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Abstract: We discuss the mechanism of spontaneous symmetry breaking and the elementary
excitations for a weakly-interacting Bose gas at a finite temperature. We consider both the
non-relativistic case, described by the Gross-Pitaevskii equation, and the relativistic one, described
by the cubic nonlinear Klein-Gordon equation. We analyze similarities and differences in the two
equations and, in particular, in the phase and amplitude modes (i.e., Goldstone and Higgs modes) of
the bosonic matter field. We show that the coupling between phase and amplitude modes gives rise
to a single gapless Bogoliubov spectrum in the non-relativistic case. Instead, in the relativistic case
the spectrum has two branches: one is gapless and the other is gapped. In the non-relativistic limit
we find that the relativistic spectrum reduces to the Bogoliubov one. Finally, as an application of the
above analysis, we consider the Bose-Hubbard model close to the superfluid-Mott quantum phase
transition and we investigate the elementary excitations of its effective action, which contains both
non-relativistic and relativistic terms.

Keywords: superfluidity; Gross-Pitaevskii equation; nonlinear Klein-Gordon equation; Higgs mode;
Bose-Hubbard model

1. Introduction

The mechanism of spontaneous symmetry breaking is widely used to study phase transitions [1].
Usually the approach introduced by Landau [2,3] for second-order phase transitions is adopted,
where an order parameter is identified and its acquiring a non-zero value corresponds to a transition
from a disordered phase to an ordered one. In other words, when a nonlinearity is added to the
symmetric problem, and its strength exceeds a critical value, there is a loss of symmetry in the
system, that is called spontaneous symmetry breaking, alias self-trapping into an asymmetric state [4].
In particular, for weakly-interacting Bose gases, the spontaneous breaking of the U(1) group leads
to the transition to a superfluid phase [1]. In this normal-to-superfluid phase transition the order
parameter is the mean value of the bosonic matter field both in the non-relativistic case [5,6] and the
relativistic one [7]. In the last years, symmetry breaking with the subsequent self-trapping has been
investigated intensively by our group in the case of non-relativistic bosonic and fermionic superfluids
made of alkali-metal atoms under the action of an external double-well potential [8,9] or in the presence
of Josphson junctions [10–12].

In this review paper we compute and study the spectrum of elementary excitations for both
non-relativistic and relativistic Bose gases in the ordered phase of the normal-to-superfluid phase
transition. We calculate the elementary excitations by expanding the bosonic matter field as the sum of
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its mean value and fluctuations around it. We first study the Euclidean action of the bosonic gases and
derive the elementary excitations as an intermediate step in the computation of the grand canonical
potential. Then we consider the equations of motion of the bosonic field, which are the Gross-Pitaevskii
equation [13,14] in the non-relativistic case and the cubic nonlinear Klein-Gordon equation [15,16]
in the relativistic case, and we derive the linear equations of motion for fluctuations. We show that
the complex fluctuating field around the symmetry-breaking uniform and constant solution can be
written in terms of the angle field of the phase, the so-called Goldstone field [17] and an amplitude
field, the so-called Higgs field [18]. For a discussion of the Goldstone and Higgs fields in Condensed
Matter Physics see the recent review Ref. [19]. We then compare the results found for non-relativistic
and relativistic cases. In recent years, the interplay between the spectrum of spontaneously broken
ground state of the relativistic and the non-relativistic theories has thoroughly been studied (see, for
instance, [20–23]). Here we show that while the non-relativistic Bose gas is characterized only by a
gapless (Goldstone-like) mode, the relativistic Bose gas has also a gapped (Higgs-like) mode, whose
energy gap goes to infinity as the non-relativistic limit is approached. In fact, the appearance of the
gapless spectrum is the direct consequence of the general Goldstone theorem, which says that the
number of gapless modes is equal to number of the number of broken generators [17]. More precisely,
as shown by Nielsen and Chadha [24], in general there are two types of Goldstone bosons: those with
an energy proportional to an even power of the momentum and those with a dispersion relation that
is an odd power of the momentum. Within this context, a generalized Goldstone theorem holds [24]:
the sum of twice the number of Goldstone modes of the first type and the number of Goldstone
modes of the second type is at least equal to the number of independent broken symmetry generators.
In our case we find one gapless mode since the broken symmetry group is U(1), which has only
one generator.

In the last section, the methods used for the weakly-interacting Bose gas are used to investigate
the Bose-Hubbard model [25], which describes the non-relativistic dynamics of bosons on a lattice.
Quite remarkably, close to the superfluid-Mott quantum phase transition, the Bose-Hubbard model is
captured by an effective action which contains both non-relativistic and relativistic terms. We calculate
and analyze the spectrum of elementary excitations of this effective action.

2. Spontaneous Symmetry Breaking: Non-Relativistic Case

2.1. Elementary Excitations from Non-Relativistic Partition Function

Let us consider a non-relativistic gas of weakly-interacting bosons in a volume V at absolute
temperature T. The Eucidean action (imaginary time formalism) of the system is given by [5,6]:

S =
∫ h̄β

0
dτ

∫
V

dD~r

{
ψ∗
(

h̄
∂

∂τ
− h̄2∇2

2m
− µ

)
ψ +

g
2
|ψ|4

}
(1)

where ψ(~r, τ) is the bosonic matter field, m is the mass of each bosonic particle and µ is the chemical
potential which fixes the thermal average number of bosons in the system. We assume that the gas
is dilute, such that we can approximate the interaction potential V(~r) with a contact interaction, i.e.,
setting V(~r) = gδ(~r), where the coupling g by construction reads:

g =
∫

V
dD~r V(~r) (2)

The constant β is related to the absolute temperature T by:

β =
1

kBT
(3)
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where kB is the Boltzmann constant. By using functional integration can now define the partition
function Z, and the grand canonical potential Ω, as follows [5,6]:

Z =
∫

D[ψ, ψ∗] exp
{
−S[ψ, ψ∗]

h̄

}
(4)

Ω = − 1
β

ln(Z) . (5)

In the Lagrangian we can now consider the effective potential, let us call it Ve f f defined as:

Ve f f = −µ|ψ|2 + g
2
|ψ|4 (6)

The phase transition correspond to a spontaneous symmetry breaking process and for this reason
we need to find the minima of this potential [5,6]. We impose the conditions of stationarity on the
first derivative:

∂Ve f f

∂ψ∗
= ψ(g|ψ|2 − µ) = 0 (7)

and the minimum is given by:

|ψ0| =

0 if µ < 0√
µ
g if µ > 0

(8)

The superfluid regime corresponds to the lower case. It is a condition on the modulus of ψ and
therefore we have a circle of minima of radius |ψ0|. The choice of a particular minimum breaks the
U(1) symmetry of the Lagrangian. For the superfluid phase we will take the real-valued vacuum
expectation value, i.e., ψ0 = ψ∗0 = |ψ0|.

To maintain full generality in the following calculations however we leave the value of ψ0 implicit.
We can expand ψ as follows:

ψ(~r, τ) = ψ0 + η(~r, τ) (9)

where η is the complex fluctuation field. We can now expand the Lagrangian to the second-order (i.e.,
Gaussian) in the fluctuations:

S =
∫ h̄β

0
dτ

∫
V

dD~r
{
− µψ2

0 +
1
2

gψ4
0 + ψ0h̄

∂

∂τ
ψ− µψ0(η + η∗) + gψ3

0(η + η∗)+

η∗
(

h̄
∂

∂τ
− h̄2∇2

2m
− µ + 2gψ0

)
η +

g
2

ψ2
0(ηη + η∗η∗)} (10)

The linear terms are written for the sake of completeness but they do not contribute. Indeed
the linear terms in the fluctuations cancel out. Instead the linear terms in the derivatives give no
contribution to the equation of motion.

The next step is to expand the fluctuation field in the Fourier space as:

η =

√
1

Vh̄β ∑
n,~q

ηn,~qei(ωnτ+~q~r) (11)

where ωn are the Matsubara frequencies:

ωn =
2πn
h̄β

n ∈ Z (12)
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Let S0 be the part of the action which does not depend on η and η∗. The grand canonical potential
for the constant term results:

Ω0 = −V
µ2

2g
(13)

For the quadratic part instead, S2, we will use the Fourier transform defined above and the
fact that: ∫

V
dD~r

1
V

ei(~q−~q′)~r = δ
~q,~q′ (14)∫ h̄β

0
dτ

1
h̄β

ei(ωn−ωn′ )τ = δn,n′ (15)

where δ
~q~q′ is the Kroenecker delta. We can write S2 as:

S2 =
1
2 ∑

n,~q
∑

n′ ,~q′

1
Vh̄β

∫ h̄β

0
dτ
∫

V
dD~r {ei(ωn−ωn′ )τ+i(~q−~q′)~rη∗

n′ ,~q′
[ih̄ωn +

h̄2q2

2m
− µ + 2gψ2

0 ]ηn,~q+

e−i(ωn−ωn′ )τ−i(~q−~q′)~rη∗−n′ ,−~q′ [−ih̄ωn +
h̄2q2

2m
− µ + 2gψ2

0 ]η−n,−~q+

g
2

ψ2
0(e

i(ωn+ωn′ )τ+i(~q+~q′)~rηn,~qηn′ ,~q′ + e−i(ωn+ωn′ )τ−i(~q+~q′)~rη−n,−~qη−n′ ,−~q′+

e−i(ωn+ωn′ )τ−i(~q+~q′)~rη∗n,~qη∗
n′ ,~q′

+ ei(ωn+ωn′ )τ+i(~q+~q′)~rη∗−n,−~qη∗−n′ ,−~q′)} (16)

Hence using the relations involving the Kroenecker deltas written above we can write the
precedent equation in a different (and far more simple) form, namely involving a matrix formalism:

S2 =
1
2 ∑

n,~q

[
η∗n,~q η−n,−~q

]
M

[
ηn,~q

η∗−n,−~q

]
(17)

where M is the matrix given by:

M =

[
ih̄ωn +

h̄2q2

2m − µ + 2gψ2
0 gψ2

0

gψ2
0 −ih̄ωn +

h̄2q2

2m − µ + 2gψ2
0

]
(18)

The second-order correction contribution to the partition function is given by:

Z2 =
∫

D[η, η∗] e−S2 (19)

and the second-order correction to the grand canonical potential is given by:

Ω2 = − 1
β

lnZ2 =
1

2β ∑
n,~q

ln(detM) =
1

2β ∑
n,~q

ln[h̄2ω2
n + (Eq)

2] (20)

where Eq reads:

Eq =

√√√√ h̄2q2

2m

(
h̄2q2

2m
− 2µ + 4gψ2

0

)
+ µ2 + 3g2ψ4

0 − 4gψ2
0µ (21)

After the summation over Matsubara frequencies we can finally write:

Ω2 = ∑
~q

{Eq

2
+

1
β

ln(1− e−βEq)

}
(22)
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Putting all parts of the grand canonical potential together:

Ω = Ω0 + Ω(0)
2 + Ω(T)

2 (23)

where Ω0 is the mean-field potential while Ω(0)
2 , the zero-point energy, and Ω(T)

2 , the thermodynamic
fluctuation term, are given by:

Ω(0)
2 = ∑

~q

Eq

2
(24)

Ω(T)
2 = ∑

~q

1
β

ln(1− e−βEq) . (25)

For further details on the derivation of these equations and the renormalization of the divergent
Gaussian grand potential Ω(0)

2 see Ref. [26].
It is clear that these calculations hold for both superfluid and normal phases: in all calculations

we left implicit the value of ψ0. For the superfluid phase ψ2
0 = µ

g and therefore:

Eq =

√√√√ h̄2q2

2m

(
h̄2q2

2m
+ 2µ

)
(26)

This spectrum is known as the Bogoliubov spectrum [27] of elementary excitations of the
non-relativistic Bose gas. This is a gapless spectrum and, at small momenta, it becomes the phonon
mode Eq '

√
µ/mh̄q, which can be identified as the Goldstone mode that appears necessarily in

models exhibiting a spontaneous breakdown of continuous symmetries [17]. Thus, the Goldstone
mode is only an approximation of the Bogoliubov mode. One finds a pure Goldstone mode only
freezing amplitude fluctuations.

2.2. Elementary Excitations from Non-Relativistic Equation of Motion

2.2.1. Non-Relativistic Complex Fluctuations

By imposing the stationarity condition on the non-relativistic action (1), after having performed a
Wick rotation from imaginary time to real time, one gets the Gross-Pitaevskii equation [13,14] for a
weakly interacting bosonic gas which is given by:

ih̄
∂

∂t
ψ = − h̄2∇2

2m
ψ− µψ + g|ψ|2ψ (27)

Let ψ0 be the value of the ψ(~r, τ) field, which satisfies the condition (8). Let η(~r, τ) be the
fluctuation around that value. If we expand the Gross-Pitaevskii equation to the first order in the
fluctuations we obtain:

ih̄
∂

∂t
η = − h̄2∇2

2m
η − µη + gψ2

0(2η + η∗) (28)

If we now perform a Fourier Transform we obtain:

(h̄ω +
h̄2q2

2m
− µ + 2gψ2

0)ηω,~qe−iωt + gψ2
0η∗ω,−~qe+iωt = 0 (29)

(−h̄ω +
h̄2q2

2m
− µ + 2gψ2

0)η
∗
ω,−~qe+iωt + gψ2

0ηω,~qe−iωt = 0 (30)
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which in turns gives:

h̄2ω2 =
h̄4q4

4m2 + 2
h̄2q2

2m
(2gψ2

0 − µ) + µ2 − 4gψ2
0µ + 3g2ψ4

0 (31)

In the superfluid regime, where ψ2
0 = µ

g , this equation gives exactly Equation (26). Thus,
the spectrum obtained from the equation of motion is the same one derived from the partition function.

2.2.2. Non-Relativistic Amplitude and Phase Fluctuations

We will now compute the spectrum in a slightly different way. We now consider separately the
phase and the amplitude fluctuations. We thus write the boson field ψ(~r, t) this time as:

ψ(~r, t) = (ψ0 + σ(~r, t))exp(iθ(~r, t)) (32)

i.e., including both the amplitude fluctuation field, σ, and the phase fluctuation field, θ,
the Gross-Pitaevskii Equation (27) becomes (using the value of ψ0 for the superfluid phase) at the first
order in θ and σ:

ih̄(
∂

∂t
σ + ψ0iθ) = − h̄2

2m
∇2(σ + iθ) + 2µσ (33)

This equation can be split in its real and imaginary parts. The resulting equations are coupled for
θ and σ:

−h̄
∂

∂t
ψ0θ +

h̄
2m
∇2σ− 2µσ = 0 (34)

h̄
∂

∂t
σ +

h̄2ψ0

2m
∇2θ = 0 (35)

By performing now a Fourier transform we obtain:

ih̄ωθω,~q +

(
h̄2q2

2m
+ 2µ

)
σω,~q = 0 (36)

ih̄ωσω,~q +
h̄2q2

2m
θω,~q = 0 (37)

where θω,~q and σω,~q are the Fourier transforms of the fluctuation fields. If we substitute, for example,
the expression of σω,~q obtained by second equation in the first we get:[

h̄2ω2 −
(

h̄2q2

2m
+ 2µ

)
h̄2q2

2m

]
θω,~q = 0 (38)

solving for ω we find again the Bogoliubov spectrum, Equation (26), that is the same results obtained
with the other two methods. Note that if we consider only the phase fluctuations, i.e., we impose
σ = 0, the Gross-Pitaevskii equation in the first order in θ becomes:

ih̄
∂

∂t
θ =

h̄
2m
∇2θ (39)

and if we consider the Fourier transform we obtain the following spectrum:

h̄ω =
h̄q2

2m
(40)

this is a gapless spectrum which has the form of a free particle spectrum. Conversely if we consider
the case θ = 0, i.e., we consider only the amplitude fluctuations, we get the equation:
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ih̄
∂

∂t
σ = − h̄2

2m
∇2σ + 2µσ (41)

which gives the spectrum:

h̄ω = 2µ +
h̄2q2

2m
(42)

this time we have a gapped spectrum, the gap being 2µ. This is consistent with what we would
expect by the spontaneous symmetry mechanism: the breaking of the U(1) symmetry in fact produces
always a gapless mode, which is usually called Goldstone mode [17], and a gapped mode, which in
Condensed Matter Physics is referred as Higgs mode [18,19].

3. Spontaneous Symmetry Breaking: Relativistic Case

3.1. Elementary Excitations from Relativistic Partition Function

Working with the same approximation for the dilute gas as in the previous section, for a
weakly-interacting relativistic gas the Euclidean action is given by [7,28–30]:

S =
∫ h̄β

0
dτ
∫

V
dD~r

( h̄2

mc2 |
∂

∂τ
ψ|2 + 2h̄

µr

mc2 ψ∗
∂

∂τ
ψ +

h̄2

m
|∇ψ|2 + (

µ2
r

mc2 − mc2)|ψ|2 + g
2
|ψ|4

)
(43)

where ψ(~r, τ) is the bosonic matter field and we have introduced the relativistic chemical potential, µr

which is given by:
µr = µ + mc2 (44)

If we define again an effective potential Ve f f such as:

Ve f f = −(
µ2

r
mc2 −mc2)|ψ|2 + g

2
|ψ|4 (45)

Clearly if µ2
r −m2c4 > 0 we have the superfluid phase: the U(1) symmetry is broken and therefore

we can proceed as we have done in the previous section. In particular the minima are given by:

|ψ0| =


0 i f µ2

r −m2c4 < 0√
µ2

r
mc2−mc2

g i f µ2
r −m2c4 > 0

(46)

The first case correspond to the normal phase, characterized by a mean value of order parameter
equal to zero. For both phases we choose the real-valued vacuum, let us call it ψ0. Let us now call
η(~r, τ) the fluctuations around the minimum. We expand now the action to the second order in the
fluctuations, maintaining for generality the value of ψ0 implicit. We obtain:

S = Vh̄β(−( µ2
r

mc2 −mc2)ψ2
0 +

g
2

ψ4
0)+∫ h̄β

0
dτ
∫

V
dD~r {h̄ µr

mc2 (η
∗ ∂

∂τ
η − η

∂

∂τ
η∗) +

h̄2

mc2 |
∂

∂τ
η|2 + h̄2

m
|∇η|2−

(
µ2

r
mc2 −mc2)|η|2 + g

2
ψ2

0(ηη + η∗η∗ + 4|η|2)} (47)

The constant term:

S0 = Vh̄β(−( µ2
r

mc2 −mc2)ψ2
0 +

g
2

ψ4
0) (48)

gives a contribution to the grand canonical potential:
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Ω0 = V(−( µ2
r

mc2 −mc2)ψ2
0 +

g
2

ψ4
0) (49)

whereas the second-order correction of the action can be written in a matrix form in the Fourier space
(the sum over the index n refers to the sum over the Matsubara frequencies):

S2 =
1
2 ∑

n,~q

[
η∗n,~q η−n,−~q

] 1
mc2 M

[
η~q

η∗−~q

]
(50)

where M is given by:

M =

[
A B
B C

]
(51)

where:

A = h̄2ω2
n + 2h̄ωnµr + h̄2c2q2 − (µ2

r −m2c4) + 2gψ2
0mc2 (52)

B = gψ2
0mc2 (53)

C = h̄2ω2
n − 2h̄ωnµr + h̄2c2q2 − (µ2

r −m2c4) + 2gψ2
0mc2 (54)

The second order contribution to the grand canonical potential then results:

Ω2 =
1

2β ∑
n,~q

ln(
1

m2c4 detM) =
1

2β ∑
n,~q

∑
j=±

ln[
1

m2c4 (h̄
2ω2

n + E2
j,q)] (55)

where E±,q is given by:

E2
±,q = h̄2c2q2 + (µ2

r + m2c4 + 2gψ2
0mc2) ±

√
4µ2

r (h̄
2c2q2 + m2c4 + 2gψ2

0mc2) + g2ψ4
0m2c4 (56)

Summing over the Matsubara frequencies we can finally write:

Ω2 = ∑
~q

∑
j=±

{Eq,j

2
+

1
β

ln(1− e−βEq,j)

}
(57)

Putting all terms of the grand canonical potential density together we obtain:

Ω = Ω0 + Ω(0)
2 + Ω(T)

2 (58)

where Ω(0)
2 , the zero-point Gaussian grand canonical potential density, and Ω(T)

2 is the fluctuation
term, defined respectively as:

Ω(0)
2 = ∑

~q
∑

j=±

Eq,j

2
(59)

Ω(T)
2 = ∑

~q
∑

j=±

1
β

ln(1− e−βEq,j) (60)

For the superfluid phase ψ2
0 =

µ2
r

mc2−mc2

g and therefore the spectrum becomes:

E2
±,q = h̄2c2q2 + (3µ2

r −m2c4)±
√

4µ2
r h̄2c2q2 + (3µ2

r −m2c4)2 (61)
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3.2. Elementary Excitations from Nonlinear Klein-Gordon Equation

3.2.1. Relativistic Complex Fluctuations

By extremizing the relativistic action (43), after having performed the Wick rotation as in the
non-relativistic case, we find the cubic nonlinear Klein-Gordon equation [15,16] for a bosonic gas with
relativistic chemical potential µr [7,28–30]:

(
h̄2

m
DνDν + mc2 + g|ψ|2)ψ = 0 (62)

where Dν is the covariant derivative defined by:

D0 =
1
c

∂

∂t
− i

µr

h̄c
(63)

Di = ∂i (64)

so the nonlinear Klein-Gordon equation can be written:

(h̄2∂2
t − 2ih̄µr∂t − h̄2c2∇2 − (µ2

r −m2c4) + gmc2|ψ|2)ψ = 0 (65)

We now write the field as the sum of the vacuum expectation value, ψ0, and a fluctuation field, let
us call it η. The nonlinear Klein-Gordon equation in the first-order of the fluctuation is given by:

(h̄2∂2
t − 2ih̄µr∂t − h̄2c2∇2 − (µ2

r −m2c4) + 2gmc2ψ2
0)η + gmc2ψ2

0η∗ = 0 (66)

We now perform a Fourier transform for this equation and its complex conjugate, obtaining:

(−h̄2ω2 − 2µr h̄ω + h̄2c2q2 − (µ2
r −m2c4) + 2gmc2ψ2

0)ηω,~qe−iωt + gmc2ψ2
0η∗ω,−~qe+iωt = 0 (67)

(−h̄2ω2 + 2µr h̄ω + h̄2c2q2 − (µ2
r −m2c4) + 2gmc2ψ2

0)η
∗
ω,−~qe+iωt + gmc2ηω,~qe−iωt = 0 (68)

These equation give the following solutions:

h̄2ω2
± = h̄2c2q2 + m2c4 + µ2

r + 2gmc2ψ2
0 ±

√
4µ2

r (h̄
2c2q2 + m2c4 + 2gmc2ψ2

0) + g2m2c4ψ4
0 (69)

and substituting the value of ψ0 for the superfluid phase given by Equation (46) we obtain:

h̄2ω2
± = h̄2c2q2 + (3µ2

r −m2c4)±
√

4µ2
r h̄2c2q2 + (3µ2

r −m2c4)2 (70)

Also, in the relativistic case, we have the same spectrum found using the partition function.

3.2.2. Relativistic Amplitude and Phase Fluctuations

We show now that we can find the spectrum also by expanding the matter field ψ as:

ψ = (ψ0 + σ(~r, t))exp(iθ(~r, t)) (71)

where σ is the Higgs amplitude field and θ(~r, t) is the Goldstone angle field. Using again the value of
ψ0 for the superfluid phase given by the condition (46), we obtain by expanding the cubic nonlinear
Klein-Gordon Equation (62) in the first order of the fluctuations:

(h̄2∂2
t − 2ih̄µr∂t − h̄2c2∇2)(σ + iψ0θ) + 2(µ2

r −m2c4)σ = 0 (72)

which like the non-relativistic case can be decoupled in its imaginary and real parts. The equations are
however coupled:
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(h̄2∂2
t − h̄2c2∇2 + 2(µ2

r −m2c4))σ + 2h̄µr∂tψ0θ = 0 (73)

(h̄2∂2
t − h̄2c2∇2)ψ0θ − 2h̄µr∂tσ = 0 (74)

By performing the Fourier transform we obtain:

(−h̄2ω2 − h̄2c2q2 + 2(µ2
r −m2c4))σω,~q − 2ωh̄µrψ0θω,~q = 0 (75)

(−h̄2ω2 − h̄2c2q2)ψ0θω,~q + 2ωh̄µrσω,~q = 0 (76)

where θω,~q and σω,~q are the Fourier transforms of the fluctuation fields. By using the expression of σω,~q
found by solving the second equation and substituting it in the first we obtain:

{[(−h̄2ω2 − h̄2c2q2 + 2(µ2
r −m2c4))(−h̄2ω2 − h̄2c2q2 + 2(µ2

r −m2c4)]− 4ω2h̄2µ2
r}ψ0θω,~q = 0 (77)

which gives:

h̄4w4 − 2h̄2ω2(h̄2c2q2 + 3µ2
r − m2c4) + h̄2c2q2[h̄2c2q2 − 2(µ2

r − m2c4)] = 0 (78)

and ω is therefore given by:

h̄ω± =

√
h̄2c2q2 + (3µ2

r −m2c4)±
√

h̄2c2q2 + (3µ2
r −m2c4)2 (79)

which is exactly the same result found with the other methods.
It is important to observe that the cubic nonlinear Klein-Gordon equation is used to describe not

only a relativistic Bose gas but also the dynamics of Cooper pairs in superconductors described by the
Bardeen-Cooper-Schrifer (BCS) theory [19,31].

4. Analysis and Comparison of Spectra

We now proceed to study the spectra we have found. In the non-relativistic case we have found a
gapless Bogoliubov spectrum, given by:

h̄ω =

√√√√ h̄2q2

2m

(
h̄2q2

2m
+ 2µ

)
(80)

This spectrum for small momenta gives:

h̄ω '
√

µ

m
h̄q i f

h̄2q2

2m
� µ (81)

Therefore for small momenta we obtain a phonon-like linear spectrum. For sufficiently large
momenta we instead get:

h̄ωq '
h̄2q2

2m
i f

h̄2q2

2m
� µ (82)

In this case we obtained a free-particle quadratic spectrum. This shows that the contact interaction
does not affect the spectrum in the limit of high energies, whereas in the opposite limit we get a
linear spectrum.

We now consider the relativistic spectrum. In the calculations we found two modes, namely:

h̄ω± =

√
h̄2c2q2 + (3µ2

r −m2c4)±
√

4µ2
r h̄2c2q2 + (3µ2

r −m2c4)2 (83)
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At high energies we have that the term involving the higher-degree momentum becomes dominant
and modes are given by:

h̄ω± = h̄cq (84)

In this limit we have two free relativistic particles spectra: as in the non-relativistic case we
obtained that at high energies the spectra are unaffected by the contact interaction. We note that we
have two modes corresponding to a particle and its antiparticle. For small momenta the situation is
different. In fact, using the relation between the relativistic chemical potential and the non-relativistic
one (44), and the fact that µ� mc2 the Taylor expansion around q→ 0 yields:

h̄ω− =

√
µ

m
h̄q (85)

h̄ω+ = 2mc2 +
h̄2q2

2m
(86)

We note that we have two modes: a gapless, i.e., Goldstone for the relativistic case mode, which is
linear for small momenta like the Bogoliubov spectrum in the same limit, and a gapped mode, i.e.,
the Higgs mode for the relativistic case. Therefore, as expected, from the spontaneous symmetry
breaking of the U(1) symmetry we find the presence of both Goldstone and Higgs modes. The gapped
mode for small energies is given by the sum between the gap and a quadratic term in the momenta
which has the form of the spectrum of a non-relativistic free particle (which corresponds to the high
momenta limit in the non-relativistic case), whereas the gapless mode in the same limit is actually
the same.

Until now, however, we have not recovered the Bogoliubov spectrum. Let us now consider again
the Goldstone (relativistic) mode, h̄ω−. For small momenta it can be written as:

h̄ω− =

√
h̄2c2q2 − 2µ2

r h̄2c2q2

3µ2
r−m2c4 +

4µ4
r h̄4c4q4

(3µ2
r−m2c4)3 =

√
h̄2c2q2

3µ2
r−m2c4

(
4µ2

r h̄2c2q2

(3µ2
r−m2c4)2 + (µ2

r −m2c4)

)
(87)

and now, since we are interested in the non-relativistic case, by imposing µ � mc2, we obtain
the Bogoliubov spectrum (80). It should also be noted that the Bogoliubov mode is not, actually,
the Goldstone mode of the non-relativistic case, as we have seen in Section 2.2.2. In that case the
Goldstone mode coincides with the phase mode. Similarly the Higgs mode corresponds to the
amplitude mode. In the relativistic case, however, both these modes are relative to the total fluctuation
around the value of the minimum.

5. Application: The Bose-Hubbard Model

An interesting application of the above considerations is the Bose-Hubbard model. The model
was first introduced by Gersch and Knollman [32] as a bosonic version of the Hubbard model for
fermions on a lattice [33]. The Bose-Hubbard model is used to describe an interacting Bose gas confined
in a periodic lattice by an external potential. We assume that for each site of the lattice the value of the
potential is the same. With this assumption, the bosonic system is described by the Hamiltonian [25]:

ĤBH = −J ∑
〈ij〉

â+i âj − (µ− ε)∑
i

â+i âi +
U
2 ∑

i
â+i â+i âi âi (88)

where âi is the annihilation operator for the site i, µ is the chemical potential of the gas, J is the coupling
of the interaction between the nearest-neighbors (also called the “hopping” term), ε is the energy of the
energy of each particle of every site due to its kinetic energy and to the confining potential, and finally
U is proportional to the interaction strength of bosons. The Bose-Hubbard model has a phase transition
between an insulating phase, called the Mott insulating phase, and a superfluid phase. In particular,
for a system of T = 0 and volume V for the regions of phase space near the phase transitions, it can be
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shown that the behavior of the system is described, using an RPA approximation treating the hopping
term as a perturbation, by the following action in the imaginary time formalism [25,34]:

S(RPA)
BH =

∫
R

dτ
∫

V
d~r{K1ψ∗

∂

∂τ
ψ + K2|

∂

∂τ
ψ|2 + K3|∇ψ|2 + c2|ψ|2 + c4|ψ|4} (89)

where ψ(~r, τ) is an appropriately chosen order parameter (related to the mean value of the annihilation
operator). The coefficients K1, K2, K3, c2, c4 depend on the Bose-Hubbard parameters J, µ, ε and
U. This dependence in shown and discussed in Ref. [34]. The form of the effective action (89) is
strikingly similar to the one found for the relativistic case (43) due to the term K2| ∂

∂τ ψ|2. Also, the
non-relativistic term K1ψ∗ ∂

∂τ ψ has a correspondence in that action to the term linear in the relativistic
chemical potential. The phase transition occurs at the change of sign of the coefficient of the quadratic
term. Note that the transition is purely quantum since we are working at zero temperature. In fact
following the same reasoning used in Section 3, we find that the minima of the effective potential are
given by:

|ψ0| =

0 if c2 > 0√
2c2
c4

if c4 < 0
(90)

and as before we choose the real-valued minimum for the superfluid phase. We now write the order
parameter as a sum of its mean value and the fluctuations:

ψ(~r, τ) = ψ0 + η(~r, τ) (91)

and we expand the action up to the second order in the fluctuations and by following the same steps
of Section 3, we find the spectrum:

E± =

√√√√K3q2 +

(
K2

1
2K2

+ c2 + 4c4ψ2
0

)
±

√
K2

1
K2

K3q2 +
K4

1
4K2

2
+

K2
1

K2
(c2 + 4c4ψ2

0) + 4c2
4ψ4

0 (92)

and substituting the value of ψ0 for the superfluid phase we obtain:

E± =

√√√√√K3q2 +

(
K2

1
2K2
− c2

)
±

√√√√K2
1

K2
K3q2 +

(
K2

1
2K2
− c2

)2

(93)

This spectrum has the same form of the one found for the superfluid phase for the relativistic
gas (61). To better note the formal analogy the following identifications should be considered:

h̄2c2 ↔ K3

µ2
r ↔

K2
1

2K2

µ2
r −m2c4 ↔ c2

As mentioned above, this formal analogy is possible thanks to the inclusion of the relativistic
chemical potential in the relativistic action (43), that gives rise to the linear term in the time derivative
and a correction to the quadratic term.

It is interesting now to study the behavior of the two modes of the spectrum (93) in the limits of
low and high momenta. In particular in the first limit we find at leading order:
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E+ =

√√√√2

(
K2

1
2K2
− c2

)
+

K2
1

2K2
− c2

√
2
(

K2
1

2K2
− c2

) 3
2

K3q2 (94)

E− =

√
−c2√

K2
1

2K2
− c2

K3q2 (95)

We have like in the relativistic gas a gapped Higgs mode ,which for low energies is quadratic in
momenta, and a gapless Goldstone mode, which in the same limit is linear. If we expand up to the
next to leading order the gapless mode, we obtain:

E− =

√√√√√√√√ K3q2

2
(

K2
1

2K2
− c2

)

(

K2
1

K2

)2
K3q2

2
(

K2
1

2K2
− c2

)2 − 2c2

 (96)

which is reminiscent of the Bogoliubov spectrum (26). In particular using the identifications written
above, we obtain the result found in Equation (87). Finally we note that for high momenta we have:

E± =
√

K3q (97)

which is analogous to the relativistic free particle spectrum found in Equation (84) for the
relativistic superfluid.

6. Conclusions

In this brief review we have derived and studied the spectrum of the superfluid phase of both
non-relativistic and relativistic bosonic gases. This phase is described by a spontaneous symmetry
breaking process of the U(1) group symmetry of the action. We have found, in agreement with the
expectations, that in both cases there is indeed a gapless Goldstone mode due to phase fluctuation
and a gapped Higgs mode due to amplitude fluctuations. However, while in the non-relativistic
case the coupling between phase and amplitude gives rise to a total gapless Bogoliubov spectrum,
in the relativistic case both modes are possible oscillations modes of the total fluctuation around the
solution with broken symmetry. The difference between the Goldstone mode and the Bogoliubov
mode in the non-relativistic case can be interpreted by noting that in this regime there is not the
particle-antiparticle pair typical of the relativistic case. Then, we have verified that the Bogoliubov
spectrum can be obtained as the non-relativistic limit of the relativistic Goldstone mode. Finally,
we have analyzed the Bose-Hubbard model, that is characterized by the effective action close to the
critical point of the Superfluid-Mott quantum phase transition which contains both non-relativistic and
relativistic terms [25]. Apart some theoretical [34] and experimental [35] results for the Bose-Hubbard
model, the properties of phase and amplitude fluctuations in this exotic effective action are not yet
fully explored.
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