boundary region of X, respectively.
If aprxA (X) = aprxA (X) , X is said to be soft A-definable; otherwise X is called a soft A-rough set.

Definition 7 ([45]). Let G∗ = (V, E) be a simple graph and A be the set of parameters. A quadruple
G = (G∗, ξ, ψ, A) is called a soft graph, where

(1) (ξ, A) is a soft set over V,
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(2) (ψ, A) is a soft set over E, and
(3) (ξ (α) , ψ (α)) is a subgraph of G∗, for all α ∈ A.

Definition 8 ([49]). A graph G = (G∗, F∗, K∗, F∗, K∗, A, X) is called soft rough graph if it satisfies the
following conditions:

(1) G∗ = (V, E) is a simple graph.
(2) A be a non-empty set of parameters.
(3) X be any non-empty subset of V.
(4) (F∗(X), F∗(X), A) be a soft rough set over V .
(5) (K∗(X), K∗(X), A) be a soft rough set over E.
(6) H∗(X) = (F∗(X), K∗(X)) and H∗(X) = (F∗(X), K∗(X)) are subgraphs of G∗. A soft rough graph

can be represented by G = 〈F∗, K∗, F∗, K∗, A, X〉 = {H∗(X), H∗(X)}.

3. Modified Soft Rough Graphs

In this section, based on the properties and usefulness of both rough sets and soft sets,
we introduce the notion of Modified Soft Rough Graphs(MSR-graphs). Basic properties and results
of such graphs are investigated and discussed which enable us to put these graphs to more effective
practical use.

Definition 9. Let G = (G∗, ξ,ψ,A) be a soft graph. Let µ : V → P (A) be a map such that
µ (x) = {α ∈ A : x ∈ ξ (α)}. Denote by Qm = (V, µ) and call it Modified soft rough vertex
(MSR-vertex)approximation space. Based on Qm = (V, µ), we define two sets, called the lowerMSR-vertex
approximation and the upperMSR-vertex approximation respectively as follows:

aprx
Qm

(X) = {x ∈ X : µ (x) 6= µ (y) for all y ∈ Xc}, Xc = V − X

and
aprxQm

(X) = {x ∈ V : µ (x) = µ (y) for some y ∈ X}

If aprx
Qm

(X) = aprxQm
(X) , then X is calledMS-vertex definable set and the graph

GQm := (V , E) is calledMS-vertex definable graph otherwise X is calledMSR-vertex set and GQm is
calledMSR-vertex graph. Define and denote the lower and upperMSR- vertex approximations of GQm by

GQm =
(

aprx
Qm

(X) , E
)

and
GQm =

(
aprxQm

(X) , E
)

for any X ⊆ V.

Definition 10. Let GQm := (V , E) be aMSR-vertex graph. Then the vertex roughness membership function
of X ⊆ V is denoted and defined as

ηGQm
(X) = 1− 1

2

1 +

∣∣∣∣aprx
Qm

(X)

∣∣∣∣∣∣∣aprx
Qm

(X)
∣∣∣
 .

It can be seen that if aprx
Qm

(X) 6= aprxQm
(X) then ηGQm

(X) = 0. So the graph GQm isMSR-vertex
definable graph. i.e., there is no roughness.



Symmetry 2018, 10, 145 5 of 20

Example 1. Let G = (G∗, ξ,ψ,A) be a soft graph over a simple graph G∗ = (V, E), where V =

{x1, x2, x3, x4, x5, x6, x7} and E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} as shown in Figure 1. Let (ξ, A) be
a soft set over V with A = {α1 , α2 , α3 , α4} as the set of parameters such that ξ (α1) = {x1, x3, x5, x7} ,
ξ (α2) = {x1, x4, x7} , ξ (α3) = {x2, x6} , ξ (α4) = {x2, x3, x5}, as shown in Table 1.

Let X = {x1, x2, x5, x6}, Xc = {x3, x4, x7}. Let µ : V → P (A) be a map such that µ (x) = {α : x ∈
ξ (α)}. So µ (x1) = {α1 , α2}, µ (x2) = {α3 , α4}, µ (x3) = {α1 , α4}, µ (x4) = {α2}, µ (x5) = {α1 , α4},
µ (x6) = {α3} and µ (x7) = {α1 , α2}. Here µ (x1) = {α1 , α2} = µ (x7) and µ (x3) = {α1 , α4} = µ (x5) .

Therefore

aprx
Qm

(X) = {x2, x6}

and

aprxQm
(X) = {x1, x2, x3, x5, x6, x7}

showing that aprx
Qm

(X) 6= aprxQm
(X), so GQm := (V , E) isMSR-vertex graph, where

GQm =
(

aprx
Qm

(X) , E
)
= ({x2, x6} , {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10})

and
GQm =

(
aprxQm

(X) , E
)
= ({x1, x2, x3, x5, x6, x7} , {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}) .

Furthermore, ηGQm
(X) = 1− 1

2

1 +

∣∣∣∣aprx
Qm

(X)

∣∣∣∣∣∣∣aprx
Qm

(X)
∣∣∣
 = 1− 1

2
[
1 + 2

6
]
= 0.333.

Table 1. Tabular representation of soft set (ξ, A).

x1 x2 x3 x4 x5 x6 x7

α1 1 0 1 0 1 0 1
α2 1 0 0 1 0 0 1
α3 0 1 0 0 0 1 0
α4 0 1 1 0 1 0 0

Figure 1. G∗ = (V, E).

Definition 11. Let G = (G∗, ξ,ψ,A) be a soft graph. Let λ : E → P (A) be a map such that
λ (e) = {α ∈ A : e ∈ ψ (α)}. Denote by Rm = (E, λ) and call it Modified soft rough edge approximation
space. Based on Rm = (E, λ), we define two sets, called the lowerMSR-edge approximation and the upper
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MSR-edge approximation respectively as follows:

aprx
Rm

(Y) = {e ∈ Y : λ (e) 6= λ ( f ) for all f ∈ Yc}, Yc = E−Y

and
aprxRm

(Y) = {e ∈ Y : λ (e) = λ ( f ) for some f ∈ Y}

If aprx
Rm

(Y) = aprxRm
(Y) , then Y is calledMS-edge definable set and the graph G

Rm
:= (V, E) is

calledMS-edge definable graph otherwise Y is calledMSR-edge set and G
Rm

is calledMSR-edge graph.
Define and denote the lower and upperMSR- edge approximations of G

Rm
by

GRm =
(

V, aprx
Rm

(Y)
)

and
GRm =

(
V, aprxRm

(Y)
)

for any Y ⊆ E.

Definition 12. Let G
Rm

:= (V, E) be aMSR-edge graph. Then the edge roughness membership function of
Y ⊆ E is denoted and defined as

ηGRm
(Y) = 1− 1

2

1 +

∣∣∣aprx
Rm

(Y)
∣∣∣∣∣∣aprxRm

(Y)
∣∣∣
 .

It can be seen that if aprx
Rm

(Y) 6= aprxRm
(Y) then ηGRm

(Y) = 0. So the graph G
Rm

isMSR-edge
definable graph. i.e., there is no roughness.

Example 2. From Example 1, let (ψ, A) be a soft sets over E as shown in Table 2.
Let Y = {e2, e3, e4, e6, e9, e10} ⊆ E then

aprx
Rm

(Y) = {e2, e3, e4, e6, e9, e10}

and
aprxRm

(Y) = {e2, e3, e4, e6, e9, e10}

Clearly aprx
Rm

(Y) = aprxRm
(Y) , for Y ⊆ E, So Y isMS−edge definable set and the graph

G
Rm

:= (V, E) isMS-edge definable graph . Also

ηGRm
(Y) = 1− 1

2

1 +

∣∣∣aprx
Rm

(Y)
∣∣∣∣∣∣aprxRm

(Y)
∣∣∣
 = 0.

That is, there is no roughness.

Table 2. Tabular representation of soft set (ψ, A).

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

α1 0 0 1 1 0 1 0 0 1 0
α2 0 1 0 1 0 0 1 0 0 1
α3 1 0 1 0 1 0 1 1 0 0
α4 0 0 1 0 0 1 1 0 1 1
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Definition 13. The roughness membership function η
G∗m

(G∗∗) of any subgraph graph G∗∗ = (X, Y) can be
found by

η
G∗m

(G∗∗) = 1− 1
2


∣∣∣aprx

Qm
(X)

∣∣∣∣∣∣aprxQm
(X)

∣∣∣ +
∣∣∣aprx

Rm
(Y)
∣∣∣∣∣∣aprxRm

(Y)
∣∣∣
 .

Definition 14. A soft graph G = (G∗, ξ, ψ, A) is calledMS-definable if

(1) X isMS-vertex definable i.e., aprx
Qm

(X) = aprxQm
(X) and

(2) Y isMS-edge definable i.e., aprx
Rm

(Y) = aprxRm
(Y) .

Definition 15. A soft graph G = (G∗, ξ,ψ,A) is calledMSR- graph if

(1) X isMSR-vertex set i.e., aprx
Qm

(X) 6= aprxQm
(X)

(2) Y isMSR-edge set i.e., aprx
Rm

(Y) 6= aprxRm
(Y) .

AMSR-graph is denoted by Gm =
(
G

Qm
, G

Rm

)
.

Definition 16. By a lower and upper approximations of theMSR- graph Gm =
(
G

Qm
, G

Rm

)
, we mean

aprx (Gm) =
(

aprx
Qm

(X) , aprx
Rm

(Y)
)

and aprx (Gm) =
(

aprxQm
(X) , aprxRm

(Y)
)

respectively,
for any X ⊆ V and Y ⊆ E.

Proposition 1. Let G = (G∗, ξ,ψ,A) be a soft graph such that Qm = (V, ξ) and Rm = (E, ψ) represents
respectively, theMSR- vertex approximation space andMSR-edge approximation space, then
(i) aprx (G∗) = G∗ = aprx (G∗)
(ii) aprx (∅) = aprx (∅) = ∅
(iii) If G1 ⊆ G2 then aprx (G1) ⊆ aprx(G2) and aprx (G1) ⊆ aprx(G2)

(iv) aprx (G1 ∩ G2) ⊆ aprx (G1) ∩ aprx (G2)

(v) aprx (G1 ∩ G2) = aprx (G1) ∩ aprx (G2)

(vi) aprx (G1 ∪ G2) ⊇ aprx (G1) ∪ aprx (G2)

(vii) aprx (G1 ∪ G2) = aprx (G1) ∪ aprx (G2) , where G1 and G2 are subgraphs of G∗.

Proof. (i) and (ii) directly follows from the definitions ofMSR-vertex/edge approximations.
(iii) Let G1 ⊆ G2 so (X1, Y1) ⊆ (X2, Y2) or X1 ⊆ X2 and Y1 ⊆ Y2. Let (x, e) ∈ aprx (G1) =(

aprx
Qm

X1, aprx
Rm

Y1

)
such that x ∈ aprx

Qm
X1 and e ∈ aprx

Rm
Y1. That is, x ∈ X1 with µ (x) 6= µ (z)

for all z ∈ Xc
1 and e ∈ Y1 with λ (e) 6= λ (h) for all h ∈ Yc

1 . Since X1 ⊆ X2 and Y1 ⊆ Y2, so x ∈ X2

with µ (x) 6= µ (z) for all z ∈ Xc
2 and e ∈ Y2 with λ (e) 6= λ (h) for all h ∈ Yc

2 . Thus x ∈ aprx
Qm

X2

and e ∈ aprx
Rm

Y2 showing that (x, e) ∈
(

aprx
Qm

X2, aprx
Rm

Y2

)
= aprx(G2). Hence G1 ⊆ G2 implies

aprx (G1) ⊆ aprx(G2). Similarly one can show if G1 ⊆ G2 then aprx (G1) ⊆ aprx(G2).
(iv) Since (G1 ∩ G2) is contained in both G1 and G2, so by (iii) aprx (G1 ∩ G2) ⊆ aprx (G1) and

aprx (G1 ∩ G2) ⊆ aprx (G2) . Therefore aprx (G1 ∩ G2) ⊆ aprx (G1) ∩ aprx (G2) .
(v) Since G1 ∩ G2 ⊆ G1 and G1 ∩ G2 ⊆ G2 so by (iii) aprx (G1 ∩ G2) ⊆ aprx (G1) and

aprx (G1 ∩ G2) ⊆ aprx (G2). Hence aprx (G1 ∩ G2) ⊆ aprx (G1) ∩ aprx (G2) . Now for reverse
inclusion, we suppose (x, e) ∈ aprx (G1) ∩ aprx (G2) . Which implies (x, e) ∈ aprx (G1) and
(x, e) ∈ aprx (G2) such that x ∈ aprx

Qm
X1, e ∈ aprx

Rm
Y1 and x ∈ aprx

Qm
X2, e ∈ aprx

Rm
Y2.

So x ∈ X1 with µ (x) 6= µ (y) for all y ∈ XC
1 and x ∈ X2 with µ (x) 6= µ (z) for all z ∈ XC

2
implies x ∈ (X1 ∩ X2) with µ (x) 6= µ (y) for all y ∈ XC

1 ∪ XC
2 . Which shows x ∈ (X1 ∩ X2)

with µ (x) 6= µ (y) for all y ∈ (X1 ∩ X2 )
c, so x ∈ aprx

Qm
(X1 ∩ X2). Similarly we can show

e ∈ aprx
Rm

(Y1 ∩Y2). So (x, e) ∈ aprx (G1 ∩ G2) . Thus aprx (G1) ∩ aprx (G2) ⊆ aprx (G1 ∩ G2) .
Hence aprx (G1 ∩ G2) = aprx (G1) ∩ aprx (G2) .

(vi) Since G1 ⊆ G1 ∪ G2 and G2 ⊆ G1 ∪ G2 so by (iii) , aprx (G1) ⊆ aprx (G1 ∪ G2) and
aprx (G2) ⊆ aprx (G1 ∪ G2) . Hence aprx (G1 ∪ G2) ⊇ aprx (G1) ∪ aprx (G2) .
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(vii) It is easy to show, by using (iii) , that aprx (G1) ∪ aprx (G2) ⊆ aprx (G1 ∪ G2) .
Conversely suppose that (x, e) ∈ aprx (G1 ∪ G2) =

(
aprxQm

(X1 ∪ X2), aprxRm
(Y1 ∪Y2)

)
then

x ∈ aprxQm
(X1 ∪ X2) and e ∈ aprxRm

(Y1 ∪Y2) . Which implies x ∈ (X1 ∪ X2) with µ (x) = µ (y)
for some y ∈ (X1 ∪ X2 ) and e ∈ (Y1 ∪Y2) with λ (e) = λ ( f ) for some f ∈ (Y1 ∪Y2 ) . So x ∈ X1

with µ (x) = µ (y) for some y ∈ X1 or x ∈ X2 with µ (x) = µ (y) for some y ∈ X2. Both these
conditions shows x ∈ aprxQm

X1 or x ∈ aprxQm
X2. So x ∈

(
aprxQm

X1 ∪ aprxQm
X2

)
. Similarly,

it can be shown that e ∈
(

aprxRm
Y1 ∪ aprxRm

Y2

)
. Thus (x, e) ∈

(
aprxQm

X1, aprxRm
Y1

)
or

(x, e) ∈
(

aprxQm
X2, aprxRm

Y2

)
. Which means (x, e) ∈ aprx (G1) or (x, e) ∈ aprx (G2) . That is,

(x, e) ∈ aprx (G1) ∪ aprx (G2) . Thus aprx (G1 ∪ G2) ⊆ aprx (G1) ∪ aprx (G2) .

Remark 1. In the proof (v) of Proposition 1, we have proved aprx (G1 ∩ G2) = aprx (G1) ∩ aprx (G2). If we
want to prove this result by the approach used by [49], we have to employ a strong condition on soft sets (ξ, A)

and (ψ, A) to be intersection complete. However in our approach, no such condition is required.
Now in the following, we define some relations associated with modified soft rough graphs.

Definition 17. Let a soft graph be G = (G∗, ξ,ψ,A) . Then for twoMSR- graphs Gm =
(
G

Qm
, G

Rm

)
and

G∗m =
(

G∗
Qm

, G∗
Rm

)
, we define

(i) Gm ' G∗m if and only if aprx (Gm) = aprx (G∗m)
(ii) Gm h G∗m if and only if aprx (Gm) = aprx (G∗m)
(iii) Gm ≈ G∗m if and only if aprx (Gm) = aprx (G∗m) and aprx (Gm) = aprx (G∗m) .

The above relations (i) to (iii) are respectively called, the lowerMSR- equal relation, the upperMSR-
equal relation and theMSR- equal relation.

Proposition 2. The relations ', h and ≈ defined onMSR- graphs are equivalence relations.

Proposition 3. Suppose G = (G∗, ξ,ψ,A) is soft graph defined on simple graph G∗ = (V, E). Then for two
MSR- graphs Gm =

(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
, the following hold:

(i) Gm h G∗m if and only if Gm h Gm ∪ G∗m h G∗m.
(ii) If G1m h G∗

1m and G2m h G∗
2m then G1m ∪ G2m h G∗

1m ∪ G∗
2m.

(iii) If Gm ⊆ G∗m then
(
Gm ∪ (G∗m)

c) h G∗,
(iv) If Gm ⊆ G∗m and Gm h G∗, then G∗m h G∗.

Proof. (i) Let Gm h G∗m then aprx (Gm) = aprx (G∗m) . However, from Proposition 1(vii),
aprx (Gm ∪ G∗m) = aprx (Gm) ∪ aprx (G∗m) which implies that aprx (Gm ∪ G∗m) = aprx (Gm) ∪
aprx (G∗m) = aprx (Gm) ∪ aprx (Gm) = aprx (Gm) = aprx (G∗m), so Gm h Gm ∪ G∗m and Gm ∪ G∗m h
G∗m showing that Gm h Gm ∪ G∗m h G∗m. Conversely suppose that Gm h Gm ∪ G∗m h G∗m. Since h is an
equivalence relation, so it is transitive. Thus, Gm h G∗m.

(ii) The proof is similar to the proof of (i).
(iii) Suppose Gm h G∗m then aprx (Gm) = aprx (G∗m) . Then by Proposition 1(vii) ,

aprx
(
(Gm) ∪ (G∗m)

c) = aprx (Gm) ∪ aprx (G∗m)
c = aprx (G∗m) ∪ aprx (G∗m)

c = aprx
(
G∗m ∪ (G∗m)

c) =

aprx (V, E) = aprx (G∗) . Therefore
(
Gm ∪ (G∗m)

c) h G∗.
(iv) Suppose Gm ⊆ G∗m and Gm h G∗, then by definition aprx (Gm) = aprx (G∗) . which

implies aprx (G∗) = aprx (Gm) ⊆ aprx (G∗m). So aprx (G∗) ⊆ aprx (G∗m) . However, G∗m ⊆ G∗ shows
aprx (G∗m) ⊆ aprx (G∗) . Hence aprx (G∗m) = aprx (G∗) or equivalently G∗m h G∗.

Proposition 4. Suppose G = (G∗, ξ,ψ,A) is soft graph. Then for twoMSR- graphs Gm =
(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
, the following hold:

(i) Gm ' G∗m if and only if Gm ' Gm ∩ G∗m h G∗m.
(ii) G1m ' G∗

1m and G2m ' G∗
2m then G1m ∩ G2m ' G∗

1m ∩ G∗
2m.
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(iii) If Gm ⊆ G∗m then
(
Gm ∩ (G∗m)

c) ' ∅, where G∗ = (V, E) is a simple graph.
(iv) If Gm ⊆ G∗m and Gm ' G∗, then G∗m ' G∗.

Proof. Proof follows from Proposition 1 and 3.

Remark 2. In order to show the similar results in Propositions 2 and 3, in case of soft rough graphs of proposed
in [49], the soft sets (ξ, A) and (ψ, A) must be intersection complete but in case of our proposed model of
modified soft rough graphs, no such condition is required on (ξ, A) and (ψ, A).

Proposition 5. Suppose Gm =
(
G

Qm
, G

Rm

)
be aMSR- graph and G = (GQ

, GR) be a soft rough graph
then aprx (G) ⊆ aprx (Gm) .

Proof. To prove aprx (G) ⊆ aprx (Gm) , we have to prove only aprx (X) ⊆ aprx (Xm) and aprx (Y) ⊆
aprx (Ym), where X ⊆ V and Y ⊆ E.

Let x ∈ aprx(X) then x ∈ ξ (α) ⊆ X for α ∈ A, which shows x ∈ X and α ∈ µ (x) . Suppose on
contrary, x /∈ aprx (Xm) . Then µ (x) = µ (y) for some y ∈ XC = V − X. Since α ∈ µ (x) so α ∈
µ (y) which implies y ∈ ξ (α) . However, ξ (α) ⊆ X so y ∈ X. Which is a contradiction because
y ∈ XC. So x ∈ aprx (Xm) . Hence aprx (X) ⊆ aprx (Xm) . Similarly if e ∈ aprx(Y) then we can show
aprx (Y) ⊆ aprx (Ym) . Hence we conclude that aprx (G) ⊆ aprx (Gm) .

Remark 3. From above Proposition aprx (G) ⊆ aprx (Gm), it is clear that granules of information inMSR-
graph Gm =

(
G

Qm
, G

Rm

)
are finer than soft rough graph G = (GQ

, GR) . ThusMSR- graph are more robust
than soft rough graph.

4. Uncertainty Measurement in Modified Soft Rough Graphs

Different membership functions for reasoning with uncertainty has been proposed in
literature [50–53]. In this section, some uncertainty measurements such as information entropy,
naive granularity measure, elementary entropy and rough entropy of modified soft rough graphs are
proposed. Further, some theoretical properties are obtained and investigated.

Definition 18. Let Qm = (V, µ) be MSR- vertex approximation space and α ∈ A, then the set
C

Qm
(α) = {µ (x) : x ∈ ξ (α)} is called the soft association of parameter α ∈ A.

Definition 19. Let Qm = (V, µ) beMSR- vertex approximation space and α ∈ A. Then the soft neighborhood
of α is denoted N

Qm
(α) , and is defined as N

Qm
(α) = ∩ {µ (x) : x ∈ ξ (α)} = ∩C

Qm
(α).

Definition 20. Let Qm = (V, µ) and Q∗m= (V, µ∗) be twoMSR- vertex approximation spaces with
(i) For all µ (x) ∈ C

Qm
(α) , there exists µ∗ (x) ∈ C∗

Qm
(α) such that µ (x) ⊆ µ∗ (x) and

(ii) For all µ∗ (x) ∈ C∗
Qm

(α) , there exists µ (x) ∈ C
Qm

(α) such that µ (x) ⊆ µ∗ (x) . Then we say Q∗m is
finer than Qm and denote it by Qm � Q∗m.

Note that a similar definition can be made forMSR-edge approximation spaces.

Proposition 6. Let Qm = (V, µ) and Q∗m= (V, µ∗) be twoMSR- vertex approximation spaces such that
Qm � Q∗m. Then N

Qm
(α) ⊆ N

Q∗m
(α).

Proof. (i) Suppose z ∈ N
Qm

(α) = ∩ {µ (x) : x ∈ ξ (α)} = ∩C
Qm

(α). Then z ∈ µ (x) for any µ (x) ∈
C

Qm
(α) . By Definition 4.3, for any µ∗ (x) ∈ C∗

Qm
(α) , there exists µ (x) ∈ C

Qm
(α) such that z ∈ µ (x) ⊆

µ∗ (x) . Hence z ∈ µ∗ (x) , for any µ∗ (x) ∈ C∗
Qm

(α) . Thus, z ∈ ∩C∗
Qm

(α) = N
Q∗m

(α) . Consequently,
N

Qm
(α) ⊆ N

Q∗m
(α) .
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Proposition 7. Let Rm = (E, λ) and R∗m= (E, λ∗) be two MSR- edge approximation spaces such that
Rm � R∗m. Then N

Rm
(α) ⊆ N

R∗m
(α).

Proof. The proof is similar to the proof of Proposition 6.

Note: From now onwards, Gm =
(
G

Qm
, G

Rm

)
will represent aMSR-graph with Qm = (V, µ)

and Rm = (E, λ) as MSR- vertex approximation space and MSR- edge approximation space,
respectively unless stated otherwise.

Definition 21. Let Gm =
(
G

Qm
, G

Rm

)
be aMSR-graph. Then the neighborhood information entropy of Gm

is defined

ηEnt (Gm) = ∑
x∈V

1
|V|

[
1−

∣∣N
Qm

(α)
∣∣

|V|

]
+ ∑

e∈E

1
|E|

[
1−

∣∣N
Rm

(α)
∣∣

|E|

]

Proposition 8. Suppose Gm =
(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
are two MSR-graphs such that

Qm � Q∗m and Rm � R∗m. Then ηEnt (Gm) ≥ ηEnt (G
∗
m) .

Proof. From Propositions 6 and 7, we have N
Qm

(α) ⊆ N
Q∗m

(α) and N
Rm

(α) ⊆ N
R∗m

(α) .
Which implies

∑
x∈V

1
|V|

[
1−

∣∣N
Qm

(α)
∣∣

|V|

]
≥ ∑

x∈V

1
|V|

1−

∣∣∣N
Q∗m

(α)
∣∣∣

|V|

 and

∑
e∈E

1
|E|

[
1−

∣∣N
Rm

(α)
∣∣

|E|

]
≥ ∑

e∈E

1
|E|

1−

∣∣∣N
R∗m

(α)
∣∣∣

|E|

 .

∑
x∈V

1
|V|

[
1−

∣∣N
Qm

(α)
∣∣

|V|

]
+ ∑

e∈E

1
|E|

[
1−

∣∣N
Rm

(α)
∣∣

|E|

]
≥ ∑

x∈V

1
|V|

1−

∣∣∣N
Q∗m

(α)
∣∣∣

|V|

+

∑
e∈E

1
|E|

1−

∣∣∣N
R∗m

(α)
∣∣∣

|E|

 .

Which shows that ηEnt (Gm) ≥ ηEnt (G
∗
m) .

Remark 4. The neighborhood information entropy ηEnt (Gm) attains the maximum value 2− 1
|V| −

1
|E| when∣∣N

Qm
(α)
∣∣ = 1 =

∣∣N
Rm

(α)
∣∣ and achieves the minimum values 0 when

∣∣N
Qm

(α)
∣∣ = |V| and

∣∣N
Rm

(α)
∣∣ =

|E| , for α ∈ A.

Definition 22. Let Gm =
(
G

Qm
, G

Rm

)
be aMSR-graph. Then the naive granularity measure of Gm is defined

ηGran (Gm) =
1
|V| ∑

x∈V

∣∣N
Qm

(α)
∣∣

|V| +
1
|E| ∑

e∈E

∣∣N
Rm

(α)
∣∣

|E| .

Proposition 9. Suppose Gm =
(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
are two MSR-graphs such that

Qm � Q∗m and Rm � R∗m. Then ηGran (Gm) ≤ ηGran (G
∗
m) .
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Proof. The proof is similar to the proof of Proposition 8.

Remark 5. The granularity measure ηGran (Gm) achieves the maximum value 2 when
∣∣N

Qm
(α)
∣∣ = |V| and∣∣N

Rm
(α)
∣∣ = |E| and attains the minimum values 1

|V| +
1
|E| when

∣∣N
Qm

(α)
∣∣ = 1 =

∣∣N
Rm

(α)
∣∣ , for α ∈ A.

Proposition 10. Let Gm =
(
G

Qm
, G

Rm

)
be aMSR-graph. Then ηEnt (Gm) + ηGran (Gm) = 2.

Proof.

ηEnt (Gm) + ηGran (Gm) =

[
∑

x∈V

1
|V|

[
1−

∣∣N
Qm

(α)
∣∣

|V|

]
+ ∑

e∈E

1
|E|

[
1−

∣∣N
Rm

(α)
∣∣

|E|

]]
+[

1
|V| ∑

x∈V

∣∣N
Qm

(α)
∣∣

|V| +
1
|E| ∑

e∈E

∣∣N
Rm

(α)
∣∣

|E|

]

=
1
|V| |V|+

1
|E| |E| = 2

Definition 23. Let Gm =
(
G

Qm
, G

Rm

)
be aMSR-graph. Then the neighborhood elementary entropy of Gm

is defined

ηN-Ent (Gm) = −
1
|V| ∑

x∈V
log2

∣∣N
Qm

(α)
∣∣

|V| − 1
|E| ∑

e∈E
log2

∣∣N
Rm

(α)
∣∣

|E| .

Proposition 11. Suppose Gm =
(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
are two MSR-graphs such that

Qm � Q∗m and Rm � R∗m. Then ηN-Ent (G
∗
m) ≤ η

N-Ent
(Gm) .

Proof. From Propositions 6 and 7, we have N
Qm

(α) ⊆ N
Q∗m

(α) and N
Rm

(α) ⊆ N
R∗m

(α) for α ∈ A.
Which shows

− 1
|V| ∑

x∈V
log2

∣∣NQm (α)
∣∣

|V| ≥ − 1
|V| ∑

x∈V
log2

∣∣∣N
Q∗m

(α)
∣∣∣

|V| and

− 1
|E| ∑

e∈E
log2

∣∣NRm (α)
∣∣

|E| ≥ − 1
|E| ∑

e∈E
log2

∣∣∣N
R∗m

(α)
∣∣∣

|E|

− 1
|V| ∑

x∈V
log2

∣∣NQm (α)
∣∣

|V| − 1
|E| ∑

e∈E
log2

∣∣NRm (α)
∣∣

|E| ≥ − 1
|V| ∑

x∈V
log2

∣∣∣N
Q∗m

(α)
∣∣∣

|V| − 1
|E| ∑

e∈E
log2

∣∣∣N
R∗m

(α)
∣∣∣

|E|
Consequently, ηN-Ent (G

∗
m) ≤ η

N-Ent
(Gm) .

Remark 6. The neighborhood granularity measure η
N-Ent

(Gm) achieves the maximum value log2 |V|+
log2 |E| , when

∣∣N
Qm

(α)
∣∣ = 1 =

∣∣N
Rm

(α)
∣∣ and attains the minimum values 0 when

∣∣N
Qm

(α)
∣∣ = |V|

and
∣∣N

Rm
(α)
∣∣ = |E| , for α ∈ A.

Definition 24. Gm =
(
G

Qm
, G

Rm

)
be aMSR-graph. Then the neighborhood rough entropy of Gm is defined

ηNR-Ent (Gm) = − ∑
x∈V

1
|V| log2

|1|∣∣N
Qm

(α)
∣∣ − ∑

e∈E

1
|E| log2

|1|∣∣N
Rm

(α)
∣∣ .

Proposition 12. Suppose Gm =
(
G

Qm
, G

Rm

)
and G∗m =

(
G∗

Qm
, G∗

Rm

)
are two MSR-graphs such that

Qm � Q∗m and Rm � R∗m. Then ηNR-Ent (Gm) ≤ ηNR-Ent (G
∗
m) .
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Proof. The proof is similar to the proof of Proposition 11 by using Proposition 6, Proposition 7 and
Definition 24

Remark 7. The neighborhood rough entropy ηNR-Ent (Gm) achieves the maximum value log2 |V|+ log2 |E| ,
when

∣∣N
Qm

(α)
∣∣ = |V| and

∣∣N
Rm

(α)
∣∣ = |E| . Also ηNR-Ent (G) attains the minimum values 0 when∣∣N

Qm
(α)
∣∣ = 1 =

∣∣N
Rm

(α)
∣∣ , for any α ∈ A.

Proposition 13. Suppose Gm =
(
G

Qm
, G

Rm

)
be a MSR-graph. Then ηN−Ent (Gm) + ηNR-Ent (Gm) =

log2 |V|+ log2 |E| .

Proof.

ηN−Ent (Gm) + ηNR-Ent (Gm) =

[
− 1
|V| ∑

x∈V
log2

∣∣N
Qm

(α)
∣∣

|V| − 1
|E| ∑

e∈E
log2

∣∣N
Rm

(α)
∣∣

|E|

]
+[

− ∑
x∈V

1
|V| log2

|1|∣∣N
Qm

(α)
∣∣ − ∑

e∈E

1
|E| log2

|1|∣∣N
Rm

(α)
∣∣
]

= −
[

1
|V| ∑

x∈V
log2

[ ∣∣N
Qm

(α)
∣∣

|V|
∣∣N

Qm
(α)
∣∣
]]
−
[

1
|E| ∑

e∈E
log2

[ ∣∣N
Rm

(α)
∣∣

|E|
∣∣N

Rm
(α)
∣∣
]]

= −
[

1
|V| ∑

x∈V
log2

[
1
|V|

]]
−
[

1
|E| ∑

e∈E
log2

[
1
|E|

]]
= log2 |V|+ log2 |E| .

5. Application of Modified Soft Rough Graphs

In this section, an algorithm is formulated for decision making problems based on modified soft
rough graphs. To show the application of modified soft rough graphs in decision making, an example
is constructed. Suppose V = {x1, x2, . . . , xn} be the set of n objects(persons) and A = {α1 , α2 , . . . , αm}
be the set of m parameters(diseases). Let G∗ = (V, E) be a simple graph whose vertex set is V and
edge set is E. Let (ξ, A) and (ψ, A) be two soft sets over V and E respectively such that for each i,
Gi = ( (αi) , (αi)) is a subgraph of G∗ showing that G = (G∗, ξ,ψ,A) is a soft graph. Where

ξ (αi) =
{

xj ∈ V : xj may have viral disease αi
}

, and (1)

ψ (αi) =
{

xixj ∈ E : xi with disease αi has interaction with xj
}

(2)

For basic evaluation, let S = {S1, S2, . . . , Sr} be the set of r experts and let (ρ, S) be a soft set over
V. Let Qm = (V, µ) beMSR-vertex approximation space then aprx

Qm
(ρ (Si)) and aprxQm

(ρ (Si))

can be calculated by

aprx
Qm

(ρ (Si)) = {x ∈ Si : µ (x) 6= µ (y) for all y ∈ Sc
i }, Sc

i = V − Si and

aprxQm
(ρ (Si)) = {x ∈ V : µ (x) = µ (y) for some y ∈ Si}.

Now we compute the fuzzy functions ηρ(S)
(
xp
)

and η
ρ(S)

(
xp
)

given by

ηρ(S)
(

xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

and η
ρ(S)

(
xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

.



Symmetry 2018, 10, 145 13 of 20

where χ
ρ(Sk)

and χ
ρ(Sk)

are a kind of indicator functions, defined by

χ
ρ(Sk)

(
xp
)

=

{
1 if xp is in aprx

Qm
(ρ (Sk))

0, otherwise
and

η
ρ(S)

(
xp
)

=

{
1 if xp is in aprxQm

(ρ (Sk))

0, otherwise

Now the marginal weights for each xp, can be computed by;

δ
(

xp
)

=
1
n
[
δr
(

xp
)
+ δc

(
xp
)]

for p = 1, 2, 3, . . . , n, where

δr
(

xp
)

=
k

∑
i=1

χE

(
xpxi

)
, is the measures of interaction of xpwith xk, and

δc
(

xp
)

=
k

∑
i=1

χE

(
xixp

)
is the measures of interaction of xkwith xp.

where χE is an indicator function on E, defined by

χE

(
xkxp

)
=

{
1 if xkxp form an edge
0, otherwise

.

Finally, we calculate the evaluation function given by Θ(xp) =
1
2

[
ηρ(S)

(
xp
)
+ η

ρ(S)

(
xp
)]

δ
(
xp
)

.
The person xk is at high risk if xk = max

i
{Θ(xi)} , i = 1, 2, 3, . . . , n. One can apply this algorithms

in other related problems.

5.1. Pseudo Code

Step 1: Input is the soft graph G = (G∗, ξ,ψ,A).
Step 2: FindMSR-vertex approximation space Qm = (V, µ).
Step 3: Find lowerMSR-vertex approximation aprx

Qm
(ρ (Si)) \ \ according to Definition 9.

Step 4: Find upperMSR-vertex approximation aprxQm
(ρ (Si)) \ \ according to Definition 9.

Step 5: Compute the fuzzy functions ηρ(S)
(
xp
)

and η
ρ(S)

(
xp
)

given by

ηρ(S)
(

xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

and η
ρ(S)

(
xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

.

Step 6: Apply the marginal function δ for all vertices xp, given by

δ
(

xp
)
=

1
n
[
δr
(
xp
)
+ δc

(
xp
)]

Step 7: Apply the evaluation function Θ for all vertices xp, given by

Θ(xp) =
1
2

[
ηρ(S)

(
xp
)
+ η

ρ(S)

(
xp
)]

δ
(
xp
)

.

The vertex xk is optimal if xk = max
i
{Θ(xi)} , i = 1, 2, 3, . . . , n.
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5.2. Example

Suppose during the annual medical checkup of persons working in an office, five viral diseases
found in a group of 20 people V = {x1, x2, x3, . . . , x20}, through different sources such as body fluids
contaminated with a virus, having sex with an infected person, eating contaminated food, breathing air
polluted by a virus and insect bite. The above process of infection results in a diversity of symptoms
that vary in severity and character, depending upon the individual factor and the kind of viral
infection. Suppose A = {α1, α2, α3, α4, α5} be the set of parameters such that α1 represents “ body
fluids contaminated with a virus”, α2 represents “entering of virus in human body through having sex
with an infected person”, α3 represents “entering of virus in human body through eating contaminated
food”, α4 represents “entering of virus in human body through breathing air polluted by a virus” and
α5 represents “entering of virus in human body through insect bite” . It is also assumed that a person
xj may have more than one viral disease. Suppose G∗ be a simple digraph having vertex set V of
20 persons and edge set E.

Let (ξ, A) be a soft set over V as shown in Table 3 such that

ξ (αi) =
{

xj ∈ V : xj may have viral disease αi
}

,

ξ (α1) = {x4, x5, x6, x7, x8, x9, x16, x18, x19, x20},

ξ (α2) = {x1, x2, x4, x10, x12, x13,x14, x15, x19}

ξ (α3) = {x2, x3, x5, x8, x9, x11, x17, x20}

ξ (α4) = {x1, x6, x7, x8, x13, x15, x17, x18, x19},

ξ (α5) = {x2, x3, x5, x9, x10, x11, x13, x18, x19}.

Table 3. Tabular representation of soft set (ξ, A).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

α1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1
α2 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0
α3 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1
α4 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0
α5 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0

Let (ψ, A) be a soft set over E such that

ψ (αi) =
{

xixj ∈ E : xi with disease αi has interaction with xj
}

,

ψ (α1) =

{
x8x19, x8x20, x8x7, x8x4, x8x6, x4x5, x4x8, x4x18, x4x20, x16x4, x16x5, x16x6, x16x7, x16x19, x16x20

x16x4, x7x5, x7x16, x5x8, x5x9, x6x7, x6x16, x6x18, x6x19, x6x20, x6x5, x6x4, x7x9, x7x20

}
(3)

ψ (α2) =


x4x2, x4x13, x2x4, x1x15, x1x19, x1x14, x10x12, x10x13, x10x15, x10x19, x10x1, x10x2, x12x1

x14x4, x14x10, x14x12, x12x10, x12x15, x14x1, x14x2, x12x2, x12x4, x12x19,
x14x13, x14x15, x14x19, x15x10, x15x14

 , (4)

ψ (α3) =


x2x17, x3x8, x3x9, x3x20, x3x11, x5x11, x5x3, x8x17, x11x17, x15x17, x15x18, x15x19, x15x8, x17x2,

x8x9, x9x2, x9x3, x9x11, x9x20, x9x5, x11x2, x11x3, x11x20, x11x5, x17x11, x17x20,
x20x2, x20x5, x20x11, x20x9, x17x3

 , (5)

ψ (α4) =

{
x1x7, x1x8, x1x17, x6x1, x6x13, x6x17, x7x8, x7x1, x13x1, x13x6, x13x8, x17x18, x17x19,

x18x19, x18x1, x18x13, x18x15, x18x17

}
ψ (α5) = {x2x11, x2x13, x2x19, x3x18, x3x19, x3x10, x5x19, x9x10, x10x18, x10x3, x19x13, x19x9}
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Let µ : V → P (A) be a map such that µ (x) = {α : x ∈ ξ (α)}. Then µ (x1) = {α2 , α4} =

µ (x15) , µ (x2) = {α2 , α3 , α5}, µ (x3) = {α3 , α5} = µ (x11) , µ (x4) = {α1 , α2 , α4}, µ (x5) = {α1 , α3 , α5} =
µ (x9) = µ (x20) , µ (x6) = µ (x7) = {α1 , α4}, µ (x8) = {α1 , α3 , α4}}, µ (x10) = {α2 , α5}, µ (x12) =

µ (x14) = {α2} and µ (x13) = {α2 , α4 , α5}. Let (ρ, S) be the soft set (can be seen in Table 4) which
shows whether a staff member is at high risk or not, giving the values 1 or 0 respectively. Where S is
the set of 3 expert doctors .i.e., S = {S1, S2, S3}.

Table 4. Tabular representation of (ρ, S).

Patients
Doctors

S1 S2 S3

x1 1 0 1
x2 1 0 0
x3 1 0 0
x4 1 0 0
x5 0 1 0
x6 0 1 0
x7 0 0 0
x8 1 0 0
x9 0 1 1
x10 1 0 1
x11 0 0 0
x12 0 0 0
x13 0 0 1
x14 0 0 0
x15 0 0 0
x16 0 0 1
x17 0 1 0
x18 1 1 0
x19 0 1 1
x20 1 0 1

A MATLAB code is developed to perform all the calculations. Let Qm = (V, µ) beMSR-vertex
approximation space. If we consider the technique proposed in [49] then we have the following lower
and upper approximations as

aprx
Qm

(Si) = {x ∈ V : ∃ α ∈ A, [x ∈ ξ (α) ⊆ Si]} ,

aprxQm
(Si) = {x ∈ V : ∃ α ∈ A, [x ∈ ξ (α) , ξ (α) ∩ Si 6= ∅]}

That is, aprx
Qm

(ρ (S1)) = aprx
Qm

(ρ (S2)) = aprx
Qm

(ρ (S3)) = {} and

aprxQm
(ρ (S1)) = aprxQm

(ρ (S2)) = aprxQm
(ρ (S3)) = V.

From these lower and upper approximations, we get no information with uncertainty about the
patients from experts. Now we apply lower and upper approximations of our proposed model.

aprx
Qm

(ρ (Si)) = {x ∈ Si : µ (x) 6= µ (y) for all y ∈ Sc
i }, Sc

i = V − Si

That is,
aprx

Qm
(ρ (S1)) = {x2, x4, x8}

aprx
Qm

(ρ (S2)) = {x17, x18, x19}

aprx
Qm

(ρ (S3)) = {x10, x13, x16, x19}
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and
aprxQm

(ρ (Si)) = {x ∈ V : µ (x) = µ (y) for some y ∈ Si}.

gives
aprxQm

(ρ (S1)) = {x1, x2, x3, x4, x5, x8, x9, x10, x11, x15, x18, x20}

aprxQm
(ρ (S2)) = {x5, x6, x7, x9, x15, x17, x18, x19, x20}

aprxQm
(ρ (S3)) = {x1, x5, x9, x10, x13, x15, x16, x19, x20}.

It can be seen that aprx
Qm

(ρ (Si)) ⊆ aprxQm
(ρ (Si)) for i = 1, 2, 3. That is, the properties of

Pawlak [3] rough sets have been translated into the proposed model whereas it cease to happen in
model proposed in [49]. Now we compute the fuzzy functions ηρ(S)

(
xp
)

and η
ρ(S)

(
xp
)

given by

ηρ(S)
(

xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

and η
ρ(S)

(
xp
)
=

1
r

r

∑
k=1

χ
ρ(Sk)

(
xp
)

.

Which implies

ηρ(S) (x1) = 0, ηρ(S) (x2) =
1
3

, ηρ(S) (x3) = 0, ηρ(S) (x4) =
1
3

, ηρ(S) (x5) = 0

ηρ(S) (x6) = 0 = ηρ(S) (x7) , ηρ(S) (x8) =
1
3

, ηρ(S) (x9) = 0, ηρ(S) (x10) =
1
3

,

ηρ(S) (x11) = 0, ηρ(S) (x12) = 0, ηρ(S) (x13) =
1
3

, ηρ(S) (x14) = 0, ηρ(S) (x15) = 0,

ηρ(S) (x16) =
1
3

, ηρ(S) (x17) =
1
3

, ηρ(S) (x18) =
1
3

, ηρ(S) (x19) =
2
3

, ηρ(S) (x20) = 0.

η
ρ(S) (x1) =

2
3

, η
ρ(S) (x2) =

1
3

, η
ρ(S) (x3) =

1
3

, η
ρ(S) (x4) =

1
3

, η
ρ(S) (x5) = 1

η
ρ(S) (x6) =

1
3
= η

ρ(S) (x7) = η
ρ(S) (x8) , η

ρ(S) (x9) = 1, η
ρ(S) (x10) =

2
3

,

η
ρ(S) (x11) =

1
3

, η
ρ(S) (x12) = 0, η

ρ(S) (x13) =
1
3

, η
ρ(S) (x14) = 0, η

ρ(S) (x15) = 1,

η
ρ(S) (x16) =

1
3

, η
ρ(S) (x17) =

1
3

, η
ρ(S) (x18) =

2
3

, η
ρ(S) (x19) =

2
3

, η
ρ(S) (x20) = 1.

Clearly G = (G∗, ξ,ψ,A) is a soft graph. The interaction of all persons with each other and the
marginal fuzzy sets for rows and columns are given in Table 5.

Now we calculate the evaluation function given by

Θ(xp) =
1
2

[
ηρ(S)

(
xp
)
+ η

ρ(S)

(
xp
)]

δ
(
xp
)

.

By simple calculations, it is found that

Θ (x1) = 0.250, Θ (x2) = 0.200, Θ (x3) = 0.108, Θ (x4) = 0.117, Θ (x5) = 0.275,

Θ (x6) = 0.175, Θ (x7) = 0.083, Θ (x8) = 0.217, Θ (x9) = 0.275, Θ (x10) = 0.375,

Θ (x11) = 0.067, Θ (x12) = 0.000, Θ (x13) = 0.167, Θ (x14) = 0, Θ (x15) = 0.275,

Θ (x16) = 0.150, Θ (x17) = 0.183, Θ (x18) = 0.225, Θ (x19) = 0.467, Θ (x20) = 0.175

For a threshold β ∈ [0, 1] , it can be seen that the all person xi are at optimum for all i, in which
Θ (xi) ≥ β. The person xk is at high risk if xk = max

i
{Θ(xi)} , i = 1, 2, 3, . . . , n. So by calculations,

the person x19 is best optimal.
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Table 5. Tabular representation of interaction of all persons.

Persons x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 δr

x1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 6

x2 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 5

x3 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 7

x4 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 6

x5 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 5

x6 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 10

x7 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 6

x8 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 7

x9 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 6

x10 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 8

x11 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 5

x12 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 6

x13 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3

x14 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 8

x15 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 6

x16 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 6

x17 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 6

x18 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 5

x19 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2

x20 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4

δc 9 8 6 7 11 4 6 5 4 5 6 2 7 10 5 2 7 6 13 9
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6. Conclusions

A possible fusion of three concepts rough sets, soft sets and graphs, known as soft rough graphs,
is introduced by [49]. During this attempt, some shortcomings become the part of the theory. In order
to remove these shortcomings, a new approach is being introduced to study the roughness of soft
graphs and the resulting graphs are called modified soft rough graphs. The theory of approximation
of a soft graph is also investigated to obtainMSR-vertex graph andMSR-edge graph. The related
properties of both soft rough graphs and modified soft rough graphs are surveyed. It is shown that the
MSR-graphs are more precise and finer than soft rough graphs. Different uncertainty measures like
information entropy and granularity measures are discussed forMSR-graphs. A real life example
of decision making problem is formulated to optimized the diagnosis process of some diseases in
an office where we have compared the robustness of the proposed model with soft rough graphs
proposed by Noor in [49]. An algorithm is developed in a realistic way to compute the effectiveness
of diseases among colleagues working in same office. The set of edges has been used to describe the
interaction between the persons. This interaction may cause the spreadness of diseases among the staff
members. Using the concepts of lower/upperMSR-vertex approximations, the fuzzy sets ηρ(S) and

η
ρ(S) are introduced, while the marginal fuzzy sets δr

(
xp
)

and δc
(

xp
)

are used to find the measure of
interaction of any staff member xi with xj and vice versa. Finally, the evaluation function has pointed
out the optimal carriers of diseases. All the calculations are made on MATLAB program.

We hope that our results in this article would constitute a base for DM problems of real life
based on soft rough graphs. In future work it is also under consideration, how the upper and lower
MSR-edge approximations can be used to optimized the algorithm.
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