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Abstract: Owing to the high complexity of recent software products, developers cannot avoid
major/minor mistakes, and software bugs are generated during the software development process.
When developers manually modify a program source code using bug descriptions to fix bugs, their
daily workloads and costs increase. Therefore, we need a way to reduce their workloads and costs.
In this paper, we propose a novel automatic fault repair method by using similar bug fix information
based on genetic programming (GP). First, we searched for similar buggy source codes related to the
new given buggy code, and then we searched for a fixed the buggy code related to the most similar
source code. Next, we transformed the fixed code into abstract syntax trees for applying GP and
generated the candidate program patches. In this step, we verified the candidate patches by using
a fitness function based on given test cases to determine whether the patch was valid or not. Finally,
we produced program patches to fix the new given buggy code.

Keywords: automatic fault repair; genetic programming; bug fix information; software maintenance

1. Introduction

Owing to the high complexity of recent software products, developers cannot avoid major/minor
mistakes, and software bugs are generated during the software development process. In open source
projects, a large number of bug reports containing 350 bugs a day are submitted to the bug repository
for Eclipse and Mozilla [1]. Because of the huge number of bug reports, developers spend more time
fixing bugs, thus increasing their workloads and costs. To reduce their bug fixing efforts, automatic
fault repair is necessary.

In the general bug-fixing process, developers try to fix software bugs according to the descriptions
in bug reports by creating a patch solution. After that, quality assurance engineers may check the
patch and then update the program with the patch solution. Because of the large number of daily bugs,
developers spend more time tracing the bugs; hence, they may generate incorrect patches.

Our motivations are the following:

• As developers’ workloads increase owing to many daily bugs, they may spend more time
debugging to fix these. If an automatic fault repair technique is provided to fix bugs, program
debugging time and cost can be reduced.

• Developers may make mistakes in debugging the program source code. As a result, they may
generate incorrect program patches. Thus, if an automatic fault repair technique that generates
the correct patch is provided, software quality will improve significantly.
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• If bug reporters give descriptions with helpful information to developers such as stack trace
and scenario reproduction, the developers can trace and fix the bugs easily. However, if the bug
reports contain insufficient information [2], the developers may have difficulty debugging. Thus,
it is expected that the automatic fault repair with similar bug fix information can effectively fix
the bugs despite lacking descriptions.

To address these problems, many researchers have proposed automatic fault repair approaches.
To our best knowledge, GenProg [3] is well-known for automatic fault repair. They utilize Genetic
Programming (GP) to generate the program patches. However, as GenProg conducts patch validation
by passing given test cases, it might require too much time and generation cycles. PAR [4] captures
fault patterns by analyzing human-written patches. However, if it encounters patterns that it did not
capture, it cannot fix the bugs. RSRepair [5] utilizes a random search algorithm instead of the GP
algorithm on GenProg. AE [6] uses a deterministic patch search algorithm and program equivalence
relations to prune equivalent patches during testing. However, even if the patches pass all the test
cases to verify whether the patches can be adopted or not, they may not be correct. To produce the
correct patches, we utilized bug fix information in this paper. In web applications, PHPQuickFix [7]
and PHPRepair [7] use a string constraint solving technique to automatically fixed HTML generation
errors. FixMeUp [8] automatically fixes the missing access-control statement using program analysis.
Prophet [9] is based on learning the correct code. The work extracts code interaction information from
the fixed code and changes the nearby code. By applying a machine learning algorithm, it generates
a new patch. SPR [10] generates the correct patches in large-scale applications. To generate the
candidate program patches, the work utilizes a set of transformation schemas. Although it generates
program patches, the performance should be improved.

To resolve these problems, we propose a novel approach for automatic fault repair by using
similar bug fix information based on GP. First, we searched for similar buggy codes related to a new
given buggy code and the fixed code of the similar buggy codes. Then, we converted the source
code into abstract syntax trees (ASTs). We applied GP with the ASTs of the fixed codes. Finally, we
generated the program patches for the new given buggy code from the ASTs.

Our contributions are the following:

• The bug fixing time and effort can be reduced as we support automatic fault repair.
• The quality of bug fixing can be improved as we utilize similar bug fix information with GP to

generate program patches.
• We perform a small case of study using our model in IntroClass [11]. The result will likely generate

a correct patch.

This paper is organized as follows. We describe the background information on fault repair in
Section 2. In Section 3, we discuss related studies. We describe our approach in Section 4 and present
a case study in Section 5. Then, we provide the discussion in Section 6. Finally, we conclude our study
in Section 7.

2. Background Knowledge

Genetic programming (GP) is a programmatic approach based on evolutionary algorithm. In order
to apply GP, the input buggy code should first be represented in AST. Next, we adopted GA [12]
operators such as selection, mutation, and crossover to generate a new population. Then, we utilized
a fitness function to evaluate the validity of each patch in the population. Finally, we transformed the
valid patch into a program source code to patch the given buggy code.

Owing to the random generation characteristic of GP, the quality of program patches can decline.
To ensure patch quality, we carried out program analysis [13] using a test suite. In this case, we are
likely to improve the quality of candidate program patches, because the GP process and the analysis
are independent. If we adopt white-box and black-box test cases, the overall quality of the patches is
expected to improve.
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3. Related Work

Many researchers have proposed automatic fault repair approaches. We provide a qualitative
comparison of related works on automatic fault repair, as shown in Table 1.

Table 1. A Qualitative Comparison.

Study Evolutionary Algorithm Metric

GenProg [3] O Basis of GP for Repairing
PAR [4] X Bug Fix Pattern Templates
AE [6] X Deterministic Algorithm

Prophet [9] X Machine Learning Algorithm
SemFix [14] X Component-based Synthesis

Yokoyama [15] O Code Similarity (Line based)
Our Approach O Bug Fix Information

Le Goues et al. proposed GenProg [3], which is a popular approach in this fault repair domain.
They utilized AST-based GP. First, they transformed an input buggy source code into AST (e.g., original
AST). Then, they adopted GP operations like selection, crossover, and mutation to generate a new AST.
Next, the new AST transform program source code was used to verify whether the buggy code was
fixed using a test case. Finally, they generated a new program patch. However, during the generation,
it occurred too many times and in too many generation cycles. Similar to GenProg, Qi et al. utilized
GP operations, including selection and crossover as well as test case prioritization [16].

Kim et al., proposed PAR [4], an automatic fault repair method using a fixing template from
human-written patches. They verified a buggy pattern and classified several pattern templates.
In detail, they classified the target program code by fault localization into the related code in the
pattern template. Then, they computed the fitness function from the target source code using a test
case. Next, they selected the related code using tournament selection. Finally, they compared the new
generated patch to the fixed source code from developers. However, they could fix a new bug if it does
not exist in the proposed pattern.

Long et al. introduced SPR [10] and improved the performance of fault repair by more
than five times compared with previous work using parameterized transformation schemas. However,
they could not fix the bug correctly if they needed a new condition that did not exist in the program.

Qi et al., presented an automated fault repair technique called RSRepair [5] that uses random
search. Then, they adopted test case prioritization to speed up the patch validation process. Finally,
they showed results that outperformed the GenProg results. Weimer et al. proposed an approach
called AE [6]. They used a deterministic patch search algorithm and program equivalence relations to
prune equivalent patches during testing. However, the results of RSRepair and AE did not generate
the correct patches.

Long et al. proposed Prophet [9] based on learning the correct code. They extracted code
interaction information from the fixed code and changed nearby code. Then, they adopted a machine
learning algorithm to generate a new patch by learning.

Nguyen et al. proposed SemFix [14] to fix the buggy program code. They utilized semantic
information via source code and the SemFix outperformed the GenProg.

Yokohama et al. proposed an automated repair approach [15] based on source code analysis.
In detail, they analyzed changed source lines in before/after patches.

In web applications, PHPQuickFix [7] and PHPRepair [7] utilized string constraint solving
techniques to automatically fix HTML generation errors.

In the data mining area, Guo et al. proposed [17] an approach for bug severity prediction. They
analyzed descriptions of bug reports to predict bug severity in an Android project. Singh et al.
proposed an approach [18] for sentiment analysis using machine learning. Souri et al. surveyed [19]
malware detection approaches using data mining.
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In terms of testing, the GA technique was proposed by Sabharwal [20] to generate test cases for
pairwise testing.

The main differences are the following:

• If we do not consider bug fix information, the buggy code cannot be fixed correctly by GP. In this
paper, we first find the most similar buggy codes related to the new given buggy code in order to
find the related fixed code. Thus, we can generate a program patch for the buggy program.

• If a bug pattern and template are adopted, the various bugs that do not exist in the proposed
pattern will not be fixed. Thus, we utilized a buggy code and a related fixed code in order to fix
various buggy codes.

4. Applying Genetic Programming with Similar Bug Fix Information

In this section, we describe our approach for automatic fault repair by applying GP with similar
bug fix information. First, we identified suspicious buggy code lines (a) using a fault localization
technique. Then, we applied our approach to generate patches (b-1) by applying GP with similar
bug fix information. Next, we verified the candidate patches to determine whether the patches
could be adopted using test cases (b-2). If the patches could not be adopted (e.g., test case failure),
we repeated our patch generation (b-1). Finally, we applied the patches to the buggy program for
fixing (c). The overview of our approach is shown in Figure 1.

Figure 1. An overview of our approach. (a) Fault Localization; (b) Applying GP (b-1), and Patch
Evaluation (b-2); (c) Fixed Program Generation.

4.1. Fault Localization

In general, we first identified the program source code lines that are buggy. Identifying the buggy
code lines is a prerequisite for repair. For example, to fix the buggy program, e.g., multiple buggy lines,
the fault localization technique should be performed. Many researchers have proposed techniques to
find buggy code lines using the information retrieval model [21] and Latent Dirichlet Allocation [22].
However, the aims of these fault localization studies are different from those of fault localization for
automatic fault repair, in the sense that all the correctly identified lines are used together for repair.
First, we verified whether a program can pass all the black box and white box test cases. If the program
cannot pass all the test cases, we modified the source code and ran the test cases again to ensure that
the modified program was correct. After that, we identified the modified line in the program. This
information was used in the application of our approach and makes the repair better.

4.2. Converting Code to AST

To apply the GP technique, we transformed the program source codes into AST. The AST
conversion can be expressed by a relation between AST nodes and the source code as follows:

ASTTarget = ASTConversion
(
CodeLinesTarget

)
, (1)

• Target indicates the original buggy code and similar fixed buggy code.
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• CodeLines are source code lines.

After that, we changed the source codes by modifying AST nodes. Then, we generated source
codes from the changed AST nodes.

4.3. Applying GP

In this section, we describe the application of GP with similar bug fix information. Creating the
initial population, GP operation, fitness computation, etc., are shown in Figure 2. The GP operations
consist of selection, crossover, and mutation. The initial patches were created from random generation
and each patch was evaluated using a fitness function. While applying the GP operations, we generated
the candidate patches to fix the buggy code. They were also evaluated using a fitness function to
determine whether they were adoptable. For the fitness function, we utilized test cases in a test suite
for each program. If the fitness value of a patch is 1.0, it means that the patch passes all test cases and
is the correct patch for the buggy program. If not, our approach repeats the GP generations.

Figure 2. A detailed view of b-1 and b-2 in Figure 1.

4.3.1. Making Initial Population

First, we searched for buggy codes similar to the given buggy code by utilizing a clone detection
technique [23] and obtained the fixed code of the most similar code. We produced an initial population
by utilizing the similar lines in the fixed code. To produce an initial population, we found lines in the
fixed code that were similar to buggy lines in the buggy code identified by fault localization technique.
To find similar lines, we transformed each line into token sequences and compared token sequences
between those lines using the longest common subsequence (LCS) [24]. We took the token sequence
with the highest LCS value from the lines. We compared the token sequences between a buggy line
and the similar fixed buggy code using LCS. Then, we took the token sequence with the highest LCS
values from the lines.

We produced each solution by utilizing a random operator, except for keywords and names of
variables and functions from the token sequence. A constant in a line can be adopted from both the
buggy code and fixed code. Then, we produced a new line from the changed token sequence and
swapped that line with the buggy line. This step is repeated until the number of the initial patches is
equal to the size of the population.
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4.3.2. GP Operation

To produce each patch, we first selected two candidate patches from the population using
a selection operator, and executed crossover and mutation operators. It is expected that the nodes in
the buggy line were changed by the GP operations. In the crossover operation, we start with ASTs of
the two selected candidate patches. We describe the details of GP operations as follows:

• Selection: Fitness normalizing process was applied to guarantee the probabilities for patches that
have low fitness. To normalize fitness, we used the following process.

FitNormal(p) =
(largestFitness− smallestFitness)

n
+ (fitness(p)− smallestFitness), (2)

• We first sorted the candidate patches in the population in descending order from the previous
generation using the fitness values. Then, we computed the difference between the largest and
smallest fitness values. We divided the difference by the normalizing factor “n” and added the
difference between the fitness value and the smallest fitness value in the generation to obtain
the normalized fitness value. The smaller the value of the normalizing factor “n”, the greater
the probability that a patch with a small fitness value will be selected. This normalized fitness
value was used only for selection. The two ASTs from the current population were selected to
construct two children using a roulette wheel selection operator with the normalized fitness value.
According to roulette wheel selection, the patch that has the greater normalized fitness value will
be selected with greater probability. Then, we used the two parent patches to generate two new
children patches.

• Crossover: The crossover aims to exchange the sub-tree nodes in two ASTs. To do this, we first
selected the changeable target nodes in each parent tree. We then constructed a set of target
nodes from the buggy line to the nodes within “r” lines, including the lines above and below.
The factor “r” refers to the range of the patch target code. After selecting the target nodes, we
verified whether the two nodes can be exchanged with each other by tracing the parent’s node.
Then, we exchanged the changeable nodes.

• Mutation: In this operation, the target node will be removed, added, or modified. The node
was selected from the target set. The set is the same as the target set in the crossover, but the set
can have different a code range, and the set is not dealt with as crossover target set. There are three
sub-operations: deletion, addition, and modification. Deletion removes the target node from the
AST. Addition inserts a copied node of its own tree. Modification changes the operator of the target
node. When the modification is executed, an operator is selected from an operator list, except for
the original operator. However, the mutation operator introduces variety into the population in
a positive or negative way; thus, the operator is adjusted by a suitable probability parameter.

4.3.3. Fitness Function

Owing to the random generation characteristic of GP, the generated candidate patches should be
evaluated by a fitness function to determine whether the patches are adoptable. The fitness function is
expressed as follows:

Fitness(Programcandidate) =
|Passed WhiteB|+ |Passed BlackB|

|WhiteB|+ |BlackB| , (3)

• Programcandidate is a candidate program patch from the result of the GP operation.
• Passed WhiteB is the number of test cases passed among white box test cases from a given test

suite. Passed BlackB is the number of test cases passed among black box test cases from a given
test suite.

• WhiteB and BlackB are the total number of test cases in white box and black box, respectively.
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From Equation (3), we consider the generated patch as correct if the fitness value is 1.0. If not, the
patch cannot be adopted to fix the given buggy program. The larger fitness values are better than the
smaller fitness values. Our approach can be described in the following pseudocode as shown in Figure 3.

Figure 3. A pseudocode of our approach.

To generate the initial population, we first set the target lines (lines 1–5). In this process, we
assume that we already know where the fault is (line 1). Then, we set the target lines around the buggy
line (lines 2–5). One of these lines will be modified to generate the initial population (line 7). After
setting the target line, we collect the constants and the names of the variables in the line (lines 8 and
9). This set is used to construct a new line (line 21). To select a line from patched code, we compute
the LCS value between the token type sequence of the target line and the token type sequence of lines
from the correct patched code of the similar bug (line 13). In detail, variables are changed to “varname”,
operators are changed to “op”, and constants are changed to “constant” (e.g., “sum = sum% 64 + 32” will
be changed to [varname = varname, op, constant, op, constant]). Then, we obtain the LCS values of each
line. The line that has the largest LCS value is selected to write the new line. If there are several lines
with the same LCS value, we select a line randomly (line 20). We construct a new code line from the
token type sequence that has the largest LCS value (line 21). The token type “varname” is changed to
one of the names of the variables in the original code, and the token type “constant” is changed to one
of the constants of the original buggy code line and the selected patched code line. The token type “op”
is changed to a random operator. The selected line of buggy code is alternated by a new line (line 22).

5. Case Study

In this section, we present a case of study of our approach. First, we utilized a benchmark dataset
from IntroClass [11]. The dataset consists of checksum, digits, grade, median, smallest, and syllables
programs. In this case study, we used the checksum program as shown in Figure 4.
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Figure 4. A sample of buggy code.

In Figure 4, an add variable in Line 6 can be an initial value problem in a runtime execution; thus,
the variable cannot be affected by the test case. However, Line 16 can be affected by the test case,
because a wrong number (e.g., −32) in the formula is subtracted from the sum of local variables.

5.1. Similar Buggy Detection

To detect a similar buggy code, we utilized a tool named CCFinder [23]. With the CCFinder,
we can analyze a token-based source code to find the similar fixed files from the new given buggy
file. Thus, we adopted these similar files to retrieve the fixed buggy information for constructing the initial
population. If we use more similar fix information, we can get a variety of information. However, this
results in a rapid increase in overhead; hence, we adopted one of the most similar buggy files from the result.
In this case, we get a similar value (0.246377) from the given buggy code (e.g., File ID: 98d873cde . . . ) and
find the similar fixed buggy code (e.g., File ID: 36d8008b1 . . . ), as shown in Figure 5.

Figure 5. A sample of similar fixed buggy code.
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According to Figure 5, we can verify the similarity with Figure 4 by the following: (1) applying
while loop statement; (2) the while loop statement contains a getchar function related to the scanf function
and an accumulation equation; (3) in the sum formula, they utilize an add (e.g., “+”) operator and
a module (e.g., “%”) operator.

5.2. AST Conversion

To apply GP, we transformed source codes into the ASTs as shown in Figure 6 (from Figure 4) and
Figure 7 (from Figure 5).

Figure 6. Result of AST Conversion from Figure 4.

Figure 7. Result of AST Conversion from Figure 5.

In Figure 6, the AST is related to the buggy line (e.g., Line 18) in Figure 4. We show the buggy
node of the tree using a red box and a check mark in the figure. When we transformed the source
codes into AST, we utilized a mapping concept (e.g., line numbering) between the buggy nodes of AST
in Figure 6 and the source codes of related nodes in Figure 7 in order to verify the target node in the
GP operation. Then, we show the AST result of the similar fixed buggy code in Figure 7. The nodes of
tree are related to the line (e.g., Line 19) in Figure 5.

5.3. Applying GP

By applying GP to the previous tree, we can get a result as shown in Figure 8. Each operation
was executed by the probability from the previous operation. We can verify that the target nodes were
changed by GP in Figure 8.
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Figure 8. The AST Result from the GP.

The buggy code does not contain an add (e.g.,”‘+”) operator and a module (e.g., “%”) operator.
If we do not use the similar fixed code, the program cannot be fixed. However, we have to consider
the same type of variable in the similar fixed code and the original buggy code when we perform the
crossover operation. Finally, we can get a result from Figure 8, as shown in Figure 9.

Figure 9. A result of patched source code from Figure 8 (e.g., the fitness value is 1.0).

5.4. Fitness Function Computation

Owing to the random generation characteristic of GP, we have to verify whether the patch can be
adopted by using a fitness function, because the GP operations perform tasks including random
combination, insertion, deletion, and edition. We computed the fitness function using test cases. After
patch generation, we executed the patch program by compiling the patch source code. Then, we
inserted the related test case into the running program. Finally, we observed the results. By using the
fitness function, we verified the total number of passed test cases. If the result of the fitness function is
1.0, we consider the patch as successfully generated. However, if the result of one generation is not 1.0,
we removed the patch that holds the lowest fitness function value according to the parameters of the
parent population. Then, we applied the GP operations to the remaining patches to generate a new
patch. The new patch was also computed by the fitness function. In this step, we expect the fitness
value of the patch population to increase during the iteration of these steps. The patch generation
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for the buggy program will not be executed (e.g., patch fail) if the patch generation is larger than the
generation parameter, and if the generation time reaches the timeout parameter.

5.5. Adjusting Mutation Parameter

In this section, we performed experiments by adjusting mutation parameters (0.3, 0.5, and 0.7).
This experiment was executed on a server machine with Xeon CPUs (10 cores, 2.40 GHz) and 256 GB
RAM. Due to a time limit (e.g., a random generation characteristic of GP), we set the time limit for
8 h, which means the corrected patch generation should be made within 8 h. If not, the patch is fail.
The results showed that the corrected patch was made within 8 h when we set the mutation parameter
to 0.5. Also, we keep the sub-mutation parameters (e.g., insertion, deletion, swapping, and modifying)
to default (each for 0.25) in all the cases. In addition, if we have a larger population size than 100,
we can attain plentiful information. However, some of them might not be useful. Moreover, we cannot
generate the corrected patches when we adjust the mutation parameters (0.3 and 0.7). In the future, we
will investigate the correlation between the GP parameter and population size.

6. Discussion

6.1. Experiment Analysis

In the case study, we presented an approach for program fault repair using similar bug fix
information on GP. Then, we generated the patch for a buggy program in IntroClass. In Figure 4, we
added a formula (e.g., sum = sum− 32) so that the program returns a value of “ “ (e.g., whitespace) when
we take the #1 black box test case (e.g., 1234567890). However, our patch returned “-” (e.g., hyphen)
with the same test case; hence, we generated the correct patch in Figure 9. In this case, we accept all
the black box test cases.

6.2. Threats to Validity

Fault Localization: We investigated buggy code lines manually in IntroClass. The size of each
project is small, so we can trace the buggy code manually using black box and white box test cases.
In the future, we would like to adopt an automatic fault localization technique or tool to increase the
accuracy of this study in large-scale projects.

Dataset: We utilized a benchmark dataset called IntroClass. However, the dataset was created by
students in the class. Thus, the size and complexity of the code are small, and the code contains small
keywords for programming. In the future, we will utilize an open source code to verify our study
of effectiveness.

Adjusting Mutation Parameter: In this paper, we performed a case of study by adjusting GP
parameters (mutation parameters = 3, 5, and 7). The result shows that the corrected patch was made
when we set the mutation parameter to 0.5 (population size = 100). However, we cannot conclude
that the parameters are always appropriate. In the future, we would like to investigate the correlation
between GP parameters and others.

7. Conclusions

This study proposed a method to fix a buggy program automatically. First, we found suspicious
buggy code lines by manual checking. Then, we generated candidate patches by applying GP with
similar bug fix information. Next, we verified whether the candidate patches were adoptable. Finally,
we generated the patch to fix the program fault. With our approach, we expect that the time and effort
spent on fixing bugs can be reduced. In the future, we would like to utilize a test case prioritization
algorithm [16] and large-scale bug fix information. Moreover, we plan to create a tool for automatic
fault repair.
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