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Abstract: In this paper, we propose a particle-filter-based superpixel (PFS) segmentation method that
extends the original tracking problem as a region clustering problem. The basic idea is to approximate
superpixel centers by multiple particles to obtain high intra-region similarity. Specifically, we firstly
use a density cluster to initialize single-group particles and introduce the association rule for mining
other initial candidate particles. In propagation, particles are transferred to neighboring local regions
by a moving step aiming to update local candidate particles with a lower energy cost. We evaluate all
particles on the basis of their cluster similarity and estimate the largest particles as the final superpixel
centers. The proposed method can locate cluster centers in diverse feature space, which alleviates
the risk of a local optimum and produces better segmentation performance. Experimental results on
the Berkeley segmentation 500 dataset (BSD500) demonstrate that our method outperforms seven
state-of-the-art methods.

Keywords: superpixel segmentation; particle filtering; density cluster; associate rule;
intra-region similarity

1. Introduction

Superpixel segmentation is a popular field for computer vision. On the one hand, superpixel
segmentation can generate basic elements with local structure information, which can improve the
performance of other vision tasks. On the other hand, it can significantly accelerate the computational
process for other higher-level vision applications. Hence, as a preprocessing step, superpixel
segmentation has been widely applied in computer vision, such as in saliency detection [1–3],
image and video segmentation [4–6], object proposal extraction [7], object detection and recognition [8],
and target tracking [9].

Existing superpixel segmentation methods can be mainly classified into two categories: graph-
and clustering-based methods. Graph-based methods construct a node adjacency graph on the basis
of the similarity of adjacent pixels. Then, they treat the superpixel as a graph split task, which is
modeled as a variety of energy minimization problems such as those in [10–15]. Because Ncut [10]
utilizes the eigen-decomposition to approximate the superpixel partition as a non-deterministic
polynomial-time (NP)-hard problem, this will be time consuming and have poor boundary adherence
when increasing the image scale and superpixel number. Other graph-based methods mainly utilize
combinational optimization to solve this type of energy minimization problem and could reduce
the computational complexity efficiently. However, these methods model a superpixel only on the
basis of the similarity of adjacent nodes, without considering any seed points’ location, and generate
superpixels in irregular [11] or with low boundary adherence [10,12,13]. Clustering-based methods
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assign initial centers in images evenly and update cluster centers until convergence; examples
are TurboPixels (TP) [16], simple linear iterative clustering (SLIC) [17], lazy random walks [18],
higher-order superpixels [19], distance-metric-based superpixel segmentation [20], Linear Spectral
Clustering (LSC) [21] and Simple Non-Iterative Clustering (SNIC) [22]. These methods employ initial
seed points as the anchor points to estimate the position of superpixel centers and label neighboring
pixels in local regions. However, these methods either simply perturb initial seeds to the regions with
lower gradient or plainly update seed points by weighting the average of corresponding pixel members.
This tends to fall into a local optimum solution, which results in inferior segmentation performance.

Inspired by [23], we propose a novel superpixel segmentation method based on the particle
filter framework. The core of the particle filter is to use a series of sample points to approximate
the probability distribution of the tracking target. The framework can identify the target object by
some particles even if other particles lose the object. Hence, the particle filter is robust in terms of the
noise and clutter background. In our problem, we treat superpixel segmentation as a multiple-region
particle filter problem. For each local region, we select R particles to track a superpixel center. In other
words, we use candidate particles to approximate the true superpixel center, which achieves much
higher intra-region similarity. Specifically, we first distribute R groups of particle seeds evenly into
lattices. Then we propagate each particle toward that with the lowest energy cost. The observation
step evaluates each candidate particle by its cluster similarity and estimates the current iteration’s
superpixel centers as the lowest centers. The superpixel can be generated by labeling the pixel with the
nearest center index. Our framework can avoid becoming stuck in the local optimum and achieves the
best segmentation performance compared with seven state-of-the-art methods, regarding the Berkeley
segmentation 500 dataset (BSD500) segmentation benchmark. Figure 1 gives some subjective results of
the proposed particle-filter-based superpixel (PFS).

Figure 1. Results produced by our particle-filter-based superpixel (PFS) method. The numbers of
superpixels are about 300, 500, and 1000 in regions separated by two white parallel lines.

Our main contributions are the following:

• We propose a novel superpixel segmentation method based on the particle filter, which extends
the original tracking problem to region clustering. Multiple particles are used to approximate
superpixel centers, which could highly dispersedly be located in feature space to generate a much
lower intra-cluster distance.

• Moving and perturbing processes are introduced to guide the propagation step of those particles,
which reformulates the particle filter to fit our region cluster problem.

• The segmentation performance of PFS outperforms seven state-of-the-art methods on a
quantitative benchmark.

Our paper is organized as follows: Existing works are reviewed in Section 2. The particle filter is
briefly introduced in Section 3. The proposed method is detailed in Section 4, and the experimental
evaluation is presented in Section 5. The conclusion of this paper is summarized in Section 6.
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2. Related Work

Graph-based methods define superpixel segmentation as the problem of searching cut edges in a
graph, which could be constructed as an energy minimization problem. They describe image pixels
and their similarity relationship via an undirected adjacent graph, which consists of pixel nodes and a
similarity edge between adjacent pixels. Shi et al. firstly treat the pixel clustering as a graph partition
called normalized cuts (NC) [10]. They consider not only intra-class similarity, but also inter-class
dissimilarity, and allow regularly shaped superpixel regions to be generated. However, they employ
the eigen-decomposition for the similarity matrix to approximately solve the Ncut cost function,
which results in a high computational cost due to the increase in the numbers of image pixels and
superpixels. Felzenszwalb et al. [11] then propose a minimum-spanning-tree-based superpixel method
(FH). Instead of deleting cut edges, the method gradually adds the minimum weighted edge into the
graph to generate a set of disjointed minimum spanning forests. It greedily adds edges into the graph
until reaching stop conditions and significantly reduces the computational cost. However, the method
generates irregular superpixel regions as the result of ignoring the compactness constraint. In order
to obtain regular superpixel segmentation, Moore et al. [12,13] propose two generation methods for
regular superpixel regions on the basis of horizontal and vertical lattice constraints. They model
the superpixel segmentation as a node labeling problem. They either search multiple horizontal or
vertical optimum paths by dynamic programming [12] or partition the graph nodes by graphcut [13].
Veksler et al. [14] utilize multiple overlapping initial patches to constrain the labeling pixel regions.
This not only reduces the label space for each pixel, but also shrinks the labeling range. The authors
utilize α-expansion to obtain regular superpixel regions efficiently. These graph-based methods
efficiently utilize combinational optimization technology to reduce the computational complexity.
However, they ignore the seed location and heavily depend on similarity between adjacent nodes,
which results in inferior boundary adherence. Clustering-based methods have been paid much more
attention in recent years. These methods distribute initial seeds in the image evenly and update pixel
labels and cluster centers alternatively until convergence. For example, Levinshtein et al. [16] propose
a regular superpixel segmentation method based on constructing geometric flow with uniformly
distributed seeds (TP). TP gradually evolves the boundary toward the region with the higher local
gradient, which can be optimized by a level set framework [24]. However, it cannot guarantee
much higher boundary adherence because of the lack of stability and efficiency for the level set
method. Achanta et al. propose a popular method, SLIC [17]. The method evenly distributes initial
seeds and labels each pixel on the basis of color and location distance in the constrained searched
region. It updates the cluster center and pixel labels alternatively until convergence. This algorithm can
maintain superpixel compactness and reduce computational cost. Benefitting from the advantage of fast
K-means algorithm [17], Peng [19] and Zhang [20] also propose a higher-order energy-based method
and a new distance-function-based method, respectively. The higher-order energy-based method
adds a pre-segment to constrain the superpixel boundary of the SLIC on the basis of the higher-order
energy, while the distance-function-based method introduces several more sophisticated distance
functions to maintain superpixel compactness and boundary adherence. In addition, Shen et al. [18]
integrate the compactness constraint into lazy random walks by updating seeds via the weighted
average of the labeled pixels, which can generate a regular superpixel region. As a variant of SLIC,
LSC [21] integrates spectral clustering and the K-means algorithm into a uniform framework, obtaining
globally perceptual superpixel regions. Meanwhile, SNIC [22] introduces non-iterational clustering to
enhance the connectivity of superpixel regions, which could overcome the limitation of underlying
disconnected regions generated by SLIC-like methods. Most of the clustering-based methods above
alternatively update initial seeds and pixel labels in an energy minimization problem. However,
these methods only redefine superpixel centers as the weighted average of their corresponding pixels,
instead of using much more accurate guidelines. In contrast, our method introduces particle filtering
to approximate superpixel centers by multiple candidate particles. We guide the selection of cluster
centers by considering the local density of pixels and the moving direction explicitly.
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3. Particle Filtering

Particle filtering uses multiple weighted sample points to approximate the probability distribution,
which is robust in terms of the noise background and partial occlusion. The target object can be
described as Xt. Zt denotes all the observations z1, . . . , zt up to time t. Particle filters are used to
solve problems in which the posterior density P(Xt|Zt) and the observation density p(zt|Xt) are
non-Gaussian.

Particle filtering is used to approximate the probability distribution by a weighted sample set
S = {(sn, πn)|n = 1, . . . , N}. Each sample s represents one hypothetical state of particles, with a
corresponding discrete sampling probability π.

The evolution of the sample set is denoted by propagating each sample according to a system
model. Each element of the sample set is weighted in terms of observations, and N samples are drawn
with replacement by choosing a particular sample with probability πn = p(zt|Xt = sn

t ). The mean
state of particles is estimated at each step by

E[S] =
N

∑
n=1

πnsn. (1)

Particle filtering provides a robust optimization framework, as it models uncertainty. It can
consider multiple state hypotheses simultaneously. Inspired by its advantages, we model superpixel
segmentation as a multiple-region particle filter. We treat each superpixel center as a tracking
target and denote candidate centers as particles. We aim to use multiple group candidate centers
(particles) to capture superpixel cores. Hence, the problem of superpixel segmentation is modeled as a
multiple-region particle filtering problem.

4. Superpixel Segmentation via Particle Filtering

In this section, we introduce the particle-filter-based superpixel segmentation, which mainly
consists of three steps: (1) selecting the initial particles; (2) propagating particles toward the center
with lower energy cost; and (3) evaluating the observed particles on the basis of their energy cost,
and selecting the lowest-energy particles as superpixel centers. The flowchart is shown in Figure 2.

Figure 2. The pipeline of our algorithm. Top row illustrates particle filtering processing for superpixel
segmentation. Bottom row shows intermediate results at each iteration.
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4.1. Problem Formulation

As superpixel segmentation is a problem of selecting the target sample set that partitions pixels in
different regions, it can be described as an energy minimization problem. In terms of feature space,
the distance measure can be defined to construct the energy function to assign the pixel labels into the
corresponding sample. In other words, the label of each pixel depends on the minimum similarity
between its feature and that of the sample component, which can be detailed as follows.

Generally, a superpixel can be intuitively presented as a color-consistent and spatially compact
connected region. Thus a pixel feature can be described as a five-vector, that is, (l, a, b, x, y).
The pixel color is represented as [l a b]T to perceive the appearance similarities. The pixel position
[x y]T constrains the image patch with its neighboring region. For five-dimensional color and
position inconsistency, the spatial distance weight is added to normalize the Euclidean distance,
which effectively guarantees superpixels of similar size.

We let oi ∈ Ω(i = 1, . . . , N) represent the pixel and zk ∈ Z(k = 1, . . . , K) represent the Kth sample.
We calculate the distance between the image pixel and its sample component to partition the image.
D is defined in Equation (2) as the five-dimensional Euclidean distance between the pixels and sample:

dlab =‖oi − zk‖ =
√
(li − lk)2 + (ai − ak)2 + (bi − bk)2

dxy =‖oi − zk‖ =
√
(xi − xk)2 + (yi − yk)2

Dik =
√

d2
lab + ω · d2

xy

(2)

where the weight ω constraints the compactness of the superpixel. The larger ω is, the more
compact the superpixels are. In this paper, we select ω = 1.75 to balance the color consistency
and space compactness.

Then, we model the superpixel segmentation as a similarity maximization problem, which can be
treated as an energy minimization as follows:

min D(Ω, Z) =
n

∑
i=1

(ωik

K

∑
k=1

Dik)

s.t. oi ∈ Ω, zk ∈ Z, ω ∈ [0, 1]

(3)

where ωik is the association weight of data oi with the cluster zk, ωik = 0 if oi /∈ zk, and ωik = 1
if oi ∈ zk; then Dik = min{Di1, Di2, . . . , DiK}, and the superpixel boundary will be segmented.

We constrain the pixel search range as is done in SLIC [17]. Image pixels are calculated in the
region of 2S× 2S to select their category, where S =

√
N/K, N is the number of image pixels, and K

is the superpixel number. Minimizing the energy function (Equation (3)) generally introduces an
expectation–maximization (EM)-style framework; that is, pixel label assignment and center updating
are performed alternatively. Existing methods first evenly distribute centers into images and disturb
them toward the lower-local-gradient region. Then they assign pixels to the nearest center and
recalculate centers with the corresponding group pixels. However, these methods become easily stuck
in the local optimum solution, which results in the inferior superpixel boundary adherence.

In order to solve this problem, we make an attempt to reduce the energy cost on the basis of particle
filtering. In the next section, we detail the proposed superpixel segmentation with particle filtering.

4.2. Initial Particles’ Selection

In order to generate K superpixel regions, we initial candidate center particles in the image
uniformly at fixed horizontal and vertical intervals S. Inspired by [25], the center will have a higher
local density compared with its neighboring pixels. Therefore, we initialize the center particle on
the basis of the density function and distance information. The distance between pixels oi and oj is
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denoted as dij =
√
(xi1 − xj1)2 + . . . + (xim − xjm)2, where m = (1, . . . , 5). A radius threshold dc is

defined to describe the density of oi, which is calculated by Equation (4):

ρ(oi) =
n

∑
j=1

χ(dij − dc) (4)

where dij < dc, χ(dij − dc) = 1, or otherwise χ(dij − dc) = 0; dc is assigned as the average of the
maximum and minimum distances among pixels. Image pixels are partitioned by applying this density
function. If ρ(oi) > ρ(oj), oi is more likely as a center candidate than oj.

Although a particle may have the highest local density, it may not be the point with the lowest
energy cost. Hence, on the basis of local density alone, one center for each superpixel region will
easily become stuck in the local optimum. The lower the cost of the energy function, the higher
the superpixel performance with boundary adherence. In order to obtain the segmentation with
the lower energy cost, we assign multiple initial particles for each patch; this allows selection of the
best center particle with the lowest energy cost. After the first group of center particles have been
identified, we use the associate rule to identify the rest. They should obey the following assumptions:
(1) any two candidate centers should be far away; (2) candidate centers all have a high local density.
Therefore, the first center particle zk acts as a reference to others; dzk j is the distance between oj and zk;
and dzk l = α ∗ {ρzk l |l ∈ Sk}+ (1− α) ∗ {dzk l |l ∈ Sk}. This equation signifies that we select, as the next
candidate center, the point that has a high local density and is far from the reference zk in region Sk
with radius dc; α is the weight of the distance and density function and is assigned as 0.7 in this paper.
Other (R− 1) candidate centers are selected by Equation (5):

Sk = {oj ∈ 2S ∗ 2S, dzk j ≤ dc}
zk+1 = {oj ∈ Sk|max{dzk l}}

(5)

where k = 2, 3, . . . , K. This suggests that all candidate centers are far away and with high local density,
as shown in Figure 3. On the interval S, the first center is assigned with the highest density in each
block. Other (R− 1) groups are selected with the association rule. We select the next center in the
region with radius dc. This has a high local density and is far from the existing previous center.
Obeying this regularity, all candidate particles are successively obtained. We denote them as follows:

Zr = {zr
1, . . . , zr

K}, r = 1, 2, . . . , R (6)

(1) (2)

(3) (4)

Figure 3. Location for initial candidate particles. The data is classified into four blocks with three
groups of particles. (1) The highest density is assigned as the first particle z1

1 (red point); the pixel
is the second particle z2

1 (blue point) with the farthest distance and highest density in range of z1
1;

the particle of the third group z3
1 (yellow point) is captured by the same associate rule in terms of z1

1
and z1

2. Then, all particles of the first block are labeled. On the basis of the same rule, particles of blocks
(2–4) can be assigned by the same rule.
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On the basis of the density function and association rule, initial particles (R× K) are selected.
Every block contains candidate particles with a different color, but one group of particles has the same
color, which is beneficial for the propagation step.

4.3. Propagation

We propagate particles toward the particle with the lower energy cost that is more likely to be the
best superpixel center. We introduce movement and perturbation optimization to propagate particles.

4.3.1. Movement

For each superpixel in tth time propagation, we define the best particle Zr1(t) as that with

D(Ω, Zr1(t)) = min{D(Ω, Z1(t)), . . . , D(Ω, ZR(t))}.

Movement propagation updates other particles toward the best particle on the basis of
Equation (7):

Zr(t + 1) = Zr(t) + ε · (Zr1(t)− Zr(t)) (7)

where r 6= r1, r = 1, . . . , R; ε is a random number in (0, 2). As shown in Figure 4, other particles move
toward the best particle.

Figure 4. Moving candidate particles toward the best particle, which is calculated with the lowest
energy function. Here, zk

2 and zk
3 move toward the best particle zk

1 with a random step.

4.3.2. Perturbation

The movement process leads to a concentrated distribution of particles. Hence, it is critical to
generate diverse particles via a perturbation process. In this section, we show how other particles
are perturbed toward the region with a high density distribution—except that with the lowest energy
function. The process is shown in Figure 5. Specifically, particles are disturbed toward a much higher
density distribution for every dimension. Given the pixels’ region Ok(t) of particle zk, the density of
zk(t) is defined in the following equation after tth time propagation:

ρ(ykm(t)) = ∑
oj∈Ok(t)

χ(xjm − ykm(t)) (8)

where m = 1, . . . , 5, ykm(t) is the mth component of zk(t), and xjm is the mth component of oj, which
belongs to the region of Ok(t) at tth time propagation; χ(xjm − ykm(t)) = 1 if χ(xjm − ykm(t)) < 0,
and χ(xjm − ykm(t)) = −1 otherwise. For calculating the size of the propagation step, the sum of −1 is
denoted as ρ(ykm(t))L, or otherwise ρ(ykm(t))R, in Equation (8).
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Figure 5. Particles perturbing toward the region with much higher density distribution.

If ρ(ykm(t)) > 0, the density function states that ykm(t) of zk(t) should move to the left while
pixels of Ok(t) are concentrated in the left of ykm(t). Otherwise, the density function states that ykm(t)
of zk(t) should move to the right while pixels of Ok(t) are concentrated in the right of ykm(t).

So, ρ(ykm(t)) > 0 represents |ρ(ykm)L| < ρ(ykm)R; the perturbation occurs by Equation (9):

ykm(t + 1) = ykm(t)− εm · βm (9)

where εm is a random number in (0, 1), and

βm(t) = (1− ρ(ykm(t)L)

ρ(ykm(t)R)
) · Rmax,

Rmax = ykm(t)− avg(xjm(t)R).

Here, Rmax represents the difference between the particle component and average pixels located
in its right region.

And ρ(ykm(t)) < 0 represents |ρ(ykm)L| > ρ(ykm)R; the perturbation occurs by Equation (10):

ykm(t + 1) = ykm(t)− εm · βm (10)

where εm is a random number in (0, 1), and

βm(t) = (1− ρ(ykm(t)R)

ρ(ykm(t)L)
) · Lmax,

Lmax = ykm(t)− avg(xjm(t)L).

Here, Lmax represents the difference between the particle component and average pixels located
in its left region.

4.4. Evaluation and Estimation

In the evaluation step, we calculate the energy cost for each group of particles via Equation (3).
Then, in the estimation step, we need to identify the superpixel center, that is, the best group,
to complete the segmentation task. It is clear how to identify the best candidates from the particle
group with the lowest energy cost. This will lead to more tightness in the region clustering in terms of
feature space. The iteration will terminate when the stop conditions are satisfied.

Our superpixel generation algorithm (Algorithm 1) is shown as follows.
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Algorithm 1 Algorithm for PFS.
Require:

Image I;

superpixel number K;

number of initial particle groups R;

max iteration number T;

stop condition ε
Ensure:

Superpixel label S.
1: //Initialization step
2: Select a group of particles Z1

1 = {z1
1, . . . , z1

k} according to the local density distribution.
3: for r = 2 to R do

4: Select the rth group of particles {zr
k, k ∈ {1, . . . , K}} in respective region by the associate rule.

5: end for
6: //Optimization iterations
7: while |E∗(t)− E∗(t + 1)| > ε or t < T do

8: // Selection step
9: Select the best particle group z1

k(t)(k = 1, . . . , K) by crossover selection.
10: // Propagation step
11: for r = 2 to R do

12: Move toward the best particle group Z1(t) by Equation (7).
13: for k = 2 to K do

14: Perturb particles Zr(t) according to Equations (9) and (10).
15: end for
16: end for
17: // Observation step
18: Evaluate each particle group on the basis of their energy cost (Equation (3)).
19: // Estimation step
20: Estimate superpixel centers Z∗(t) as the best particle group with lowest energy cost E∗(t).
21: end while
22: Generate superpixel S.

4.5. Selection

In the tracking problem, the selection step aims at redistributing the samples according to their
weights. A sample with a large weight may be selected more frequently. Others with relatively low
weights may be chosen with fewer opportunities or not at all. This could save computing resources.
In our problem, we aim to relocate the best particle group in the selection step to propagate these
particles with a clearer direction. Thus, we propose a crossing process to complete the particle selection.

The best observed particle group obtained by propagation is that with the lowest energy cost
among the candidate particles. However, it may not have the minimum intra-cluster distance in each
group. Our aim is to exchange particles in different groups. Specifically, we replace the best center
particle with that which has the minimum intra-cluster distance among the candidates, as described in
Equation (11). Then, selected particles recombine into a new group, which would further decrease
Equation (3).

Z1(t) = {min{D(Ω, zr
1(t))}, . . . , min{D(Ω, zr

K(t))}}. (11)

The crossing selection is shown in Figure 6. The best particle group (square) is generated at the
tth iteration. Particles with different shapes belong in different groups. Icons with the same shape
describe particles in the same group for superpixels. This shows that the intra-cluster distance of
each best center particle does not make it minimal in the category. For example, the blue disk has the
minimal intra-cluster distance in the second group (second column) and would be moved into the first
group after this process. After updating pixel labels, Equation (3) would be decreased again.
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Figure 6. Crossing selection. Particles in the same row represent centers in different superpixels.
Particles in the same column denote different candidate centers in one superpixel. Particles in the first
group are the best group centers for image superpixels.

5. Experiment

In order to evaluate the proposed method, we performed our method on the Berkeley
segmentation 500 dataset (BSD500). Five hundred natural images are contained in this dataset. We also
compared seven state-of-the-art superpixel algorithms with our method: NC [10], TP [16], FH [11],
SLIC [17], LSC [21], Regularity preserved superpixels (RPS) [26] and SNIC [22]. We ran segmentation
code of these methods, which was made available by the authors.

5.1. Performance Evaluation

Superpixel algorithms have different evaluation criteria with image segmentation. The common
metrics are under-segmentation error (UE) [27], boundary recall (BR) [28], and achievable segmentation
accuracy (ASA) [29]. We use {Gi|i = 1, 2, . . . , M} to denote the segmentation of ground truth and use
{Sj|j = 1, 2, . . . , K} to represent results of superpixel algorithms.

(1) Boundary recall: BR is described as the contact ratio of ground truth boundaries that fall within
the nearest superpixel boundaries. The best superpixel segmentation algorithm has a good ability to
adhere well to object boundaries.

BR =
∑i∈GTb

logical(minj∈SGb ‖ xi − xj ‖< 2)
GTb

(12)

where SGb and GTb represent the superpixel region and ground truth. A high value of BR indicates that
the segmentation result overlaps with the ground truth and very few true edges were missed. From the
BR measurement, our superpixel algorithm outperformed all state-of-the-art methods and produced
an increasing superpixel number, as shown in Figure 7, particularly at a lower density. In terms of the
BR rate, for 100 superpixels, our method outperformed the best method among all compared methods,
that is, SNIC [22], by almost 3%. The reason is that our method can use multiple candidate particles
efficiently to approximate superpixel centers with a much higher regional consistency. It also benefits
from the guidance of our propagation and selection steps, which alleviate the risk of the energy cost
becoming stuck into local optimum. However, SNIC [22] updates its centers on the basis of weighting
average pixel members and tends to stop at the local optimum.

(2) Under-segmentation error: To map the image boundary, a superpixel only overlapping one
object is used to evaluate the segmentation method. A better superpixel generation algorithm would
try to avoid the under-segmentation areas. This error is computed in terms of the bleeding of the
superpixel region over ground truth and is used to penalize the superpixel that could not be aligned to
the ground truth boundary tightly. The formula is expressed by
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UE =
1
N
[

M

∑
i=1

( ∑
{Sj ||Sj−Gi |>B}

Area(Sj))− N] (13)

where N is the total number of pixels, and Area(Sj) is the area of the superpixel Sj. Lost pixels
are denoted as |Sj − Gi|. Then, B represents the minimum area of overlapping. In our experiment,
the value of B was 5% of Sj. A lower UE represents that fewer superpixels straddle over multiple
object regions. In other words, irregular superpixels tend to yield a higher UE. Figure 7 gives the UE
of superpixel segmentation by the compared methods. It can be seen that our method outperformed
the compared state-of-the-art methods. This demonstrates that our superpixels not only had high
boundary adherence, but also had regions of regular and compact shape.

(3) Achievable segmentation accuracy: This measure evaluates whether the object is recognized [29]
and computes the highest achievable accuracy by overlapping the area of the superpixel with ground
truth; the method is defined by

ASA =
∑j arg maxi |Sj ∩ Gi|

∑i |Gi|
. (14)

Figure 7. Performance evaluation in terms of boundary recall (BR), under-segmentation error (UE) and
achievable segmentation accuracy (ASA).

A higher ASA signifies that more objects are recognized correctly in an image. The value of the
ASA was calculated by averaging all of the images in the BSD500 and plotting against the number of
superpixels, as shown in Figure 7. Our algorithm outperformed the compared methods and generated
the most correct overlapping regions, which had the same label, shared between superpixels and
ground truth. In particular, along with the increasing numbers of superpixels, our method obtained
higher segmentation performance. This suggests that multiple particles could more easily approximate
superpixel centers with higher regional consistency under dense superpixel conditions.

We also discuss the effect of the number of particles. The BR for different particles numbered
under 100, and 500 superpixels are shown in Table 1. It can be seen that the performance increased
with the increasing of the particle number. PFS obtained the best BR for five particles. Meanwhile,
the performance tended to be stable when R > 5. This was because it is difficult to converge few
particles for the same region to the lowest energy cost. Oppositely, more particles associated with the
same local region will converge to the same optimal solution. In order to obtain balance between the
performance and runtime, we selected the particle number R = 5 in our experiments.

We selected five particles in our method and compared the runtime with that of the state-of-the-art
methods for 200 superpixels with 321× 481 on an Intel 2.33 GHz CPU with a 4 GB RAM desktop.
The time is shown in Table 2. It suggests that our method obtains comparable running times to the
state-of-the-art methods. However, the multiple groups of particles with perturbation and crossing
increase the running time.
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Table 1. The effect of particle number in terms of boundary recall.

No. Particles 1 3 5 7 9

K=100 0.7262 0.7281 0.7290 0.7285 0.7285
K=500 0.9144 0.9209 0.9298 0.9288 0.9289

Table 2. Average running time (seconds per image).

Method Ours LSC SLIC SNIC NC TP RPS FH

Time (s) 2.45 0.35 0.33 0.11 44.73 6.88 13.6 0.689
Code matlab + C C++ C++ C++ matlab C++ matlab C++

5.2. Visual Comparison

Figure 8 shows some subjective results for the proposed PFS method. It can be seen that
our method has several advantages, as follows: (1) It obtains high object-boundary adherence;
(2) it maintains a fine structure of the object boundary; (3) it generates a regular and compact superpixel
region. Specifically, for the duck image, the duck has a similar appearance to the sky, particularly for
the wings. Our method can extract the region boundary between these well and yields less region
leakage, which verifies the ability for weak boundary preserving of the PFS. Furthermore, for the
branches, our method also maintains the region boundary, which demonstrates that our method
can preserve the fine structure of the object region. This is because multiple-PFS segmentation can
efficiently locate seeds in long and narrow object regions, making it superior to regular lattices or
local-gradient-perturbation-based seed-location methods. In addition, our method can yield regular
and compact superpixels even in the clutter background. In short, these advantages verify our
method’s robustness and efficiency.

Figure 8. Some subjective results for our particle-filter-based superpixel (PFS) segmentation.
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Figure 9 shows some subjective results compared between our method and seven state-of-the-art
methods. As can be seen, PFS outperformed all compared methods in the complex and clutter
background. For example, for the bird image, in order to adhere to the boundary of the wing
region, FH [11] pays the price of losing regularity. Although other seed-based methods [16,17,21,22]
generate regular and compact superpixels, they yield superpixels with high UE. However, our method
not only fits the wing’s boundary better than other methods, but also generates regular and compact
superpixels in the clutter sky and ocean background. This suggests that our method could adaptively
fit the object boundary, that is, reduce regularity to fit the irregular object parts and generate compact
superpixels in relatively smooth regions. This is because our method can use multiple particles to
accurately locate different object regions, which generates superpixels with consistent appearance
features. The insight into this idea is that, for example, the more dispersed the superpixel centers
are, the better the boundaries’ adherence. In contrast, other seed-based methods only coarsely locate
their seeds in uniform lattices and adjust the center position locally. This increases the risk of centers
losing locations of irregular object regions, which results in a high UE. For RPS [26], it is also hard
to accurately locate the junction of superpixel borders on the object boundary. It can be seen that
RPS yields a higher segmentation error. These compared results demonstrate that our method can
adaptively adjust region regularity and boundary adherence even in the clutter background and
complex object shape. This is a benefit of our multiple-particle-filtering framework, particularly the
propagation and selection steps.

Figure 9. Visual comparison between our algorithm and other algorithms. From top to bottom, results
were processed by our algorithm, FH [11], simple linear iterative clustering (SLIC) [17], TurboPixels
(TP) [16], normalized cuts (NC) [10], LSC [21], RPS [26], and SNIC [22].
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6. Conclusions

In this paper, we propose a novel superpixel segmentation method based on particle filtering,
which extends the original tracking problem to multiple-region clustering. The basic idea is to
approximate superpixel centers by multiple particles to obtain greater intra-region similarity. Toward
this goal, we use a density cluster and associate rule to mine initial candidate particles. Then,
particles are transferred to neighboring local regions with lower energy cost in the propagation
step. We evaluate all particles on the basis of their cluster similarity and estimate the largest as the final
superpixel centers. The proposed method can alleviate the risk of a local optimum and obtain a better
segmentation performance. Meanwhile, PFS has the ability of adaptively adjusting regions’ regularity
and boundary adherence even in the clutter background and complex object shape. Experimental
results on the BSD500 segmentation dataset demonstrate that our method outperformances seven
state-of-the-art methods.
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