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Abstract: This work tackles a recent challenge in digital image processing: how to identify the
steganographic images from a steganographer, who is unknown among multiple innocent actors.
The method does not need a large number of samples to train classification model, and thus
it is significantly different from the traditional steganalysis. The proposed scheme consists of
textural features and clustering ensembles. Local ternary patterns (LTP) are employed to design
low-dimensional textural features which are considered to be more sensitive to steganographic
changes in texture regions of image. Furthermore, we use the extracted low-dimensional textural
features to train a number of hierarchical clustering results, which are integrated as an ensemble
based on the majority voting strategy. Finally, the ensemble is used to make optimal decision for
suspected image. Extensive experiments show that the proposed scheme is effective and efficient and
outperforms the state-of-the-art steganalysis methods with an average gain from 4% to 6%.

Keywords: multimedia security; steganalysis; steganographer detection; image texture feature;
clustering ensembles

1. Introduction

Steganalysis, as a countermeasure for steganography, aims to detect the presence of hidden data
in a digital media, such as digital images, video or audio files. Since steganography hides data into
the image elements (pixels or DCT (Discrete Cosine Transform) coefficients), the distribution of image
modes usually change slightly after steganography. In most steganalytic techniques [1–4], one can
extract sensitive feature sets (low-dimensional [5,6] or high-dimensional [7–11]) from large datasets of
digital images, which include original and steganographic images. These features are used to train a
classifier that can separate a suspected image as cover (original image) or stego (steganographic image).

In traditional steganalytic techniques, however, the problem of detecting hidden data is usually
restricted in scenarios where only a single actor (or equivalently a user) is considered, i.e., to detect
whether or not objects from the same user are cover or stego. We call this problem as the stego detection
problem. In many real-world scenarios, particularly in social media networks, such as Flickr [12] and
Instagram [13], that include millions of users sharing images, solutions to stego detection becomes
infeasible since we do not know the culprit users beforehand [14–16]. As such, we need to detect
which users are suspicious of using steganography to deliver hidden information. This new problem
is termed as the steganographer detection problem and has been recently studied in [14–17].

Aiming at the stego detection problem, three different steganalytic schemes based on supervised
learning have been presented. In the first scheme, steganalyzers are assumed to be able to estimate
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the payload length [18–20] for some simple steganographic methods, such as JSteg [21] and least
significant bits replacement (LSBR) [22]. These schemes usually achieve an overall good performance.
However, they rely on a local autoregressive image model and usually assume that the algorithm has
been known before hand. In the second scheme, more sophisticated features are extracted from cover
or stego images to obtain accurate detection [6,8–10]. In this scenario, efficient detectors employ a lot
of samples to train classification model and make a binary judgement for testing sample. This type of
methods can effectively defeat the state-of-the-art steganographic methods, such as EA (Edge-Adaptive)
algorithm [23], HUGO (Highly Undetectable steGO) [24], WOW (Wavelet Obtained Weights) [25],
and Spatial UNIversal WAvelet Relative Distortion (S-UNIWARD) [26]. Nevertheless, the performance
of this type of methods is sensitive to model mismatch. Hence, one needs lots of images from
the same source to correctly train the classifier. Unfortunately, such data might be impossible to
access in social networks. In the third scheme, steganalizers employ statistical distribution of image
mode (DCT coefficients or pixels) to build a model, which is used to design detector by statistical
hypothesis testing [27–29]. In this scheme, however, statistical distribution parameters need to be
learned by a large number of samples and an improper cover image model may result in overall poor
detection performance.

Aiming at the steganographer detection problem, researchers try to employ unsupervised learning
methods to solve this problem. Unsupervised learning is used to train a classifier which can separate
“outliers” as steganographer from multiple innocent ones [14–17]. It has been shown that all the
three schemes for the stego detection problem do not work well for steganographer detection [16],
and only Ker’s method [14–16] and Li’s method [17] are applicable. Unfortunately, existing solutions
to the steganographer detection problem can only identify a potential steganographer but cannot
pin down to the steganographic images from the steganographer. This is because these solutions
explore the statistical features extracted from all images of an actor and detect the outlier actors as
potential steganographers.

One natural question arises: could we adopt a two-step procedure to effectively identify the
steganographic images when the source images are from many users? The two-step procedure first uses
steganographer detection [14–17] to find potential steganographers and then applies existing stego
detection methods to discover steganographic images.

Unfortunately, the answer is negative due to the following two pitfalls in the above two-step
procedure. First, existing stego detection methods usually employ massive samples from the same
source to train a generalized model, which is used to classify a suspected image as cover or stego.
Unfortunately, such massive training images from the same source (or user) are not easy to find in
real-world social media networks. Second, even if the generalized model can be obtained, it does not
always match well for unknown image database from other sources, and thus may lead to high false
positive and incorrect accusation.

This paper is thus motivated to tackle the following challenge: stego detection in the context
of real-world social media networks where image sources could be from many users. We term this
new problem as multi-source stego detection problem, which poses a special challenge to digital
image processing due to the above reasons. We tackle this problem with (1) low-dimensional textural
features and (2) clustering ensemble applied to multi-source steganographic targets. In the former,
we develop the local ternary patterns to design high-dimensional textural feature set, whose dimension
is subsequently reduced to an appropriate level according to feature correlation. In the latter,
for a group of suspected images, multiple sub-image sets are set up by a cropping procedure.
Each sub-image set returns a decision (identifying suspected image) with hierarchical clustering.
Subsequently, an ensemble is built by a majority voting strategy. The proposed scheme does not
need a lot of training samples to train the generalized model, so, it is significantly different from
existing solutions to the stego detection problem and can address successfully the problem of detecting
steganographic images when the source images are potentially from many users. Comprehensive
performance tests are performed with a lot of real-world images from a series of cameras and
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experimental results demonstrate that with the help of low-dimensional textural feature set and
clustering ensemble, our proposed approach shows a significant advantage over the traditional
steganalysis methods in the context of multi-source stego detection.

The rest of this paper is organized as follows. Section 2 reviews existing unsupervised steganalysis
methods applied for steganographer detection. In Section 3, we provide detailed procedures of
forming low-dimensional textural features with local texture pattern and then introduce the method of
constructing hierarchical clustering and ensemble strategy. Subsequently, comprehensive experiments
are performed to evaluate the performance of proposed scheme. The corresponding experimental
results and discussions are presented in Sections 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Local Pattern Feature

Adaptive steganographic schemes usually enforce embedding changes in texture regions of
an image. Steganalysis features using local binary pattern (LBP) have been adopted in [10].
LBP operator selects a local neighborhood around each pixel. It thresholds these neighborhood
pixels at the value of the central pixel and uses the resulting binary-valued region as a local image
descriptor. LBP is originally defined for 3× 3 neighborhoods, and then gives 8 bit integer based on
the 8 pixels around the central pixel. Thus, a histogram of 256 bins is formed as the texture descriptor,
which includes important information about spatial structure of image texture.

Nevertheless, due to the exact threshold for the value of the central pixel, LBP features are not
sensitive to the steganographic changes, especially in the texture regions of image. Inspired by LBP
features, researchers developed local textural features (LTF) to design steganalysis features [4] and then
reduce the dimensionality of feature set by employing double principal component analysis (DPCA).
However, since this scheme contains two dimensionality reduction procedures, the time complexity
significantly increases, and more importantly, the efficiency of feature set may be affected due to the
loss of feature attributes including significant classification information. Thus, efficient dimensionality
reduction method should be exploited to design more sensitive low-dimensional feature sets.

2.2. Steganographer Detection

Traditional image steganalysis methods usually need massive images as training database to train
a general model. Then, suspected images (i.e., test images) are classified by using this model. In these
methods, however, the training images and test images are assumed to be from the same image source.
Unfortunately, in many real-world scenarios, there may not exist sufficient training images from the
same source. As a result, the trained model may not match well the features of test images, leading to
poor detection results. To avoid the problem, steganalysts try to use cluster analysis [14,17] or anomaly
detection [15,16] to solve this problem.

Ker et al., proposed two steganalysis schemes for detecting steganographers (or actors) using
Maximum Mean Discrepancy (MMD) [30]. In their methods, classical feature vector, PEV-274 feature
vector [5], was used to represent an image. Notably, the raw features may have different scales
that can significantly impact the detection accuracy, and as such the extracted features need to be
normalized. Generally, assume that there are l actors, each having m images. By normalization,
each dimensional feature is scaled to have zero mean and unit variance, that is, 1

ml ∑ml
i=1 F̂i = 0 and

1
ml ∑ml

i=1 F̂2
i = 1, where F̂ is the normalized version of the raw feature set F. Since the feature vectors

arise from a probability distribution that characterizes the actors’ cover image source or their stego
source, Ker et al., considered MMD as a measure of similarity between probability distributions and
used it to compare the feature vectors of two actors. MMD corresponds to an L2 distance in a Hilbert
space implicitly defined through a positive definite kernel function k(x, y) : Rd × Rd → R, where x
and y are d-dimensional feature vectors. The kernel function k may be of different forms, including the
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linear kernel k(x, y) = xTy and the Gaussian kernel k(x, y) = exp(−γ‖x− y‖2), where γ is the inverse
kernel width. A sample estimate of the MMD distance can be calculated as:

MMD (X, Y) =
2

n(n− 1) ∑
1≤i≤j≤n

k(xi, xj)− k(xj, yi)− k(xi, yj) + k(yi, yj) (1)

Ker et al., used MMD to calculate the distance between each pair of actors and then gave
two detection schemes for suspected actors: (1) Use hierarchical clustering to group users incrementally
and consider the smaller cluster from the last two clusters as the suspected actors; (2) Use an outlier
detection algorithm, called Local Outlier Factor (LOF), to rank each actor according to the degree of
anomaly and consider the actors at the top ranks as suspected actors. Ker’s two schemes have shown
promising performance in solving the steganographer detection problem.

On the basis of Ker’s schemes, Li et al., presented a new solution [17] by using high-order joint
features and ensemble scheme to further improved the performance of steganographer detection.
High-order joint matrices of DCT coefficients of JPEG images are built to present new steganalysis
feature set. In addition, an ensemble scheme with majority voting strategy was introduced in
hierarchical clustering to improve the detection accuracy. Since single clustering is unstable and
there is no clustering method capable of correctly identifying the underlying structure for all data sets,
Li’s scheme is more robust than the single-round clustering and leads to an significant improvement.

The above-mentioned methods, Ker’s schemes and Li’s scheme, all try to identify the
steganographer. Nevertheless, it is not enough for only identifying the suspected steganographer
in social networks. It is also important to pin down to the steganographic images from a suspected
steganographer. Therefore, we need to exploit more sensitive features to accurately reflect the distance
between two images. This paper is to fill this gap.

3. Proposed Steganalysis Scheme

3.1. The Framework of Proposed Scheme

The framework of our proposed scheme is shown in Figure 1. Proposed steganalytic scheme
is comprised of two parts: textural feature construction and clustering ensemble. In the former,
we calculate a low-dimensional textural feature vector from sub-images which are sampled from
individual bigger image. In the second part, majority voting-based ensemble mechanism is introduced
into hierarchical clustering to identify the suspected steganographic image as cover or stego.

3.2. Low-Dimensional Textural Features for Steganalysis

In this section, we firstly use different filters to calculate multiple residual images, and then
employ the local ternary pattern to construct a high-dimensional original feature set. Subsequently,
inspired by the Huffman coding [31], we further perform dimensionality reduction procedure for the
high-dimensional original feature set. Finally, a low-dimensional textural feature set can be obtained
by merging feature vectors with major correlation coefficient.

3.2.1. Obtaining Residual Image with Filters

Since steganography usually embeds data into image modes (pixels in spatial images or DCT
coefficients in JPEG images) so that they are modified slightly, these small perturbations may be
considered as a high frequency additive noise, and can be effectively revealed by the residual image
after eliminating low frequency representation. In this section, we obtain a series of residual images by
using different filtering processes.

Denote P as original image, R as residual image, and Pred(P) as corresponding predicted image.
Given an image, we obtain six residual images with the following processing.
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Figure 1. Framework of proposed steganalytic scheme.

1. Residual images based on difference filtering. With Equation (2), four residual images are
directly calculated along the horizontal, vertical, main diagonal, and minor diagonal
directions, respectively. 

R(h)
i,j = Pi,j − Pi+1,j

R(v)
i,j = Pi,j − Pi,j+1

R(d)
i,j = Pi,j − Pi+1,j+1

R(m)
i,j = Pi+1,j − Pi,j+1

(2)

2. Residual images based on average filtering. A predicted image Pred(P) can be obtained by using
an average filter with 3× 3 template shown in Figure 2a. Each predicted pixel Pred(pi,j) can be
calculated by Equation (3). The corresponding residual image R can be defined by Equation (4).

Pred
(

pi,j

)
=

1
9 ∑ pi+α,j+β, α, β ∈ {−1, 0, 1} (3)

R = P− Pred(P) (4)

3. Residual images based on law’s masks. A residual image is formed by using a 3 × 3 mask in original
image, which is shown in Figure 2b.
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Figure 2. Different filtering processes: (a) 3 × 3 average filtering template and (b) 3 × 3 law’s mask.

3.2.2. LTP-Based High-Dimensional Textural Feature

In this section, we extract high-dimensional textural feature set based on LTP, which is constructed
with a 3-valued code. A zone with width ±t around the central pixel pc is determined in a 3× 3 region.
For the eight neighboring pixels of pc, the grayscale levels are quantized to 0 if they are in this zone,
1 if they are above this zone, and 2 if they are below this zone. In general, LTP is expressed by the
following form

LTP (pc) =
7

∑
n=0

s (pn − pc) · 3n, (5)

where

s (u) =


1 , u > t
0 , |u| ≤ t
2 , u < −t

(6)

In Equation (6), a specific threshold t is used to control the sensitivity of LTP descriptors to noise
and grayscale-level changes. Here, the threshold t is set to 3. LTP features are obtained from the
histogram of LTP values, which are in the interval [0, 38 − 1]. Obviously, we can extract 6561(= 38)

dimensional features from a residual image. Extracted textural features have 6× 6561 dimensions,
where 6 is the number of residual images.

Notably, with Equation (2), we can extract 4× 6561 dimensional features by four residual images
calculated from horizontal, vertical, main diagonal and minor diagonal directions. We consider the
average of horizontal and vertical, and the average of main diagonal and minor diagonal, respectively,
to reduce the dimensionality to 2× 6561. Together with the feature from the average filtering process
(6561 dimensions) and the feature from the law’s mask process (6561 dimensions), the final textural
features thus have 4× 6561 dimensions.

3.2.3. Dimensionality Reduction

Obviously, the extracted textural features have a rather high dimension and each feature vector
includes a lot of zero (or close to zero) values. This leads to strongly-correlated and redundant features
so that the classification performance of features becomes rather weak. To solve the problem, we adopt
the similar idea of Huffman coding [31] and calculate the correlation coefficient between feature vectors
and perform dimensionality reduction by merging feature vectors with major correlation coefficient
to improve classification performance of textural features. Notably, our proposed dimensionality
reduction procedure can only process 6561 dimensional features each time. Since the designed textural
features in Section 3.2.2 have 4× 6561 dimensions, this reduction procedure must be repeated 4 times
in order to cover the whole set. The merging processes are as follows.

Assume that the feature set includes N samples from k different users, N = N1 + N2 + · · ·+ Nk,
where k is the number of users and Nk represents the number of samples from k-th user. We extract
6561 features from each sample according to local ternary patterns to form a high-dimensional textural
feature set as FN = [f1(i), f2(i), . . . , f6561(i)], where 1 ≤ i ≤ N. To remove the redundant feature
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vector, we firstly calculate the correlation coefficient between any two feature vectors fm and fn by the
following equation:

r (fm, fn) =

∣∣∣∣∣∣∣∣∣∣∣

N
∑

i=1,j=1

(
fmi − f̄m

) (
fnj − f̄n

)
√

N
∑

i=1

(
fmi − f̄m

)2
√

N
∑

j=1

(
fnj − f̄n

)2

∣∣∣∣∣∣∣∣∣∣∣
, (7)

where 1 ≤ m, n ≤ N. In the right side of the equation, the numerator stands of the covariance of
fm and fn, while the two terms of the denominator represent their standard deviations, respectively.
The average correlation coefficient r̄s between s-th feature vector and the others can be calculated by

r̄s =
1

M− 1

M

∑
i=1,i 6=s

r (fs, fi), (8)

where M is the dimension of current feature set and 1 ≤ s ≤ M. The average correlation coefficient of
each feature vector can be calculated by the above calculations. Furthermore, the features with major
correlation coefficients are merged incrementally to reduce the dimensionality. Denote the extracted
feature set F = [f1, f2, . . . , f6561], the merging procedure is as follows.

Step 1 : For current feature set, calculate the average correlation vector r̄ = [r̄1, r̄2, . . . , r̄M] by
Equations (7) and (8), where M is the dimension of current feature set.

Step 2 : Introduce an ascending permutation function σ =
(

σ(1), σ(2), · · · , σ(M)

)
to sort the

correlation vector r̄ such that r̄σ(i) ≤ r̄σ(i+1) , where 1 ≤ i ≤ M− 1. Then, sort the feature set F by using
the same function σ. The sorted feature set is denoted as Fσ = [fσ(1), fσ(2), . . . , fσ(M)].

Step 3 : Merge two feature vectors fσ(M−1) and fσ(M) by Equation (9) as new vector f′σ(M−1)
to replace the original vectors fσ(M−1) in Fσ . Meanwhile, fσ(M−1) and fσ(M) in Fσ will be removed.
The merged feature set is denoted as F′σ = [f′σ(1), f′σ(2), . . . , f′σ(M−1)].

f′σ(M−1) = fσ(M−1) + fσ(M) (9)

Step 4 : For merged feature set F′σ , repeat Steps 1 to 3 until the dimension of feature set reducing
to d dimensions, where d is a tuning parameter.

Obviously, d is utilized to control the dimensionality of textural features. Figure 3 shows the
performance of textural features with different parameter d. In this experiment, experimental images
are from the classical BOSSbase 1.01 database [32] which contains 10, 000 grayscale images with
size of 512× 512. We choose entire BOSSbase and use Gaussian Support Vector Machine (G-SVM)
classifier [33] in our experiment. Two state-of-the-art steganographic algorithms, Edge-Adaptive
(EA) [23,34] and Highly Undetectable steGO (HUGO) [24,34], are employed, and the relative
payloads are set as 0.1, 0.2, 0.3, 0.4 bit per pixel (bpp). When we hide messages in BOSSbase,
the corresponding 10, 000 images after embedding data are denoted as stego images. We randomly
select 6000 cover images and their corresponding 6000 stego images as training set, while for
the remaining 8000 images, including 4000 cover images and their corresponding stego images,
we randomly select 4000 images as testing set, which may be composed of different number of covers
and stegos (there is not a consistent one-to-one match between each cover and stego). The experiments
are repeated 20 times to show the average error probability PE. In Figure 3, the x-axis represents
parameter d ∈ {256, 192, 162, 128, 112, 96, 80, 64}, while the y-axis represents the average error
probability PE = (PFP + PFN)/2, where PFP and PFN stand for the probability of false positive and
probability of false negative, respectively. In our test, PE quickly drops to the minimum and then grows
slowly with the increasing d. The optimal value d is about 112 where a minimal PE occurs whatever
the payload is. In the end, we reduce the dimension of features from 4× 6561 to 4× 112 = 448.
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Figure 3. Average testing error PE for different parameters d. The dimensions of testing features
are 4× d. The classifier is G-SVM classifier and steganographic algorithms are (a) EA method and
(b) HUGO method.

3.3. Clustering Ensemble

Furthermore, we propose an ensemble strategy with hierarchical clustering to effectively identify
steganographic target by assuming that the majority of images are innocent. First, individual image is
randomly cropped with smaller size to build sub-image sets. Textural features mentioned in Section 3.2
are extracted from these sub-image sets. After performing the agglomeration hierarchical clustering in
textural feature space, a suspected image can be separated from the innocent ones. By repeating the
above steps, multiple decisions can be made, and the final steganographic images are decided with
majority voting in the multiple decisions.

Denote a set of A images as I1, I2, . . . , IA, which includes steganographic and innocent images.
Clustering ensemble is used to separate the steganographic images from other innocent ones by the
following steps.

Step 1 : Randomly crop each image to size m× n (m < M, n < N) in Ii(1 ≤ i ≤ A). The cropped
images consist of A image subset I

′
1, I

′
2, . . . , I

′
A, where I

′
i (1 ≤ i ≤ A) includes B images of size m× n.

Step 2 : For each image subset I
′
i (1 ≤ i ≤ A), extract the textural features using the method

introduced in the previous section to form feature sets Fi(1 ≤ i ≤ A), where Fi = (f(1)i , f(2)i , . . . , f(B)
i ),

B denotes the number of times that the image is cropped in Step 1, and each fi represents
a 448-dimensional feature vector.

Step 3 : Normalize the feature sets F1, F2, . . . , FA such that every column of feature matrix has zero
mean and unit variance. Then, the distance between different pairs of feature sets can be calculated by
using MMD with Gaussian kernel, which is shown in Equation (1).

Step 4 : Perform hierarchical clustering with the MMD distance measure. First, two sub-image
sets with the minimal distance are combined into a new cluster, denoted as X , and the remaining
sub-image sets are in a set denoted as Y . We then repeatedly select a feature set from Y and add the
selected set into X until only one set left in Y . At each selection step, the image subset Y ∈ Y that has
the smallest distance to X is selected, where the distance between an image subset Y ∈ Y and a cluster
X is defined as:

D (Y,X ) =
1
|X | ∑

X∈X
MMD (Y, X) . (10)

The last remaining image subset in Y consists of the cropped smaller images from an image,
which is considered to be the suspected image.

Step 5 : Repeat Steps 1~4 L times. Each time, we identify a suspected image and denote it as
Ci, i = 1, . . . , L. By majority voting on the L detections, the image that is labeled as suspicious the most
times is determined to be the final detection result. When there is a tie, randomly select one to break
the tie.
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Notably, the two parameters m and n have a major impact on the detection accuracy, which will be
discussed in the experimental section. In addition, we would like to point out that ensemble strategy
will work only if the individual sub-clusterings are sufficiently diverse. In other words, the success of
ensemble strategy mainly relies on the instability of based learners (sub-clusterings), because they can
make different errors on unseen data. If the original images have diverse content and the cropped size
is suitable, there will be much diversity in the randomly-cropped images so that each sub-clustering
tends to generate different results. In this sense, the benefit of ensemble will be clear.

4. Experimental Results and Discussion

In our experiments, we validate the proposed scheme by simulating a situation similar to
a real-world social network. Different social scenarios that one or zero stegnographic images
hide in multiple innocent ones from different users are simulated. Our goal is to detect these
stegnographic images.

To simulate the proposed steganalytic scheme, we design an experiment in which one or zero
images are selected as the steganographic images and mixed in multiple innocent ones from different
actors. The proposed stego detection method is run to identify the steganographic image. We firstly
need to judge whether all images are innocent, if not, we further pin down to the suspected images.
In our experiments, each experiment is run 100 times to obtain an average result, which is considered
to be the overall performance evaluation. We select a different image as the steganographic object each
time, which is embedded with messages of different total relative payloads by the four steganographic
algorithms introduced in the previous section. The overall identification accuracy rate (AR) is calculated
as the number of correctly detection over the total number of detection, i.e.,

AR =
Number of correctly detection

Total number of detection
× 100% (11)

Since the performance is influenced by the number of clusters [16], we randomly select no more
than 20 images (A ≤ 20) and each image is cropped 50 times (B = 50) in each run to investigate
the impact.

4.1. Experimental Setup

4.1.1. Image Source

In this work, we carry out the experiments on a simulated image database, which contains
4636 images acquired by seven digital cameras. These cameras are with different noise models so
that they can be used to imitate different image sources. Table 1 shows the details from seven camera
model with different native resolution and quantity.

In order to assure reproducibility of experiments, it is important to include as much information
about the image source as possible. As such, the experimental images are firstly captured with the RAW
format (CR2 or DNG) (We do not consider the compressed image source, because it may remove high
frequency noise of images and produce influence for the proposed textural features.). Subsequently,
they are converted to 8-bit grayscale, and resized using bilinear interpolation so that they have the
approximately (To ease comparison, we implement unified processing with the minimal resolution in
seven cameras.) same size of 3456× 2304.

The images belong to diverse categories, including people, animals, landscape, flowers, foods,
and so on. For each experiment, one camera is selected to simulate a “steganographer” (user or actor)
in social networks. We choose some images from this simulated “steganographer” to form test set,
which may be embedded with messages by different steganographic algorithms.
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Table 1. Camera model with different native resolution and quantity.

Camera Model Native Resolution Quantity

Canon EOS M2 5184× 3456 612
Nikon D90 4288× 2848 643
Canon G10 3456× 2592 608
Nikon D60 3872× 2592 676

Canon EOS 7D 5184× 3456 680
Canon EOS 550D 3456× 2304 702

Fujifilm X-E2 4896× 3264 715

4.1.2. Steganographic Algorithms

We test the following four steganographic algorithms: Edge-Adaptive (EA) [23,34],
Highly Undetectable steGO (HUGO) [24,34], Wavelet Obtained Weights (WOW) [25,34], and Spatial
UNIversal WAvelet Relative Distortion (S-UNIWARD) [26,34]. These algorithms have different
embedding mechanisms. In each experiment, we randomly select images to hide messages and
run proposed scheme to detect them. Assume that the total payload size is K and the total number of
pixels is n. The relative payload is calculated as

α =
K
n

. (12)

In other words, we embed messages with payload α bits per pixel (or bpp in short). We briefly
introduce each steganographic algorithm below.

EA. Edge-Adaptive(EA) is proposed in [23]. It selects the pixel pairs whose difference in absolute
value is larger than a specific threshold, and enforces the steganographic changes into the texture
regions of image. The EA algorithm adopts an optimal predictor [0, 1/4, 0; 1/4, 0, 1/4; 0, 1/4, 0],
which will be used in the following experiments for this algorithm.

HUGO. Highly Undetectable steGO (HUGO) proposed in [24] minimizes the embedding
distortion in a feature space and then embeds messages into textural region with minimum impact of
modifications in terms of a pre-defined distortion function. The embedding simulator can be obtained
from [34].

WOW. Wavelet Obtained Weights (WOW) [25] is an alternative model-free approach and force
the embedding changes to highly textured or noisy regions and to avoid clean edges. It employs
a bank of wavelet filters to obtain directional residuals which assess the content around each pixel
along multiple different directions. The embedding impact on each directional residual is aggregated
as embedding reference.

S-UNIWARD. As a spatial domain steganographic algorithm, Spatial UNIversal WAvelet Relative
Distortion (S–UNIWARD) [26] is similar to WOW. The distortion is computed as a sum of relative
changes of pixels in a directional filter bank decomposition of the image. The algorithm enforces the
embedding changes to such parts that are difficult to model in multiple directions, such as texture or
edge regions, while avoiding smooth regions.

4.2. Impact of Cropped Image Size

In order to obtain suitable cropped size m and n mentioned in Section 3.3, we test the impact of
these two parameters by using four state-of-the-art steganographic algorithms, EA, HUGO, WOW, and
S-UNIWARD. We set m = n to ease calculation. Eight different values, 64, 128, 192, 256, 384, 512, 768
and 1024, are tested. We repeat the experiments 100 times and then show the average results. In each
experiment, we choose one image to hide messages by using the above mentioned steganographic
algorithms, respectively. Different payloads, 0.2, 0.3, 0.4, 0.5 bpp, are tested. The proposed textural
features and clustering ensemble are employed to make the final decision.
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The experimental results are shown in Figure 4. From this figure, we can see that when m = 256,
the overall accuracy approximately reaches the highest value for each steganographic algorithm, no
matter what the payload α is. We can explain this phenomenon as follows. When the size of the
cropped images is too large, there is not much diversity in the randomly-cropped images so that each
sub-clustering tends to generate the same result. In this case, the benefit of clustering ensemble may
disappear. When the size of the cropped images is too small, the statistical features become unstable,
leading to poor detection in each sub-clustering.
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Figure 4. The overall identification accuracy for four steganographic algorithms: (a) EA method; (b)
HUGO method; (c) WOW method; and (d) S-UNIWARD method. Different cropped sizes are tested.

4.3. Performance Test of the Proposed Scheme

In this subsection, we show the advantages of the proposed scheme by a series of experiments.

4.3.1. Test for Different Features

First, we show the advantages of textural feature set in the context of multi-source stego
detection. In the test, one steganographic image (guilty image) is hidden in multiple original images
(innocent images). We use clustering ensemble scheme proposed in Section 3.3 and compare
the performance of our proposed features with that of other popular features, 686-dimensional
second-order SPAM features [6,34], 34671-dimensional maxSRM features [34,35] and maxSRMd2
features [34,35]. The latter two are recently-proposed spatial rich feature sets with the same dimensions.
Figure 5 shows the overall identification results using four different feature sets. The x-axis represents
relative payload (bpp), while the y-axis denotes the overall accuracy AR. It is easy to observe that our
proposed feature set achieves the highest overall accuracy for four steganographic algorithms and
its overall accuracies in Figure 5a–d can reach approximately 94%, 66%, 60% and 57%, respectively,
when the payload is over 0.60 bpp. It also can be seen that the performance of proposed textural
features are better than that of SPAM-686 features with an average gain more than 6%. That is because
our proposed features involve more texture regions, where pixel modifications occur more frequently
due to steganography.
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Figure 5. Performance comparisons of four feature sets - SPAM features, maxSRM features, maxSRMd2
features and proposed textural features for (a) EA method; (b) HUGO method; (c) WOW method;
and (d) S-UNIWARD method. Unsupervised clustering ensemble scheme is used in these experiments.

To gain more insight, we further compare the performance of four feature sets with supervised
classification scheme. In this experiment, the testing images are from unmodified BOSSbase [32]
with 10,000 grayscale images, and five payloads, 0.05, 0.1, 0.2, 0.3, 0.4 bpp, are tested. Since maxSRM
and maxSRMd2 feature sets are high-dimensional spatial rich models, we use the Fisher Linear
Discriminant (FLD) ensemble classifier [7] to give the experimental results. The four steganographic
algorithms mentioned above are tested (refer to Section 4.1.2). The overall accuracy is shown in
Figure 6. It is easily observed that maxSRM and maxSRMd2 feature sets have the higher overall
accuracy for four steganographic algorithms and the performance of maxSRMd2 is slightly superior
than that of maxSRM, while the proposed textural feature set shows a clear gap (approximately 6%
and 8%, respectively) in overall accuracy to these two high-dimensional feature sets, although its
performance better than that of SPAM feature set with an average gain more than 3%.

Overall, the tests for different feature sets demonstrate that the proposed textural feature
set is more suitable for unsupervised scheme than other three feature sets. On the other hand,
we also conclude that high-dimensional feature sets have better performance for supervised
classification due to more rich co-occurrence features. Nevertheless, we do not recommend
high-dimensional feature sets, such as recently-proposed rich model feature sets [8–10,35] for
multi-source stego detection. Because they are formed by a lot of weak features, which contain
a large amount of noise and lead to an inferior performance in the context of multi-source stego
detection. Notably, the dimensionality reduction procedure is used only for our proposed textural
feature set, but not for other feature sets, e.g., the rich models features. This is due to the fact that
the purpose of comparing our feature with other high-dimensional feature sets is to explain that
high-dimensional feature sets are not suitable in our application context rather than to demonstrate
they are bad feature sets. Indeed, high-dimensional rich model features are conclusively more sensitive
for supervised binary classification [35]. For instance, as shown in Figures 5 and 6, although maxSRM
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and maxSRMd2 feature sets have superior performance for supervised binary classification, they do
not perform well in our application context.
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Figure 6. Performance comparisons of four feature sets - SPAM features, maxSRM features, maxSRMd2
features and proposed textural features for (a) EA method; (b) HUGO method; (c) WOW method;
and (d) S-UNIWARD method. Supervised FLD-ensemble scheme is used in these experiments.

4.3.2. Test for Different Clustering

Moreover, we compare the performance of our work with single hierarchical clustering [14]
and local outlier factor (LOF) [15,16] by a series of experiments. The mentioned two methods study
the steganographer detection problem, while our method mainly focuses on steganographic image
detection. Therefore, we adjust the experiments slightly to build a fair comparison. The cropped
size is uniformly fixed m× n = 256× 256, and the number of sub-clustering is set to L = 1 for single
hierarchical clustering method, while L = 15 (This parameter will be discussed below) for proposed
clustering ensemble method. Meanwhile, we set the LOF parameter for the nearest neighbors k = 10
and consider the image of the top rank as the steganographic image. SPAM-686 features and the
proposed textural features are used in these methods. Here, we choose the SPAM feature set for
comparison, because it is a state-of-the-art spatial steganalysis feature set and has a lower dimension,
while the high-dimensional rich model feature sets are unsuitable for multi-source stego detection,
for example, the maxSRM and maxSRMd2 features in Figure 5. Figures 7 and 8 show the overall
identification accuracy for SPAM-686 feature set and the proposed textural feature set, respectively.
It can be seen that single clustering and LOF methods give an inferior performance. In addition, by
comparing Figures 7 and 8, we can find that the accuracies of SPAM-686 feature set are lower than that
of proposed textural feature set. Overall, clustering ensemble method consistently provides a superior
performance than other two methods, whatever the feature set is used. The average gains are more
than 4% and 6%, respectively.
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Figure 7. Comparison of the overall identification accuracy for four steganographic algorithms:
(a) EA method; (b) HUGO method; (c) WOW method; and (d) S-UNIWARD method. The steganalysis
feature set is 686-dimensional SPAM feature set.
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Figure 8. Comparison of the overall identification accuracy for four steganographic algorithms:
(a) EA method; (b) HUGO method; (c) WOW method; and (d) S-UNIWARD method. The steganalysis
feature set is proposed 448-dimensional textural feature set.

We also test the impact of the number of sub-clustering in the clustering ensemble step. Table 2
shows the overall identification accuracy and running time when the number of sub-clustering L is
set to 5, 10, 15, 20, 25, respectively. In this experiment, two payloads, α = 0.4 and α = 0.6, are tested.
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In general, the more the number of sub-clustering, the higher the overall identification accuracy,
but the longer the running time. As shown from the results, no matter which payload is chosen,
the overall accuracy increases slowly with an increasing L, but does not change clearly when L > 15.
This is because the cropped images have a lot of overlapped areas when the number of sub-clustering
increases. In this case, the diversity is reduced so that multiple clustering may generate same results.
Also, we can see that the accuracy is the highest when L = 25. The running time, however, is also
the longest.

Table 2. Comparison of the overall identification accuracy (AR) and running time ] for different
rounds of sub-clustering. The steganographic algorithm is EA with α = 0.4 and 0.6 bpp, respectively.
The feature set is 686-dim SPAM [6,34].

m × n L α = 0.4 α = 0.6

AR Time(s) AR Time(s)

384× 384

5 52% 4.3 72% 4.4
10 55% 5.2 76% 5.5
15 57% 5.7 79% 6.8
20 57% 7.2 80% 7.1
25 58% 8.4 80% 8.3

256× 256

5 55% 4.2 77% 4.1
10 58% 5.3 80% 5.1
15 60% 6.2 83% 6.5
20 60% 7.2 83% 7.4
25 60% 8.2 84% 8.0

192× 192

5 53% 4.9 75% 4.2
10 54% 5.8 78% 5.6
15 57% 6.8 80% 6.6
20 58% 7.0 80% 7.2
25 58% 8.3 81% 8.1

] LENOVO machine with 16 GB RAM and Intel E5-2603 Six-Core 1.60 GHz.

4.3.3. Test for Zero or One Stego Images

In this subsection, we make the detection problem harder, by removing the assumption that exactly
one image is stego. This case is rather general in real world, because we do not know whether there
are any steganographic images in batch images. Therefore, we assume that either no steganographic
image, or exactly one steganographic image (we leave the case that more than one guilty images to
future work). In this case, we need to adjust the processing of Step 4 in Section 3.3. In Section 3.3, the
last remaining image is considered to be the suspicious image. We, however, need further to decide
whether or not this image is actually a stego image.

Our idea is to consider the distance between final agglomeration and penultimate agglomeration
(i.e., the second to last agglomeration). If the MMD distance of final agglomeration is at least twice the
MMD distance of penultimate agglomeration, then we accuse the final image as the steganographic
image, otherwise, we state that no image is guilty. It is similar to deciding whether the MMD distance
of the majority to the final image is at least as much as the MMD distance between any two other
images, although the condition is rather strict in real world.

We implement a series of experiments to show the performance of proposed scheme for this
case. The same image sources are used as in the previous experiments. We randomly select no more
than 20 images, each image is cropped 50 times. The centroid clustering with Gaussian MMD is used.
We measure the performance with false positives (cover is accused as stego) and false negatives (stego
is considered as cover) separately from incorrect accusations (when one image is stego, but the wrong
one is accused). The experiments are repeated for 100, 75, 50 times, respectively. The EA and HUGO
steganographic algorithms are employed in these experiments, respectively. The corresponding results
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are shown in Tables 3 and 4. We can see that there are low false positives and low incorrect accusations
(even close to zero) but high false negatives for two steganographic algorithms. These experimental
results indicate that the proposed scheme is conservative, because it makes a rather low false positive
but often fails to accuse a steganographic image. We believe that the proposed scheme is a good start
for social network steganalysis, since real-world steganalysis should be required to at least have a low
false positive [36]. Figure 9 shows the overall accuracies for four steganographic algorithms. As shown
in this figure, although we do not know in advance if there is a steganographic image in multiple
images, the proposed scheme still achieve high overall accuracies at high relative payloads.

Table 3. False positive (FP), false negative (FN), and incorrect accusation rate(IAR) when identifying
zero or one steganographic image in five payloads (bpp). Clustering with Gaussian MMD is used and
EA is targeted algorithm.

Repeat Pattern 0.20 0.30 0.40 0.50 0.60

100
FP 7.0% 6.0% 3.0% 2.0% 0.0%
FN 92.0% 72.0% 44.0% 19.0% 8.0%
IAR 6.0% 4.0% 3.0% 1.0% 0.0%

75
FP 9.3% 6.7% 4.0% 1.3% 0.0%
FN 86.7% 70.7% 37.3% 16.0% 9.3%
IAR 5.3% 4.0% 2.7% 0.0% 0.0%

50
FP 12.0% 8.0% 6.0% 2.0% 0.0%
FN 90.0% 74.0% 44.0% 20.0% 8.0%
IAR 4.0% 2.0% 2.0% 0.0% 0.0%
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Figure 9. Comparison of the overall identification accuracy for four steganographic algorithms: (a) EA
method; (b) HUGO method; (c) WOW method; and (d) S-UNIWARD method, when identifying zero
or one guilty images. The steganalysis feature set is proposed 448-dimensional textural feature set.
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Table 4. False positive (FP), false negative (FN), and incorrect accusation rate(IAR) when identifying
zero or one steganographic image in five payloads (bpp). Clustering with Gaussian MMD is used and
HUGO is targeted algorithm.

Repeat Pattern 0.20 0.30 0.40 0.50 0.60

100
FP 27.0% 22.0% 16.0% 11.0% 8.0%
FN 93.0% 88.0% 78.0% 61.0% 59.0%
IAR 7.0% 6.0% 3.0% 2.0% 0.0%

75
FP 26.7% 22.7% 16.0% 10.7% 8.0%
FN 97.3% 90.7% 82.7% 75.3% 58.0%
IAR 14.7% 8.0% 2.7% 1.3% 0.0%

50
FP 32.0% 24.0% 16.0% 12.0% 10.0%
FN 98.0% 90.0% 80.0% 76.0% 62.0%
IAR 12.0% 8.0% 6.0% 2.0% 0.0%

4.4. Comparison with the State of the Arts

4.4.1. Comparison with the Two-Step Procedure

In this subsection, we compare the proposed stego detection scheme with the naïve two-step
procedure, which is also illustrated as “steganographer detection + traditional stego detection”.
The two-step procedure first uses steganographer detection to find potential steganographers and
then applies traditional stego detection methods, such as supervised classification, to discover
steganographic images. Note that the direct comparison is rather hard, because most traditional
stego detection schemes need to train a model with labelled samples, whereas our proposed scheme is
unsupervised.

We build a fair comparison between the proposed scheme and the two-step procedure by adjusting
the experiment as follows. All experiments are implemented in the image database including seven
actors. Each actor respectively provides 600 images. We randomly select one actor as steganographer
and randomly select 100 images from this actor as testing set. Among the 100 testing images, we
randomly select 50 images as stego by embedding messages of relative payloads α ∈ {0.1, 0.2, · · · , 0.8}
bpp using the aforementioned steganographic algorithms. The experiments are repeated 100 times.
In addition,

• for the proposed scheme, we randomly select seven images, each from the seven actors,
respectively. Among the seven images, one image is randomly chosen from the testing set,
which includes 50 cover images and 50 stego images. The proposed scheme is run to detect this
image whenever it is a stego image.

• For the two-step procedure, the training set is built by two forms as follows: excluding the testing
image set (100 images), we randomly select remaining X (X = 100 and 500) images from the
steganographer and then add them into the training dataset. After that, we make a copy of each
image in the training dataset and embed messages in the copied image using aforementioned
steganographic algorithms. Therefore, the training dataset includes 2×X images in total, which is
used to train the classification model. The two-step procedure first identifies the steganographer
by using steganographer detection method [17], and then uses the trained model to classify the
testing set.

We carry out a series of experiments to compare the proposed scheme and two-step procedure
(including X = 100 and 500). Tables 5 and 6 show the results of average false positives and average
false negatives for the three schemes. To obtain a fair comparison, we only show the results when
the steganographer is accused correctly. From these two tables, we can see that the proposed scheme
has low false positives. Certainly, the proposed scheme is conservative due to high false negatives.
Furthermore, when X = 100, two-step procedure has an inferior detection performance. This is
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because there are only a few training samples, in this case, the trained classification model may match
poorly the statistic features of testing images. When X = 500, the performance of two-step procedure is
significantly improved due to involving more training samples. Nevertheless, we would like to stress
that it is infeasible to gather massive training samples in real-world online social media networks.
Thus, the two-step procedure is very hard, at least inconvenient, to work in our context.

Table 5. Average false positive (FP) and average false negative (FN) for three schemes in five payloads
(bpp) when identifying zero or one steganographic image. Gaussian MMD is used in clustering,
and targeted steganographic algorithm is EA.

Scheme Pattern 0.20 0.30 0.40 0.50 0.60

Two-step procedure FP 66.3% 61.4% 48.7% 37.2% 28.5%
X = 100 FN 69.4% 62.5% 54.1% 39.2% 28.8%

Two-step procedure FP 52.4% 44.2% 35.7% 29.6% 22.5%
X = 500 FN 54.1% 46.7% 38.8% 27.0% 23.6%

Proposed scheme FP 11.6% 9.4% 7.8% 5.0% 3.8%
FN 88.4% 70.2% 52.2% 41.8% 30.9%

Table 6. Average false positive (FP) and average false negative (FN) for three schemes in five payloads
(bpp) when identifying zero or one steganographic image. Gaussian MMD is used in clustering,
and targeted steganographic algorithm is HUGO.

Scheme Pattern 0.20 0.30 0.40 0.50 0.60

Two-step procedure FP 85.3% 78.5% 72.1% 66.3% 62.5%
X = 100 FN 86.2% 78.6% 70.9% 65.6% 60.6%

Two-step procedure FP 74.5% 61.4% 58.1% 45.3% 40.8%
X = 500 FN 76.4% 62.7% 56.9% 47.8% 40.2%

Proposed scheme FP 19.8% 16.0% 11.8% 9.2% 6.8%
FN 90.6% 88.8% 74.6% 70.2% 63.6%

Figure 10 shows the overall accuracies for three schemes with four steganographic algorithms.
Since the two-step procedure includes steganographer detection and traditional stego detection,
when the steganographer has an incorrect identification, the accusations will be wrong directly
in our experiments. We can observe that the proposed scheme achieves high overall accuracy
with high relative payloads, although overall accuracy slightly decreases compared to Figure 9.
Since experimental images are from multiple sources, they have different statistic distributions so that
the proposed textural features extracted from these images can be influenced easily. Moreover, we can
also observe that although the performance of two-step procedure has a substantial improvement with
the samples increasing, its overall performance is still worse than that of proposed scheme. Two reasons
can explain this phenomenon: (1) the maximum scale of training set can be up to 1000 images, but it is
still small so that the trained model may not match well the statistic features of test images. Actually,
this problem is inevitable because it is very hard to obtain a lot of images from the same source in
social networks, (2) the accuracy will be set to zero if the steganographer has an incorrect identification
at the first step of the two-step procedure. This results in a lower overall accuracy.
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Figure 10. Comparison of the overall identification accuracy between the two-step procedure (X = 100
and X = 500) and our proposed scheme. Steganographic algorithms are respectively (a) EA method;
(b) HUGO method; (c) WOW method; and (d) S-UNIWARD method.

4.4.2. Comparison with Existing Unsupervised Method

In this section, we compare the proposed scheme with another existing unsupervised method
(ATS for short) [37] that combines artificial training sets and supervised classification. ATS scheme
can remove the need of a training set if there is a large enough testing set. Due to the unique design,
ATS scheme is considered to bypass the cover source mismatch problem.

Since proposed scheme is an unsupervised scheme and can also potentially get around the
problem of source-mismatch, we try to compare it with the ATS scheme. In order to give a fair
comparison, the entire image database mentioned in Section 4.1.1, containing 4636 experimental
images, is used in our experiments. Since both proposed scheme and ATS scheme have the advantage
of handling data of great diversity and do not require a large number of samples to train classification
model, we randomly select 500 images from entire image database as testing set. Aiming at the
composition of testing set, two cases are considered: (1) Including the same number of covers and
stegos, that is, 250 images are embedded secret information as stegos and another 250 as covers.
(2) Including an unbalanced number of covers and stegos, that is, 100 images are embedded secret
information as stegos and another 400 as covers. In addition, similar to the processing in Section 4.4.1,
for the proposed scheme, we randomly select seven images in one test to separate the “outliers”.
Among that one is from the testing set and the others are randomly chosen from the remaining 4136
images. Three relative payloads, α ∈ {0.2, 0.4, 0.6} bpp, are tested by using the aforementioned
steganographic algorithms. The experiments are repeated 20 times and show an overall average
detection accuracy as experimental results.

A series of experiments are performed to give a fair comparison. Tables 7 and 8 respectively
show the overall accuracies for two schemes with three state-of-the-art steganographic algorithms:
HUGO [24], WOW [25], and S-UNIWARD [26]. In Table 7, it can be observed that proposed scheme
presents the inferior detection accuracies than ATS scheme, no matter what steganographic algorithm
is used, and the average gap ranges from 5% to 8%. On the contrary, in Table 8, proposed scheme
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has a slightly superior performance than ATS scheme. The average gain is approximate 1–3%.
This interesting phenomenon can be explained as follows: since the proposed scheme is conservative
(low false positive rate), it may be more prone to leave out the “outliers”. When there are more covers
in the testing set, the detection accuracy maybe become higher. Moreover, we can notice the case that
detection accuracy is less than 50% for proposed scheme. This occurs because the proposed scheme
directly implements the unsupervised classification on testing set and, hence, the results only depend
on the ratio between the number of correct detection and the size of testing set. Therefore, the accuracy
may be lower than 50% with the number of correct detection decreasing.

Table 7. Average detection accuracy (%) for proposed schemes and ATS scheme [37] in three payloads
(bpp). The testing set includes the same number of covers and stegos. The targeted steganographic
algorithms are HUGO, WOW, and S-UNIWARD.

Steganographic Scheme Payloads

Algorithm 0.20 0.40 0.60

HUGO ATS Scheme 55.4% 61.2% 70.4%
Proposed Scheme 47.6% 55.8% 67.7%

WOW ATS Scheme 53.1% 58.4% 66.8%
Proposed Scheme 42.6% 51.2% 60.8%

S-UNIWARD ATS Scheme 51.5% 55.8% 62.2%
Proposed Scheme 40.6% 46.6% 55.2%

Table 8. Average detection accuracy (%) for proposed schemes and ATS scheme [37] in three payloads
(bpp). The testing set includes an unbalanced number of covers and stegos. The targeted steganographic
algorithms are HUGO, WOW, and S-UNIWARD.

Steganographic Scheme Payloads

Algorithm 0.20 0.40 0.60

HUGO ATS Scheme 57.4% 66.2% 75.4%
Proposed Scheme 60.6% 66.8% 77.7%

WOW ATS Scheme 55.1% 64.4% 73.8%
Proposed Scheme 57.6% 67.2% 74.1%

S-UNIWARD ATS Scheme 54.5% 63.8% 70.2%
Proposed Scheme 58.6% 65.6% 71.2%

Although proposed scheme is conservative and, thus, it may achieve a slightly inferior detection
performance comparing with the ATS scheme, we, however, would like to raise the readers’ attention
that it is still a good solution for social networks steganalysis due to the following two merits:
(1) proposed scheme belongs to unsupervised scheme. Its main advantage is that with a reduced
number of training samples, it can still address the stego detection problem successfully. (2) Due to the
capability of quick detection, proposed scheme does not take much time so that it is more suitable for
real-world applications.

5. Conclusions

In this paper, we addressed the multi-source stego detection problem and proposed a new
steganographic image identification scheme with unsupervised learning approach, which is
significantly different from steganographer detection and traditional stego detection. We designed
a new low-dimensional textural feature set using local ternary pattern which is shown to be more
sensitive to steganographic changes in texture regions of an image. Furthermore, ensemble mechanism
with the majority voting strategy is introduced by integrating multiple hierarchical clustering to
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improve the identification performance. We compared our scheme with the two-step procedure,
also called “steganographer detection + traditional stego detection". The results show proposed scheme
has better performance. Since traditional steganalysis schemes usually work well only in laboratory,
the work herein shows a valuable attempt for steganalysis in real-world online media networks.

In addition, we note that the proposed scheme is an unsupervised steganalysis method that
circumvents the problem of model mismatch. However, this advantage should benefit from two
aspects: (1) For each identification test, we randomly select a few clusters (e.g., A ≤ 20) to separate
the “outliers”. This is helpful to decrease the influence of source model mismatch. (2) Unlike the
single clustering schemes, we use repeated cropping in individual image to build a sub-image set and
make an ensemble by multiple sub-clustering. The advantage of this approach is that, by pooling
these sub-images from individual images together, the signal-to-noise ratio is significantly improved
comparing with working on only individual image so that the source mismatch is finally bypassed.

Moreover, this scheme can analyse multiple images at once by assuming that the majority of them
are covers and is therefore a special form of outlier detection. Although the proposed method has
shown good performance in multi-source stego detection, its performance is subject to the size of
images. In our scheme, the image size and content of cover source should be large and diverse enough
so that the diversity in the randomly cropped images can be exploited in sub-clustering. Otherwise,
if no sufficient statistical features in the cropped images can be used, the statistical features could
become unstable in this case, and then the benefit of clustering ensemble may disappear, leading to
poor detection in each sub-clustering.

In the future, we plan to carry our work forward in two directions. First, we should further relax
the limitation for image source with different quality factor. Although the proposed scheme has shown
good performance for the multi-source stego detection problem, its performance varies if the quality
factor has a large variation. Second, the multi-source stego detection problem under the condition of
non-uniform embedding in the image source will be considered as part of the future effort.
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