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Abstract: This review is devoted to search for Lie and Q-conditional (nonclassical) symmetries and
exact solutions of a class of reaction-diffusion-convection equations with exponential nonlinearities.
A complete Lie symmetry classification of the class is derived via two different algorithms in order
to show that the result depends essentially on the type of equivalence transformations used for the
classification. Moreover, a complete description of Q-conditional symmetries for PDEs from the
class in question is also presented. It is shown that all the well-known results for reaction-diffusion
equations with exponential nonlinearities follow as particular cases from the results derived for this
class of reaction-diffusion-convection equations. The symmetries obtained for constructing exact
solutions of the relevant equations are successfully applied. The exact solutions are compared with
those found by means of different techniques. Finally, an application of the exact solutions for solving
boundary-value problems arising in population dynamics is presented.

Keywords: reaction-diffusion-convection equation; exponential nonlinearity; Lie symmetry;
Q-conditional (nonclassical) symmetry; exact solution

1. Introduction

It is well known that nonlinear evolution PDEs play a crucial role in mathematical modeling
of a wide range of processes in natural, social and life sciences. Power-law nonlinearities are the
most common in real-world applications. Nonlinear evolution PDEs with such nonlinearities have
been studied by different mathematical techniques (including the symmetry-based methods) since the
beginning of the 20th Century. The classical example is the porous-medium equation:

ut = (uux)x (1)

(hereafter, u = u(t, x) is an unknown function, and the lower subscripts t and x denote differentiation
with respect to these variables), which was studied by J.Boussinesq in order to describe the solute
filtration in soil [1]. Two other well-known examples of the evolution PDEs with power-law
nonlinearities are the fast-diffusion equation:

ut = (u−2ux)x, (2)
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which was introduced in [2], and the celebrated Burgers equation [3]:

ut = uxx + uux. (3)

Notably, Equations (2) and (3) are linearizable [2,4–6] (see more details about symmetries and exact
solutions of the second-order evolution PDEs with power-law nonlinearities in our recent book [7]).

In contrast to the evolution PDEs with power-law nonlinearities, there are not many papers
devoted to the examination of reaction-diffusion-convection (RDC) equations with exponential
nonlinearities. To the best of our knowledge, the first examples of real-world models based on
such equations were proposed by D. Frank-Kamenetskii and H. Fujita [8,9] (see also earlier references
cited therein). The corresponding equation is:

ut = uxx + eu (4)

and one describes some heat and chemical processes (in particular, combustion processes). The Lie
symmetry of Equation (4) is the three-dimensional Lie algebra [10]. Notably, the well-known RD
equation with the Arrhenius reaction term e−A0/u (A0 is a positive constant), which is widely used
in applications, can be reduced to the form (4) (with eu → exp(A∗0u− u0), A∗0 > 0, u0 > 0) via a
corresponding approximation (see, for details, [11]).

The first appearance of a PDE with the exponential nonlinearity in the diffusion coefficient
probably was in the Ovsiannikov paper [12] devoted to the Lie symmetry classification (LSC) of
nonlinear diffusion equations. This equation has the form:

ut = (euux)x (5)

and is invariant with respect to the four-dimensional Lie algebra.
There are some recent papers devoted to the study of the evolution PDEs with the exponential

nonlinearity by different mathematical methods (see, e.g., [13–15] and the references cited therein).
In this review, we unite all the known results about Lie and Q-conditional symmetry, exact

solutions and their applications for the following class of RDC equations:

ut = (enuux)x + λemuux + C(u), (6)

where n, m and λ are arbitrary constants. Moreover, we present some new results. Our aim is to
discuss only such equations of the form (6), which contain exponential nonlinearities in the diffusion,
reaction and/or convection term(s). We note from the very beginning that the case m = 0 is special
because Equation (6) is reducible to the reaction-diffusion equation:

ut = (enuuy)y + C(u)

by the substitution y = x + λt (the Galilei boost); hence, it is assumed m 6= 0 in what follows.
The review is organized as follows. In Section 2, the LSC of the class of RDC Equation (6)

is presented using two different approaches. Firstly, we apply the well-known Lie–Ovsiannikov
algorithm based on equivalence transformations (ETs), and afterwards, we apply a modern LSC
algorithm based on form-preserving (admissible) transformations (FPTs). In Section 3, Lie’s (invariant)
solutions of some equations from class (6) are constructed using the Lie symmetries derived in Section 2.
Section 4 is devoted to the search for Q-conditional (nonclassical) symmetries of (6). In Section 5, a wide
range of non-Lie solutions (i.e., such exact solutions, which are not obtainable via Lie symmetries)
are derived for two RDC equations of the form (6). Section 6 contains an application of the results
to population dynamics. In the last section, we present some conclusions and highlight new results
obtained in this review.
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2. Lie Symmetry

In this section, we discuss the Lie symmetry of the class of RDC Equation (6). This means that the
LSC problem should be solved, i.e., to describe all possible forms of C(u) corresponding to different
algebras of invariance. Ovsiannikov was the first to solve this problem for PDEs [12]; simultaneously,
he created an approach (called the Lie–Ovsiannikov algorithm) that allows us to solve such kinds of
problems for other classes of PDEs [16]. Following Ovsiannikov’s works, the LSC problem is often
called the group classification problem. We think that this terminology is misleading (especially for the
reader who is not a specialist in symmetry-based methods) because the algorithm allows us to find Lie
algebras for PDEs. Having a complete list of the Lie algebras for a given PDE class, of course, one may
easily construct all the corresponding Lie groups.

The problem LSC is solved for the given PDE class via the Lie–Ovsiannikov algorithm if it has
been proven that:

(1) the Lie symmetry algebras are maximal algebras of invariance (MAIs) of the relevant PDEs from
the list obtained;

(2) all PDEs from the list are inequivalent with respect to a set of ETs;
(3) any other PDE from the class that admits a nontrivial Lie symmetry algebra is reduced by an ET

from the set to one of those from the list.

Let us introduce a definition of the continuous ETs.

Definition 1. ([7,17]) A one-parameter group of ETs of the class of k-order PDEs:

L(t, x, u, u
1
, . . . , u

k
, K1, . . . , Kp) = 0, (7)

where L is a given smooth function of their arguments (here K1, . . . , Kp are some functions (parameters), which
may depend on t, x, u and/or derivatives of u, while u

k
means a totality of k-order derivatives of u(t, x)) and is

the one-parameter Lie group of transformations given by:

t̄ = f (t, x, u, ε), x̄a = ga(t, x, u, ε), a = 1, . . . , n, ū = h(t, x, u, ε),

K̄i = Fi(t, x, u, K1, . . . , Kp, ε), i = 1, . . . , p

where x = (x1, . . . , xn) and ε is the group parameter, which maps each equation of the form (7) into an equation
belonging to the same class.

Definition 2. The group E is called the group of ETs for the PDE class (7), if E contains as subgroups all
one-parameter groups of ETs of this class.

It is worth noting that it follows immediately from Definition 2 that the group E is larger for a
wider class of PDEs (i.e., its dimensionality is higher). In particular, the general class of RDC equations:

ut = [D(u)ux]x + K(u)ux + C(u) (8)

admits the group E , which is the seven-parameter Lie group:

t̄ = e0t + t0, x̄ = e1x + gt + x0, ū = e2u + u0,

D̄ =
e2

1
e0

D, K̄ = e1
e0

K, C̄ = 1
e0

C,

where ei(i = 0, 1, 2), t0, x0, g and u0 are arbitrary group parameters (ei > 0).
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It can be proven that the group E of the class of PDEs (6) is only the five-parameter Lie group.

Theorem 1. The group of the continuous ETs of the class of RDC Equation (6) is the five-parameter Lie group:

t̄ = e0t + t0, x̄ = e1x + x0, ū = e2u + u0, C̄ = e2
e0

C,

n̄ = 1
e2

n, m̄ = 1
e2

m, λ̄ = e1
e0

exp(−mu0
e2

)λ,

(9)

where e0 = e2
1 exp(− nu0

e2
), t0, x0, e1 and e2 are arbitrary group parameters (e1 > 0, e2 > 0).

Remark 1. The class of PDEs (6) is also invariant with respect to the discrete transformation:

x̄ = −x, ū = −u, (10)

hence we assume that e1 6= 0 and e2 6= 0 in Table 1 and in what follows.

In order to obtain LSC of (6), one needs to find the so-called principal Lie group from the
very beginning.

Definition 3. ([7]) A Lie group, which is the invariance group for all equations belonging to the PDE class (7)
and contains as a subgroup any other Lie group that is common for all PDEs from this class, is called the
principal Lie group (another terminology is “kernel of main groups”). The corresponding Lie algebra is called the
principal algebra of the class in question.

It can be easily shown using Theorem 1 that the principal Lie algebra of (6) is the two-dimensional
algebra with the basic operators ∂t and ∂x. These operators generate the two-dimensional Lie group
of time and space translations. Because this algebra occurs for all smooth functions C(u), this case is
omitted in what follows.

Theorem 2. ([18]) All possible MAIs of RDC equations of the form (6) depending on the function C(u) are
presented in Table 1. Any other equation of the form (6) with nontrivial Lie symmetry (i.e., its MAI is of
dimensionality three and higher) is reduced by an ET from E (9) to one of six equations listed in Table 1.

Proof of this theorem immediately follows from LSC of the class of PDEs (8) derived in [18].

Remark 2. In Table 1, the following designations for Lie symmetry operators are introduced:
D0 = 2t∂t + x∂x, D1 = t∂t − ∂u, D2 = nx∂x + 2∂u, T = e−pt(∂t + p∂u), X = e−

1
3 x(∂x − 2

3 ∂u).

Table 1. The complete Lie symmetry classification (LSC) of equations of the form (6) using the group E .
MAI, maximal algebras of invariance.

RDC Equations MAI Constraints

1 ut = (euux)x < ∂t, ∂x, D0, D2 >

2 ut = (euux)x + p < ∂t, ∂x, T, D2 > p = ±1

3 ut = (euux)x + euux +
2
9 eu < ∂t, ∂x, D1, X >

4 ut = (euux)x + euux +
2
9 eu + p < ∂t, ∂x, T, X > p = ±1

5 ut = (euux)x + λ3euux + λ6eu + p < ∂t, ∂x, T > |λ3|+ |λ6| 6= 0, λ6 6= 2
9 λ2

3, p = ±1

6 ut=(enuux)x + λ2emuux + λ3e(2m−n)u < ∂t, ∂x, (n−2m)D0+D2 > |λ2|+ |λ3| 6= 0
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During the last two decades, new approaches for solving LSC problems were developed. The most
known among them is the method that is based on the so-called FPTs [19,20]. FPTs were used initially
for finding locally-equivalent PDEs, especially those nonlinear PDEs that are linearizable by a point
transformation (i.e., a non-generating transformation, which does not involve derivatives of unknown
function(s)). It is worth noting that these transformations are called also “admissible transformations”
following the 1992 paper [21], in which they were used to classify the Lie symmetries of a class of
variable coefficient Korteweg–de Vries equations. Interestingly, such transformations were implicitly
used much earlier in the 1978 paper [22] in order to find all possible heat equations with nonlinear
sources that admit the Lie symmetry either of the linear heat equation or of the Burgers equation.

It should be stressed that FPTs allow us an essential reduction of the number of cases obtained via
the Lie–Ovsiannikov algorithm (see, e.g., extensive discussions on this matter in [23–25]). For example,
it was proven using a set of FPTs that the canonical list of inequivalent two-component systems of RD
equations (with a nonconstant diffusivity) admitting a non-trivial Lie symmetry consists of 10 systems
only [24] (not the approximately 30 systems derived by the Lie–Ovsiannikov algorithm in [26]).

Here, we show below that a similar reduction of the number of different cases occurs also
with Equation (6).

Definition 4. A point non-degenerate transformation given by:

τ = a(t, x, u), y = b(t, x, u), w = c(t, x, u), (11)

which maps at least one equation of the form (7) into an equation belonging to the same class, is called the FPT
for the PDE class (7).

Comparing this definition with Definition 2, one immediately notes that each ET from E is
automatically a FPT, but not vice versa. In contrast to the ETs, a set of all possible FPTs for the given
class of PDEs usually does not form a Lie group. However, a subset of FPTs may generate a group of
ETs on a subclass of the given class [24]. This is a reason why FPTs are also called additional ETs.

Theorem 3. A RDC equation from class (6) with |n| + |λ| 6= 0 can be reduced to another equation from
this class:

wτ = (en1wwy)y + λ1em1wwy + H(w)

by an FPT of the form (11) if and only if the equation has one of the forms listed in the second column of Table 2,
while the corresponding FTP in the third column belongs to the following set of transformations:

τ = c2
0t + d0, y = c0x + d1, w = u + ln

c2

c0
, c0c2λ 6= 0. (12)

τ = c2
0t + d0, y = c1x + d1, w = u + ln

c2
1

c2
0

, c0c1 6= 0. (13)

τ = c2
0t + d0, y = c1e

λ
3 x + d1, w = u +

2λ

3
x + ln

c2
1λ2

9c2
0

, c0c1λ 6= 0. (14)

τ =
c2

0
λ3

ln(eλ3t + c2) + d0, y = c1x + d1, w = u + ln(1 + c2e−λ3t) + ln
c2

1
c2

0
, c0c1λ3 6= 0. (15)

τ =
c2

0
λ3

eλ3t + d0, y = c1x + d1, w = u− λ3t + ln
c2

1
c2

0
, c0c1λ3 6= 0. (16)
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τ =
c2

0
λ3

ln(eλ3t + c3) + d0, y = 3c1
λ ln(e

λ
3 x + c2) + d1,

w = u + ln
(
c3e−λ3t + 1

)
− 2 ln

(
c2e−

λx
3 + 1

)
+ ln c2

1
c2

0
, c0c1λλ3 6= 0.

(17)

τ =
c2

0
λ3

eλ3t + d0, y = 3c1
λ ln(e

λ
3 x + c2) + d1, w = u− λ3t− 2 ln

(
c2e−

λx
3 + 1

)
+ ln c2

1
c2

0
,

c0c1λλ3 6= 0.

(18)

τ =
c2

0
λ3

ln(eλ3t + c2) + d0, y = c1e
λ
3 x + d1, w = u + ln

(
c2e−λ3t + 1

)
+ 2λ

3 x + ln c2
1λ2

9c2
0

,

c0c1λλ3 6= 0.
(19)

τ =
c2

0
λ3

eλ3t + d0, y = c1e
λ
3 x + d1, w = u− λ3t +

2λ

3
x + ln

c2
1λ2

9c2
0

, c0c1λλ3 6= 0. (20)

Table 2. Form-preserving transformations (FPTs) of the class of reaction-diffusion-convection (RDC)
Equation (6).

RDC Equation FPT RDC Equation

1 ut = uxx + λeuux + C(u) (12) wτ = wyy + c−1
2 λewwy + c−2

0 C(w− ln c2
c0
)

2 ut = (euux)x + λemuux + C(u) (13) wτ = (ewwy)y + c2(m−1)
0 c1−2m

1 λemwwy + c−2
0 C(w− ln c2

1
c2

0
)

3 ut = (euux)x + λeuux +
2
9 λ2eu (14) wτ = (ewwy)y

4 ut = (euux)x + λeuux + λ2eu + λ3 (15) wτ = (ewwy)y + c−1
1 λewwy + c−2

1 λ2ew + c−2
0 λ3

5 ut = (euux)x + λeuux + λ2eu + λ3 (16) wτ = (ewwy)y + c−1
1 λewwy + c−2

1 λ2ew

6 ut = (euux)x + λeuux +
2
9 λ2eu + λ3 (17) wτ = (ewwy)y + c−1

1 λewwy +
2
9 c−2

1 λ2ew + c−2
0 λ3

7 ut = (euux)x + λeuux +
2
9 λ2eu + λ3 (18) wτ = (ewwy)y + c−1

1 λewwy +
2
9 c−2

1 λ2ew

8 ut = (euux)x + λeuux +
2
9 λ2eu + λ3 (19) wτ = (ewwy)y + c−2

0 λ3

9 ut = (euux)x + λeuux +
2
9 λ2eu + λ3 (20) wτ = (ewwy)y

Remark 3. In the case n = λ = 0, Equation (6) takes the form:

ut = uxx + C(u), (21)

and is reduced, using a transformation of the form (11), to the equation of the same subclass:

wτ = wyy + H(w),

if and only if the corresponding FPT has the form:

a =
∫

A2(t)dt, b = A(t)x + B(t), c = α(t, x)u + β(t, x), (22)

where α(t, x) = γ(t) exp
(
− A′

4A x2 − B′
2A x

)
, Aγ 6= 0, and the equality takes place:
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αC(u) +
(

αt − αxx + 2
α2

x
α

)
u + βt − βxx + 2

αxβx

α
= b2

x H(αu + β). (23)

In particular, equation:
ut = uxx + λ2eu + λ3

is reduced to the equation:
wτ = wyy + c−2

2 λ2ew + c−2
0 λ3,

via the transformation:

τ = c2
0t + d0, y = c1x + d1, w = u + ln

c2
2

c2
0

.

Proof. In order to prove the theorem, we use the result derived in [18] for the general class of RDC
Equation (8). Substituting the functions D(u) = enu, K(u) = λemu, F(w) = en1w and G(w) = λ1em1w

directly into Equations (35)–(37) [18], we immediately obtain:

a = a(t), b = b(t, x), c = α(t, x)u + β(t, x), atbxα 6= 0,

while the functions a(t), b(t, x), α(t, x) and β(t, x) satisfy the over-determined system:

b2
xenu = aten1(αu+β), (24)

− 2
bxαx

α

d
du

(uenu)−2
nbxβx

α
enu + bxxenu + λbxemu = λ1atem1(αu+β) + bt, (25)

α2
x

α
d

du (u
2enu)+2 αx βx

α
d

du (uenu) + nβ2
x

α enu − (αxxu + βxx)enu−

−λ(αxu+βx)emu+αC(u)+αtu+βt=atH(αu + β).

(26)

Analyzing Equation (24), we derive two different cases, namely nn1 6= 0 and n = n1 = 0.
Let us examine the case nn1 6= 0. Using Equation (24) and a relevant ET of the form (9), we obtain:

n = n1 = 1, α = 1, β = 2 ln bx − ln at. (27)

Substituting (27) into (25), we arrive at the classification equation:

λbxemu − λ1a1−m1
t b2m1

x em1u − 3bxxeu − bt = 0, (28)

which leads to the three nonequivalent subcases:

(1) λ = λ1 = 0,
(2) λλ1 6= 0,
(3) λ 6= 0, λ1 = 0

Let us consider Subcase (1) in detail. We immediately obtain from Equation (28) that:

b = c1x + d1. (29)

Substituting (29) and (27) into (26), we arrive at:

C(u) = at H(u + 2 ln c1 − ln at) +
att

at
. (30)

Differentiating (30) with respect to t, we obtain the equation:
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att(H′ − H) =

(
att

at

)
t
. (31)

Assuming att = 0, i.e., a = c2
0t + d0, after simple calculations, we derive FPT (13) and Case 2 of

Table 2 with λ = 0 and m = 1.
If att 6= 0, then Equation (31) can be rewritten as two ODEs:

H′ − H = −λ4,
1

att

(
att

at

)
t
= −λ4, (32)

where λ4 is an arbitrary constant.
The solution of the first ODE has the form:

H = c−2
1 λ2ew + λ4,

while the second ODE is equivalent to the ODE:

eλ4aat = c2
0eλ3t, (33)

where c2
0 > 0 because of (24).

The solution of Equation (33) essentially depends on λ3 and λ4. There are three subcases:

(a) (λ3, λ4) = (λ3, 0), λ3 6= 0,
(b) (λ3, λ4) = (0, λ4), λ4 6= 0,
(c) (λ3, λ4) 6= (0, 0).

In Subcase (a), Equation (33) gives:

a =
c2

0
λ3

eλ3t + d0.

Therefore, taking into account (27) and (29), we obtain Case 5 of Table 2 with λ = λ1 = 0.
Subcase (b) leads to:

a =
1

λ4
ln(t + c1) + d0.

It can be noted that we obtain the inverse transformation to that in Subcase (b). In fact, renaming
u↔ w, x ↔ y, t↔ τ, we derive exactly Case 5 of Table 2 with λ = λ1 = 0.

Subcase (c) gives:

a =
c2

0
λ3

ln(eλ3t + c2) + d0;

hence, we obtain Case 4 of Table 2 with λ = λ1 = 0.
Thus, Subcase (1) is completely examined. Subcases (2) and (3) were examined in a very similar

way, and Cases 2–9 of Table 2 were derived.
Finally, setting n = n1 = 0 in (24)–(26), we arrive at Case 1 of Table 2 and the result presented in

Remark 3.
The proof is completed.

Theorem 4. 1. There are exactly four equations in Table 1, which are reducible to other equations from the same
table by an appropriate FPT. The corresponding equations and transformations are presented in Table 3.

2. All possible RDC equations of the form (6) admitting nontrivial Lie symmetries are reduced to one of the
two canonical equations listed in the second column of Table 4 by the appropriate FPT presented in Table 3.

The proof of Theorem 4 follows from the results listed in Table 1 and Table 2. In particular, FPTs
listed in Cases 1, 2, 3 and 4 of Table 3 are particular cases of FPTs (14), (16), (20) and (16), respectively.
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Table 3. Simplification of the RDC equations from Table 1 by means of FPTs.

RDC Equation FPT Canonical Form of RDC Equation

1 ut = (euux)x + p τ = ept

p , y = x, wτ = (ewwy)y

w = u− pt

2 ut = (euux)x + euux+
2
9 eu τ = t, y = 3e

1
3 x, wτ = (ewwy)y

w = u + 2
3 x

3 ut = (euux)x + euux +
2
9 eu+λ4, τ = eλ4 t

λ4
, y = 3e

1
3 x, wτ = (ewwy)y

λ4 6= 0 w = u−λ4t+ 2
3 x

4 ut = (euux)x + λ3euux + λ6eu + p, τ = ept

p , y = x, wτ = (ewwy)y + λ3ewwy + λ6ew,

|λ3|+ |λ6| 6= 0, λ6 6= 2
9 λ2

3 w = u− pt

Thus, we have shown using FPTs that solving LSC for the class of PDEs (6) leads only to the
two nonlinear RDC equations with non-trivial Lie symmetry. LSC via the standard Lie–Ovsiannikov
algorithm gives six equations because this algorithm produces four RDC equations (see Cases 2–5 of
Table 1), which are reducible to the equations listed in Cases 1 and 6 of Table 1. A natural consequence
of this fact says that each exact solution of a nonlinear equation listed in Cases 1–6 of Table 1 can be
delivered from the relevant solution of one of the two equations listed in Cases 1 and 2 of Table 4 by an
appropriate FPT.

Table 4. The LSC of the class of RDC Equation (6) using FPTs.

The RDC Equation MAI

1 ut = (euux)x 〈∂t, ∂x, D0, D2 = nx∂x + 2∂u〉,

2 ut = (enuux)x + λemuux + λ1e(2m−n)u, 〈∂t, ∂x, (n− 2m)D0 + D2〉
|λ|+ |2m− n| 6= 0

3. Lie’s Solutions of an RDC Equation with Exponential Nonlinearities

The equation:
ut = (euux)x (34)

listed in the first case of Table 4 was a subject for mathematical studies for a long time. Lie symmetry
properties of (34) were identified in a seminal work [12]. Examples of Lie’s solutions (i.e., such
solutions, which are obtainable by Lie symmetries) are presented in [27,28] (Section 5.2.2.1) and [29].
Notably, a list of all inequivalent ansatz for reduction (34) to ODEs can be obtained from the set of
non-conjugate algebras, which is presented in [10].

Lie’s solutions of the equation listed in the second case of Table 4 are not widely known, except in
the case λ = 0, i.e.,

ut = (enuux)x + λ1en1u, (35)

(here, n1 = 2m− n). In particular, Lie’s solutions of (35) have been found in [30] (Section 3.1, Cases A
and C), [28] (Section 5.2) and [29].

To the best of our knowledge, there are no examples of Lie’s solutions of the equation from Case 2
of Table 4,

ut = (enuux)x + λemuux + λ1e(2m−n)u, (36)
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with λ 6= 0. For example, the most recent handbook [28] devoted to exact solutions of nonlinear PDE
contains solutions of Equation (36) only under the restriction λ = 0. Therefore, we present some
examples for the first time.

As follows from Table 4, Equation (36) is invariant under three-dimensional MAI. The corresponding
maximal group of invariance is:

t̄ = te(n−2m)u0 + t0, x̄ = xe(n−m)u0 + x0, ū = u + u0.

To construct all nonequivalent Lie’s ansatz, we need to consider the linear combination of the
basic operators:

X = [α2(n− 2m)t + α0]∂t + [α2(n−m)x + α1]∂x + α2∂u,

i.e., to solve the invariant surface condition:

[α2(n− 2m)t + α0]ut + [α2(n−m)x + α1]ux = α2. (37)

Solutions of (37) depend essentially on the values of the parameters α0, α1, α2, m and n. Setting
α2 = 0, we obtain the well-known plane wave ansatz and the corresponding reduced equation, which
are listed in Case 1 of Table 5 (θ and α are arbitrary parameters therein). In order to derive other
inequivalent ansatz, one needs to consider three different cases: n = 2m; n = m; n 6= m, 2m. Making
rather simple calculations, all the inequivalent Lie ansatz and reduced equations were constructed,
and they are presented in Cases 2–4 of Table 5.

It can be noted that all the reduced equations in Table 5 are non-integrable nonlinear ODEs
provided their coefficients are arbitrary. However, several particular solutions can be found under
correctly-specified restrictions on some coefficients. We remind the reader that we are looking for exact
solutions of Equation (36) with λ 6= 0.

Table 5. Lie’s ansatz and reduced equations for Equation (36).

Ansatz Reduced Equation

1 u = ϕ(ω), (enϕ ϕω)ω + λemϕ ϕω + λ1e(2m−n)ϕ = −θϕω

ω = x− θt,

2 u = ϕ(ω) + 1
m ln x, α2 (e2mϕ ϕω

)
ω +

(
3αe2mϕ + λαemϕ − 1

)
ϕω+

ω = α ln x + t, + 1
m (e2mϕ + λemϕ) + λ1 = 0

n = 2m

3 u = ϕ(ω)− 1
m ln t, (emϕ ϕω)ω + λemϕ ϕω + λ1emϕ = αϕω − 1

m

ω = α ln t + x,

n = m

4 u = ϕ(ω) + 1
n−2m ln t, (enϕ ϕω)ω + λemϕ ϕω + λ1e(2m−n)ϕ =

ω = xt
m−n

n−2m , = 1
2m−n [(n−m)ωϕω − 1]

n 6= m; 2m

Now, we turn to the ansatz listed in Table 5. We note that the parameter m can be reduced to a
fixed number without losing generality in Cases 2–3 of Table 5. In fact, Equation (36) admits the ET
nu→ u provided n = 2m 6= 0 and n = m 6= 0. Hence, we fix m for simplicity in what follows.
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In Case 1 of Table 5, plane wave solutions can be obtained. Setting λ1 = 0, one notes that the
reduced equation can be immediately reduced to the first-order ODE:

enϕ ϕω +
λ

m
emϕ + θϕ + c = 0,

which is integrable. As a result, the plane wave solution:∫ enudu
λ
m emu + θu + c

= θt− x

of Equation (36) with λ1 = 0 is obtained. Hereafter, c and ci (i = 0, 1, . . .) are arbitrary constants.
Note that this plane wave solution was obtained earlier in [31] (see p. 276).

The above integral can be expressed in terms of elementary functions only in particular cases.
For example, setting θ = 0, n = m and renaming −mc

λ → c 6= 0, the stationary solution:

u =
1
m

ln |e−λx + c|

of the diffusion-convection equation:

ut = (emuux)x + λemuux

is obtained.
Let us consider Case 2 of Table 5. Assuming α = 0 and setting m = 1

2 , we obtain:

ϕω = 2eϕ + 2λe
ϕ
2 + λ1. (38)

Solving Equation (38) and using the ansatz from Case 2 of Table 5, we arrive at the solution in the
implicit form:

u−2 ln x∫
0

dτ

2eτ + 2λe
τ
2 + λ1

= t (39)

of the equation:
ut = (euux)x + λe

u
2 ux + λ1. (40)

If λ1 = 0, then we immediately obtain the solution:

ln |1 + λxe−
u
2 | − λxe−

u
2 = λ2t

of Equation (40) with λ1 = 0. In this case, one may write down this solution in the explicit form:

u = ln

W
(
±eλ2t−1

)
+ 1

−λx

−2

,

where W
(
±eλ2t−1

)
is the Lambert function.

If λ1 6= 0, then the integral in the left-hand side of (39) essentially depends on the value
∆1 = λ2 − 2λ1. In the case ∆1 < 0, the solution:

u− 2λ√
−∆1

arctan

(
2e

u
2 + λx√
−∆1x

)
− ln

∣∣∣2eu + 2λxe
u
2 + λ1x2

∣∣∣ = λ1t,

of Equation (40) is obtained. In the case ∆1 = 0, the solution:
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2u +
4λx

2e
u
2 + λx

− 4 ln
∣∣∣λx + 2e

u
2

∣∣∣ = λ2t

of Equation (40) with λ1 = λ2

2 is derived. Finally, we obtain the solution:

k2 ln
∣∣∣1− k1xe−

u
2

∣∣∣− k1 ln
∣∣∣1− k2xe−

u
2

∣∣∣ = ±λ1

2

√
∆1t

if ∆1 > 0. Here, k1,2 = −λ±
√

∆1
2 .

Let us consider Case 3 of Table 5. Setting m = 1 and applying the substitution ϕ = ln ψ to the
reduced equation, we obtain:

ψωω + λψω + λ1ψ = α
ψω

ψ
− 1. (41)

Obviously, ODE (41) reduces to the linear equation by setting α = 0. Thus, we obtain three
different exact solutions depending on ∆2 = λ2 − 4λ1. As a result, three families of exact solutions of
the nonlinear RDC equation:

ut = (euux)x + λeuux + λ1eu

were found, namely:

u = ln

(
c1ek1x + c2ek2x − 1

λ1t

)
, k1,2 =

−λ±
√

∆2

2
, ∆2 > 0,

u = ln

[
(c1 + c2x) e−

λ
2 x − 4

λ2t

]
, λ1 =

λ2

4
,

u = ln


(

c1 cos(
√
−∆2
2 x) + c2 sin(

√
−∆2
2 x)

)
e−

λ
2 x − 1

λ1t

 , ∆2 < 0.

Incidentally, the above solutions possess an interesting property. For example, the latter can be
transformed by the time translation t0 > 0 to the form:

u = ln


(

c1 cos(
√
−∆2
2 x) + c2 sin(

√
−∆2
2 x)

)
e−

λ
2 x − 1

λ1(t− t0)

 .

Obviously, it is a blow-up solution because one increases to infinity for the finite time t0.
Such solutions were extensively studied during the last few decades because they are important
in some real-world applications (see, e.g., [14,29] and the references cited therein).

Let us consider Case 4 of Table 5, namely:

(enϕ ϕω)ω + λemϕ ϕω + λ1e(2m−n)ϕ =
1

2m− n
[(n−m)ωϕω − 1].

Applying the ad hoc ansatz ϕ = α ln ω, we arrive at the algebraic equation:

α(nα− 1)ωnα−2 + λαωmα−1 + λ1ω(2m−n)α =
(n−m)α− 1

2m− n
. (42)

Obviously, Equation (42) has the solution only under the restriction α = 1
n−m . Finally, making

rather simple calculations, we derive the stationary exact solution:

u =
1

n−m
ln x,
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of the equation:

ut = (enuux)x + λemuux + λ1e(2m−n)u, λ1 =
λ(m− n)−m

(m− n)2 .

Remark 4. All the exact solutions derived above and in Section 5 have the structure u = c ln f (t, x) with a
correctly-specified function f (t, x). Therefore, the solutions are real only under the restriction f (t, x) > 0.

4. Q-Conditional Symmetries of an RDC Equation with Exponential Nonlinearities

Here, we present Q-conditional (nonclassical) symmetries of equations belonging to class (6).
Any equation of the form (6) is parabolic. It is well-known that two essentially different cases should
be studied separately. Q-conditional symmetry operators in these cases have the different structures:

(a) Q = ∂t + ξ(t, x, u)∂x + η(t, x, u)∂u (43)

and:
(b) Q = ∂x + η(t, x, u)∂u. (44)

We mainly concentrate on case (a) in what follows. The natural reason to avoid examination of
case (b) (so-called no-go case) follows from the well-known fact (firstly proved in [32]) that a complete
description of Q-conditional symmetries of the form (44) for scalar evolution equations is equivalent
to solving the equation in question.

Let us consider a class of the k-order evolution equations:

ut = F
(

t, x, u, ux, . . . , u(k)
x

)
, k ≥ 1, (45)

where F is an arbitrary smooth function and u = u(t, x), u(s)
x = ∂su

∂xs , s = 1, 2, . . . , k.

Definition 5. ([7]) Operator (43) is called Q-conditional symmetry for an evolution equation of the form (45)
if the following invariance criteria are satisfied:

Q
k
(ut − F)

∣∣∣
M

= 0,

where the manifoldM is formed by two equations {ut = F, Q(u) = 0}.

In the case (b), we should use the general definition of Q-conditional symmetry (see, e.g., [7], p. 79).
In this section, we again start from the simplest nonlinear equation of the form (6):

ut = (euux)x. (46)

Theorem 5. Equation (46) is Q-conditionally invariant under operator (43) if and only if this operator takes
(up to the time and space translations) one of the following forms:

Q1 = ∂t − eu

ct+x ∂x − c
ct+x ∂u,

Q2 = ∂t − 2xeu

x2+ct+c0
∂x − 2eu+c

x2+ct+c0
∂u,

(47)

where c and c0 are arbitrary constants.

Proof. It can be noted that the substitution:

v = eu (48)
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transforms Equation (46) into:
v−1vt = vxx. (49)

Obviously, the above substitution preserves the form of operator (43); hence, we are looking for
Q-conditional symmetries of the form:

Q = ∂t + ξ(t, x, v)∂x + η(t, x, v)∂v. (50)

All possible operators of the form (50) can be found provided the relevant system of determining
equations is solved. In the case of Equation (49), this system can be easily extracted from the
determining equations of the general RDC equation, which were derived for the first time in [33].
Therefore, making simple calculations, we obtain the system of determining equations:

ξvv = 0, ηvv = − 2ξξv
v + 2ξxv,

− ξη

v2 + ξt+2ξξx−2ξvη
v + 2ηxv − ξxx = 0,

− η2

v2 + 2ξxη+ηt
v − ηxx = 0.

(51)

The first two equations of System (51) are integrable, so that one obtains:

ξ = a(t, x)v + b(t, x),

η = (ax − a2)v2 − 2abv(ln |v| − 1) + f (t, x)v + g(t, x),

(52)

where a, b, f and g are arbitrary (at the moment) functions. Substituting the above functions ξ and η

into the third and fourth equations from (51), we can reduce the expressions obtained to a set of simple
equations because the functions a, b, f and g do not depend on the dependent variable v. As a result,
one easily identifies that b = g = 0, while the other two functions have the following forms (up to time
and space translations):

a = − v
ct+x , f = − cv

ct+x ,

a = − 2xv
x2+ct+c0

f = − 2v2+cv
x2+ct+c0

.

(53)

Substituting the derived functions into (52) and using transformation (48), we obtain two
Q-conditional symmetry operators (47).

Thus, Equation (49) admits two operators of Q-conditional symmetry. Actually, it is a set consisting
of an infinite number of operators because the parameters c and c0 are arbitrary.

Remark 5. Operators (47) can be derived by solving the system of PDEs presented in Case 7 of Table 1 [30]
under the restriction p = q = r = 0.

If one looks for Q-conditional symmetries of the form (44), then the relevant system of determining
equations consists of a single equation only. Using again the result of [33], this equation can be
easily derived:

(ηxx + 2ηηxv + η2ηvv)v + ηηx + η2ηv + ηt = 0. (54)

Obviously, Equation (54) is a more complicated PDE than (46), and its general solution cannot be
found. Of course, some particular solutions can be identified using, for example, the so-called method
of heir equations [34].
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Now, we turn to the nonlinear RDC Equation (6). In contrast to (46), Formula (6) presents
a class of equations because C(u) is an arbitrary smooth function. A complete classification of
Q-conditional symmetries in such cases is extremely difficult because the corresponding system of
determining equations is usually not integrable. The classical example is the classification of the class
of reaction-diffusion equations:

ut = uxx + C(u), (55)

which was initiated in [35] and was completed in [36,37]. Of course, (55) can be extracted from (6) as a
particular case. However, a nonlinear equation of the form (55) admits a Q-conditional symmetry of
the form (43) only under the restrictions C(u) is the third order polynomial (i.e., C(u) cannot be an
exponential function). The story is different if n 6= 0 in (6), and then, n can be reduced to n = 1 without
losing of generality. Now, we formulate a result, which gives all possible values of the parameter m
and forms of the function C(u) when an equation of the form (6) admits Q-conditional symmetries.

Theorem 6. ([38]) An RDC equation from class (6) is Q-conditionally invariant under Operator (43) if and
only if the equation (up to ETs (9)) and the relevant operator (up to multiplying by an arbitrary smooth function
M(t, x, u)) have the following forms.

Case 1.
ut = (euux)x + λeuux + λ0 + λ1eu + λ2e−u, (56)

Q = ∂t + aeu∂x+
[

f + (ax − a2 − λa)eu + λ2e−u
]
∂u, (57)

where the functions a and f satisfy the overdetermined system:

at + 2 fx − 3a f + 3λ0a = 0,

axx − 3aax + a3 + λa2 − λax + λ1a = 0,

ft + λ2ax − f 2 − λ2a2 + λ0 f − λλ2a− λ1λ2 = 0,

fxx + λ fx − atx + 2aat + λat − 2a(a + λ)( f − λ0) = 0.

(58)

Case 2.
ut = (euux)x + 3λe2uux + λ2e3u + λ1eu + λ0 + λ2e−u, (59)

Q = ∂t + aeu∂x+
[
− λae2u + (ax − a2)eu + f + λ2e−u

]
, (60)

where the functions a and f satisfy the overdetermined system:

at + 2 fx − 3a f + 3λ0a + 3λλ2 = 0,

axx − 3aax + a3 + λ1a + λ f = 0,

ft + λ2ax − f 2 − λ2a2 + λ0 f − λ1λ2 = 0,

fxx − atx − 4
3 a fx +

4
3 aat = 0.

(61)

The proof can be found in [38].
It is worth noting that Equations (56) and (59) are invariant only under the principal Lie algebra

generated by the operators ∂t and ∂x provided the lambda-s are arbitrary (all special cases leading to a
nontrivial Lie symmetry are listed in Table 1).

Theorem 6 is an existence theorem because the Q-conditional symmetries (57) and (60) are not
presented in explicit forms. In order to find the functions a(t, x) and f (t, x), one needs to solve the
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overdetermined systems of nonlinear PDEs (58) and (61). At the present time, there are no general
methods of integrating such systems; hence, it is a highly nontrivial task in each case. We were able to
derive a constructive way for integration of (58). As a result, the following theorem was proven.

Theorem 7. ([38,39]) The RDC Equation (56) is Q-conditionally invariant under operator (43) if and only if
the relevant operator (up to multiplying by an arbitrary smooth function M(t, x, u)) has the following form:

Q = ∂t + aeu∂x+
[

f + (ax − a2 − λa)eu + λ2e−u
]
∂u,

where the functions a and f are listed in Table 6.

Table 6. A complete list of the forms of the functions a and f .

The Explicit Forms of a(t, x) and f (t, x)

1. a = −λ±
√

λ2−4λ1
2 ,

f = λ0

2. a = 0,

f =



λ0±
√

D
2 , D ≡ λ2

0 − 4λ1λ2,
− 1

t +
λ0
2 , D = 0,√

−D
2 tan

(√
−D
2 t

)
+ λ0

2 , D < 0,

−
√

D
2 coth(

√
D

2 t) + λ0
2 , (2 f − λ0)

2 > D > 0,

−
√

D
2 tanh(

√
D

2 t) + λ0
2 , D > (2 f − λ0)

2 > 0

3. a = −∂x ln
∣∣∣c0eλx − c1x + θ(t)

∣∣∣,
f = λ0 − ∂t ln

∣∣∣c0eλx − c1x + θ(t)
∣∣∣

4. a = −∂x ln
∣∣∣θ(t) + e

λ
2 x(c0e

1
2

√
Px + c1e−

1
2

√
Px)
∣∣∣ ,

f = λ0 − ∂t ln
∣∣∣θ(t) + e

λ
2 x(c0e

1
2

√
Px + c1e−

1
2

√
Px)
∣∣∣

5. a = −∂x ln
∣∣∣θ(t) + e

λ
2 x
[
c0 cos(

√
−P
2 x)− c1 sin(

√
−P
2 x)

]∣∣∣ ,

f = λ0 − ∂t ln
∣∣∣θ(t) + e

λ
2 x
[
c0 cos(

√
−P
2 x)− c1 sin(

√
−P
2 x)

]∣∣∣
6. a = −∂x ln

∣∣∣θ(t)− (c0x− c1)e
λ
2 x
∣∣∣ ,

f = λ0 − ∂t ln
∣∣∣θ(t)− (c0x− c1)e

λ
2 x
∣∣∣

Remark 6. In Table 6, two arbitrary constants must satisfy the condition c2
0 + c2

1 6= 0 (otherwise a(t, x) = 0).
However, one may assume (without losing generality) that either the constant c0 = 1 and c1 ∈ R, or c0 = 0 and
c1 ∈ R \ 0. Moreover, the following restrictions take place in Cases 3–6:

Case 3. P ≡ λ2 − 4λ1 > 0, λ1 = 0, θ(t) =

{
c2eλ0t + c1λλ2

λ0
t + c3, i f λ0 6= 0,

− 1
2 c1λλ2t2 + c2t + c3, i f λ0 = 0

Case 4. P > 0, λ1 6= 0, θ(t) =


e

λ0
2 t (c2t + c3) , i f D = 0,

e
λ0
2 t
(

c2e−
√

D
2 t + c3e

√
D

2 t
)

, i f D > 0,

e
λ0
2 t
[
c2 cos

(√
−D
2 t

)
+ c3 sin

(√
−D
2 t

)]
, i f D < 0

Case 5. P < 0, θ(t) =


e

λ0
2 t (c2t + c3) , i f D = 0,

e
λ0
2 t
(

c2e−
√

D
2 t + c3e

√
D

2 t
)

, i f D > 0,

e
λ0
2 t
[
c2 cos

(√
−D
2 t

)
+ c3 sin

(√
−D
2 t

)]
, i f D < 0
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Case 6. P = 0, R ≡ λ2
0 − λ2λ2, θ(t) =


e

λ0
2 t (c2t + c3) , i f R = 0,

e
λ0
2 t(c2e−

√
R

2 t + c3e
√

R
2 t), i f R > 0,

e
λ0
2 t
[
c2 sin

(√
−R
2 t

)
+ c3 cos

(√
−R
2 t

)]
, i f R < 0

Remark 7. System (58) with λ = 0 can be easily integrated, and its solutions lead to the Q-conditional
symmetries found earlier in paper [30]. It should be noted that symmetries derived therein in Cases 3 and 6 of
Table 1 [30], which are treated as new nonclassical symmetries, are equivalent to the Lie symmetries presented in
Cases 5 and 6 of Table 1 (actually, the corresponding equations are equivalent if one applies FPT from Case 4
of Table 3).

The algorithm applied to integrate the overdetermined system (58) does not work in the case of
System (61) because the latter does not contain any autonomous equation. Thus, another algorithm
to solve it was recently developed, and the result is presented in the theorem below. The main idea
of the algorithm is based on the construction of integrable ODEs for the function a(t, x) and f (t, x)
using appropriate differential consequences of PDEs from System (61). We remind the reader that
System (61) with λ 6= 0 is under study.

Theorem 8. ([7]) The RDC Equation (59) is Q-conditionally invariant under operator (43) if and only if the
operator has the form (60), where the functions a(t, x) and f (t, x) have either the form:

a(t, x) = a, f (t, x) =
λλ2

a
+ λ0, (62)

where a is a root of the algebraic equation:

a4 + λ1a2 + λλ0a + λ2λ2 = 0, (63)

or:
a(t, x) = −∂x ln Γ(t, x), f (t, x) = −∂t ln Γ(t, x), Γ(t, x) 6= 0

with the function Γ, having one of the forms presented in Table 7.

Proof. The proof of the theorem is equivalent to solving the overdetermined system (61). First of all,
we note that the simplest case a(t, x) = const leads to the solution (62). In what follows, we assume
a 6= const.

Among four equations of System (61); the second is the second-order ODE (with the variable t as
a parameter), while the other equations are PDEs. The crucial step is to reduce this equation to the
first-order ODE using differential consequences of other equations. Let us differentiate the second
equation of (61) with respect to the variable t:

atxx − 3aatx − 3axat + 3a2at + λ1at + λ ft = 0. (64)

All the time derivatives in Equation (64) can be excluded using the third equation of (61), the first
and second differential consequences (with respect to x) of the first equation and the first differential
consequence (with respect to x) of the fourth equation. As a result, we obtain the equation:

(24ax − 10a2 − 9λ1)( fx − a f + λ0a + λλ2) = 0.

Thus, two possibilities should be examined. Assuming 24ax − 10a2 − 9λ1 = 0, one obtains by
straightforward calculations that the functions a and f must be constants. Therefore, System (61)
reduces to that of algebraic equations with the solution (62).

Let us assume that the second possibility, i.e., the equality:
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fx − a( f − λ0)a + λλ2 = 0

takes place. In this case, System (61) can be simplified to the form:

fx = a( f − λ0)− λλ2,

at = a( f − λ0)− λλ2,

axx − 3aax + a3 + λ1a + λ f = 0,

ft + λ2ax − f 2 − λ2a2 + λ0 f − λ1λ2 = 0.

(65)

Since:
at = fx, (66)

we introduce the so-called stream function Γ(t, x) as follows:

a = −∂x ln Γ(t, x), f = −∂t ln Γ(t, x), Γ(t, x) 6= 0 (67)

(generally speaking, one should write |Γ(t, x)| in the above formulae; however, the results are the same
because of the differentiation operation). Using Equation (67), the first and the third equations of the
system (65) are transformed to the form:

Γtx + λ0Γx − λλ2Γ = 0, Γxxx + λ1Γx + λΓt = 0. (68)

Having the system of linear PDEs (68), one easily derives the fourth-order ODE (with t
as a parameter):

Γxxxx + λ1Γxx − λλ0Γx + λ2λ2Γ = 0. (69)

Now, we should construct all possible solutions of Equation (69) depending on four arbitrary
parameters λ 6= 0, λ0, λ1 and λ2. Because the corresponding characteristic equation is:

p4 + λ1 p2 − λλ0 p + λ2λ2 = 0,

it is a standard routine to establish that nine different cases occur and that each of them leads to the
general solution of Equation (69). Now, we present the list of these solutions together with the relevant
restrictions on the coefficients.

1. If four different real roots: (p− p1) (p− p2) (p− p3) (p− p4) = 0, p1 + p2 + p3 + p4 =

0, λλ0 = − (p1 + p2) (p1 + p3) (p2 + p3) , λ1 = −p2
1 − p2

2 − p2
3 − p1 p2 − p1 p3 − p2 p3, λ2λ2 =

−p1 p2 p3 (p1 + p2 + p3)

then:
Γ = A1(t)ep1x + A2(t)ep2x + A3(t)ep3x + A4(t)ep4x. (70)

2. If three different real roots and one of them occurs twice: (p− p1)
2 (p− p3) (p− p4) = 0,

2p1 + p3 + p4 = 0, λλ0 = −2p1 (p1 + p3)
2 , λ1 = −2p2

1 − (p1 + p3)
2 , λ2λ2 = −p2

1 p3 (2p1 + p3)

then:
Γ = [A1(t) + A2(t)x]ep1x + A3(t)ep3x + A4(t)ep4x.

3. If two different real roots and one of them occurs three times: (p− p1)
3 (p− p4) = 0, p4 =

−3p1, λλ0 = −8p3
1, λ1 = −6p2

1, λ2λ2 = −3p4
1

then:
Γ = [A1(t) + A2(t)x + A3(t)x2]ep1x + A4(t)ep4x.



Symmetry 2018, 10, 123 19 of 33

4. If a single real root occurs four times: (p− p1)
4 = 0, p1 = 0, λ0 = λ1 = λ2 = 0

then:
Γ = A4(t)x3 + A3(t)x2 + A2(t)x + A1(t).

5. If two different real roots and each of them occurs twice: (p− p1)
2 (p− p3)

2 = 0, p1 + p3 =

0, λ0 = 0, λ1 = −2p2
1, λ2λ2 = p4

1
then:

Γ = [A1(t) + A2(t)x]ep1x + [A3(t) + A4(t)x]ep3x.

6. If two different real roots and two complex roots: (p− p1) (p− p2) (p− α− ıβ)(p− α+ ıβ) = 0,

ı2 = −1, p1 + p2 + 2α = 0, λλ0 = −2α
[
(α + p1)

2 + β2] , λ1 = −3α2 + β2 − p1 (2α + p1) , λ2λ2 =

−
(
α2 + β2) p1 (2α + p1)

then:
Γ = A1(t)ep1x + A2(t)ep2x + eαx[A3(t) sin(βx) + A4(t) cos(βx)].

7. If two complex roots and a single real root occurs twice: (p− p1)
2(p− α− ıβ)(p− α + ıβ)= 0,

α + p1 = 0, λλ0 = 2p1β2, λ1 = β2 − 2p2
1, λ2λ2 = p2

1
(

β2 + p1
2)

then:
Γ = [A1(t) + A2(t)x]ep1x + eαx[A3(t) sin(βx) + A4(t) cos(βx)].

8. If four different complex roots: (p−α1−ıβ1) (p−α1+ıβ1) (p−α2−ıβ2) (p− α2 + ıβ2) =

0, α2 = −α1, λλ0 = 2α1
(

β2
2 − β2

1
)

, λ1 = β2
1 + β2

2 − 2α2
1, λ2λ2 =

(
α2

1 + β2
1
) (

α2
1 + β2

2
)

then:
Γ = eα1x[A1(t) sin(βx) + A2(t) cos(βx)] + eα2x[A3(t) sin(βx) + A4(t) cos(βx)].

9. If two different complex roots and each of them occurs twice: (p− α− ıβ)2(p− α + ıβ)2 =

0, α = 0, λ0 = 0, λ1 = 2β2, λ2λ2 = β4

then:
Γ = [A1(t) + A2(t)x] sin(βx) + [A3(t) + A4(t)x] cos(βx).

In the above formulae, A1, . . . , A4 are arbitrary smooth functions at the moment.
In order to solve the linear system (68), one substitutes the functions Γ(t, x) obtained above into

the second equation of the system. The equations obtained can be split with respect to the relevant
functionally independent functions of the variable x. As a result, a four-dimensional system of linear
first-order ODEs will be obtained for each form of Γ(t, x). For example, if one takes Γ(t, x) of the
form (70), then the corresponding ODE system has the form:

λ
dAi(t)

dt
+ p3

i Ai(t) + piλ1 Ai(t) = 0, i = 1, 2, 3, 4. (71)

Obviously, the general solution of System (71) can be easily constructed:

Ai(t) = ci exp
[
−

pi(p2
i + λ1)

λ
t
]
, i = 1, 2, 3, 4, (72)

where c1, . . . , c4 are arbitrary constants. Finally, we substitute (72) into (70) and obtain the
function Γ(t, x) presented in Case 1 of Table 7. Examination of the other eight forms of the function
Γ(t, x) leads exactly to Cases 2–9 of Table 7.

Rewriting the fourth equation of (61) in the form:

( fx − at)x −
4
3

a( fx − at) = 0,

and taking into account (66), we conclude that the fourth equation of (61) is satisfying automatically.
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Table 7. A complete list of the solutions (a, f ) = (−∂x ln Γ, −∂t ln Γ) of System (61).

The Explicit Forms of Γ(t, x)

1. Γ =
4
∑

i=1
ci exp

[
pi
(

x− p2
i +λ1

λ t
)]

2. Γ = c3 exp
[

p3
(

x− p2
3+λ1

λ t
)]

+ c4 exp
[

p4
(

x− p2
4+λ1

λ t
)]
+

+
[
c2
(

x− (3p2
1 + λ1)t

)
+ c1

]
exp

[
p1
(

x− p2
1+λ1

λ t
)]

3. Γ =
[
c3
(
λx + 3p2

1t
)2

+ c2
(
λx + 3p2

1t
)
− 2c3 p1λt + c1

]
exp

[
p1

(
x + 5

λ p2
1t
)]

+

+c4 exp
[
−3p1

(
x− 3

λ p2
1t
)]

4. Γ = c4λx3 + c3x2 + c2x + c1 − 6c4t

5. Γ =
[
c2
(
λx− p2

1t
)
+ c1

]
exp

[
p1

(
x + 1

λ p2
1t
)]

+

+
[
c4
(
λx− p2

1t
)
+ c3

]
exp

[
−p1

(
x + 1

λ p2
1t
)]

6. Γ = c1 exp
[

p1(x− p2
1+λ1

λ t)
]
+ c2 exp

[
p2(x− p2

2+λ1
λ t)

]
+

+c3 sin
[

β
(

x− 3α2−β2+λ1
λ t

)
− c4

]
exp

[
α
(

x− α2−3β2+λ1
λ t

)]
7. Γ = c3 sin

[
β
(

x− p2
1t
)
+ c4

]
exp

[
−p1

(
x +

2β2+p2
1

λ t
)]
+

+
[
c2
(
λx− (β2 + p2

1)t
)
+ c1

]
exp

[
p1
(

x +
p2

1−β2

λ t
)]

8. Γ = c1 exp
[
α1
(

x +
α2

1+2β2
1−β2

2
λ t

)]
sin
[

β1
(

x− α2
1+β2

2
λ t

)
+ c2

]
+

+c3 exp
[
−α1

(
x +

α2
1−β2

1+2β2
2

λ t
)]

sin
[

β2
(

x− α2
1+β2

1
λ t

)
+ c4

]
9. Γ = c1 sin

[
β
(

x− β2

λ t
)
+ c2

]
+ c3

(
λx + β2t

)
sin
[

β
(

x− β2

λ t
)
+ c4

]
5. Non-Lie Solutions

This section is devoted to the construction of exact solutions of the RDC equations with
exponential nonlinearities using Q-conditional symmetries derived in the previous section. First of all,
we need to clarify the notion non-Lie solution. Classification of exact solutions of nonlinear PDEs from
the symmetry point of view is based on the type of symmetry allowing to construct the solution in
question. In contrast to Lie’s solutions (see Section 3), exact solutions, which cannot be constructed
using Lie symmetries, are called non-Lie solutions. It should be stressed that a non-Lie ansatz, obtained
from a non-Lie (nonclassical, conditional, generalized conditional etc.) symmetry, does not guarantee
construction of non-Lie exact solutions. In other words, the non-Lie ansatz can lead only to invariant
solutions, especially when the nonlinear PDE in question has a non-trivial Lie symmetry. Notably,
researchers did not pay attention to the above ‘contradiction’ for a long time. Probably, this issue was
extensively discussed for the first time in paper [40], and we present a new example below.

It was noted above that the Q-conditional symmetry operators have essentially simpler structure
if one uses the substitution v = enu, n 6= 0. Taking this into account, we will map the equations
with exponential nonlinearities and the corresponding operators to the simpler forms using the above
substitution with n = 1, i.e.,

v = eu, u = ln v, (73)

o construct exact solutions for the equations obtained and apply the inverse substitution at the
final step.

In what follows, any solution of the form u(t + t0, x + x1) (t0 and x0 are some constants) was
simplified to the form u(t, x), since each RDC equation belonging to the class (6) is invariant with
respect to the time and space translations. The exact solutions presented here are mostly taken from
our papers [38,39].
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We start from the simplest equation with the exponential nonlinearity in the diffusion coefficient (46),
which admits two Q-conditional symmetries (47). Applying the substitution (73), for example, to the first
of them, solving the invariant surface condition:

Q1(v) ≡ vt −
v

ct + x
vx +

cv
ct + x

= 0 (74)

with respect to vt and substituting into Equation (49), we obtain:

(ct + x)vxx = vx − c.

In the case c = 0, one derives the ansatz:

v = g(t)x2 + h(t). (75)

Substituting ansatz (75) into (49), we arrive at ODE:

(gt − 2g2)x2 + ht − 2gh = 0.

This equation is equivalent to the nonlinear ODE system:

gt − 2g2 = 0, ht − 2gh = 0, (76)

which is integrable. Using the general solution of (76) and Formulae (73) and (75), one arrives at the
exact solution of Equation (46):

u = ln
c0 − x2

2t
. (77)

It turns out that (77) is the known Lie solution, which was obtained in [27]. Therefore, the first
Q-conditional symmetry from (47) does not lead to non-Lie solutions of the equation in question.
Moreover, the same situation takes place in the case of Q2 from (47). Thus, we have another
confirmation of the statement presented in the very beginning of this section.

Happily, the situation is much more optimistic if one applies the Q-conditional symmetries to the
RDC equations arising in Theorems 7 and 8.

Let us consider the RDC Equation (56) and apply the symmetries from Table 6 to search for
its exact solutions. The simplest calculations occur when the Q-conditional symmetry operator (57)
corresponding to Case 1 of Table 6 is examined. Therefore, we present the final list of exact solutions
obtained. The RDC Equation: (56), i.e.,

ut = (euux)x + λeuux + λ0 + λ1eu + λ2e−u

has the exact solutions:

u = ln

[
λ2t( t

2 + C)− x
λ

t + C

]
, λ0 = 0

and:

u = ln
(

λ0x− Cλ2e−λ0t − λλ2t
Cλ0e−λ0t − λ

)
, λ0 6= 0,

provided λ1 = 0. If λ1 6= 0, then the corresponding exact solutions are:

u = ln

[
C
t

exp
(λ0t− (λ±

√
P)x

2

)
− 1

λ1t
− λ0

2λ1

]
, D = 0;
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u = ln

C exp
(
(λ0±

√
D)t−(λ±

√
P)x

2

)
1− e±

√
Dt

∓
√

D
2λ1

coth
(±√Dt

2

)
− λ0

2λ1

 , D > 0;

u = ln

C exp
(

λ0t−(λ±
√

P)x
2

)
cos(

√
−D
2 t)

+

√
−D

2λ1
tan
(√−D

2
t
)
− λ0

2λ1

 , D < 0,

where D = λ2
0 − 4λ1λ2 and P = λ2 − 4λ1.

Now, we consider the simplest form of Operator (57) occurring in Case 2 of Table 6. Substitution (73)

reduces Equation (56) and operator (57) with f = λ0±
√

D
2 and a = 0 (see Case 2 of Table 6) to the forms:

vxx = v−1vt − λvx − λ0 − λ1v− λ2v−1 (78)

and

Q1,2 = ∂t+

(
λ0 ±

√
D

2
v + λ2

)
∂v. (79)

To construct the corresponding solutions, one needs to solve the overdetermined system consisting
of Equation (78) and the invariant surface condition:

Q1,2(v) ≡ vt −
λ0 ±

√
D

2
v− λ2 = 0. (80)

Therefore, extracting vt from (80) and substituting into (78), we arrive at the linear ODE (with the
time variable as a parameter):

vxx + λvx + λ1v = −λ0 ∓
√

D
2

, (81)

which possesses the general solution:

v =



φ1(t)e−λx + φ2(t)− λ0∓|λ0|
2λ x, λ1 = 0,

e−
λ
2 x
[
φ1(t) + xφ2(t)

]
− 2(λ0∓

√
D)

λ2 , λ1 6= 0, P = 0,

e−
λ
2 x
[
φ1(t)e

√
P

2 x + φ2(t)e−
√

P
2 x
]
− λ0∓

√
D

λ1
, λ1 6= 0, P > 0,

e−
λ
2 x
[
φ1(t) cos(

√
−P
2 x) + φ2(t) sin(

√
−P
2 x)

]
− λ0∓

√
D

λ1
, λ1 6= 0, P < 0,

where P = λ2 − 4λ1, φi(t), i = 1, 2 are arbitrary smooth functions at the moment. Substituting the
expressions obtained above into (80), we obtain four linear systems of first-order ODEs to find the
functions φi(t), i = 1, 2 depending on λ1 and P. These systems are integrable; therefore, the solutions
have been found in explicit forms. For example, the linear ODE system:

φ̇1 =
λ0 ± |λ0|

2
φ1, φ̇2 =

λ0 ± |λ0|
2

φ2 + λ2

is obtained if λ1 = 0. Finally, applying Substitution (73), the following exact solutions of Equation (56)
have been constructed.

If λ1 = 0, then the exact solutions are:

u = ln
[

eλ0t(c1e−λx + c2)−
λ2

λ0

]
, λ0 6= 0 (82)

and:

u = ln
(

c1e−λx − λ0

λ
x + λ2t + c2

)
. (83)
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If λ1 6= 0, then the exact solutions have the form:

u = ln

[
b(x) exp

(λ0 ±
√

D
2

t
)
+
−λ0 ±

√
D

2λ1

]
, (84)

where:

b(x) =


e−

λ
2 x (c1 + c2x) , P = 0,

e−
λ
2 x
(

c1e
√

P
2 x + c2e−

√
P

2 x
)

, P > 0,

e−
λ
2 x
[
c1 cos

(√
−P
2 x

)
+ c2 sin

( √
−P
2 x

)]
, P < 0.

(85)

Now, we examine the second case of Table 6 when the Q-conditional symmetry operator (57)
contains the time dependent coefficient f 6= const. Substitution (73) reduces Equation (56) and
Operator (57) to the forms (78) and:

Q = ∂t + ( f (t) + λ2) ∂v. (86)

Operator (86) produces the linear equation:

vt = f (t)v + λ2. (87)

Therefore, we again substitute vt from Equation (87) into (78) and obtain the linear ODE:

vxx + λvx + λ1v = f (t)− λ0, (88)

where t is a parameter. Depending on P = λ2 − 4λ1, Equation (88) possesses the general solutions:

v =



φ1(t)e−λx + φ2(t) +
f (t)−λ0

λ x, λ1 = 0,

e−
λ
2 x
[
φ1(t) + xφ2(t)

]
+ 4[ f (t)−λ0]

λ2 , λ1 6= 0, P = 0,

e−
λ
2 x
[
φ1(t)e

√
P

2 x + φ2(t)e−
√

P
2 x
]
+ f (t)−λ0

λ1
, λ1 6= 0, P > 0,

e−
λ
2 x
[
φ1(t) cos(

√
−P
2 x)+φ2(t) sin(

√
−P
2 x)

]
+ f (t)−λ0

λ1
, λ1 6= 0, P < 0.

The next step is to substitute these solutions into (87) and to obtain the linear ODE systems to
find the functions φ1(t) and φ2(t). We omit the relevant calculations because they are very similar to
those we have done for Operator (57) with f = λ±

√
D

2 (see (79)). Thus, we present only the list of exact
solutions of Equation (56).

If λ1 = 0, then its exact solutions are:

u = ln
(

C
t

e−λx − x
λt

+
λ2

2
t
)

, λ0 = 0 (89)

and:

u = ln

[
eλ0t(Ce−λx − λ0

λ x + λ2t)± λ2
λ0

eλ0t ∓ 1

]
, λ0 6= 0. (90)

If λ1 6= 0, then its exact solutions are:

u = ln
[

e−
λ
2 x
(

φ1(t) + φ2(t)x
)
+

4( f (t)− λ0)

λ2

]
, (91)
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if P = 0;

u = ln
[

e−
λ
2 x
(

φ1(t)e
√

P
2 x + φ2(t)e−

√
P

2 x
)
+

f (t)− λ0

λ1

]
, (92)

if P > 0;

u= ln

[
e−

λ
2 x
(

φ1(t) cos
(√−P

2
x
)
+φ2(t) sin

(√−P
2

x
))

+
f (t)− λ0

λ1

]
, (93)

if P < 0. Here, the function f is given in the second case of Table 6 and:

φ1,2(t) =



C1,2e
λ0
2 t

t , D ≡ λ2
0 − 4λ1λ2 = 0,

C1,2e
λ0
2 t

cos(
√
−D
2 t)

, D < 0,

C1,2e
λ0
2 t

sinh(
√

D
2 t)

, (2α− λ0)
2 > D > 0,

C1,2e
λ0
2 t

cosh(
√

D
2 t)

, D > (2α− λ0)
2 > 0.

Thus, examination of Case 2 is now completed.
Cases 3–6 of Table 6 can be treated in a similar way to Case 2; however, new solutions cannot be

derived. Moreover, it was shown in [38] that all the differential equations, which are produced by the
operators listed in Cases 3–6 of Table 6, are reducible to Equations (87) and (88).

Thus, all the Q-conditional symmetries from Table 6 were applied for searching exact solutions of
the nonlinear RDC (56).

Let us examine Equation (59), namely:

ut = (euux)x + 3λe2uux + λ2e3u + λ1eu + λ0 + λ2e−u

The corresponding Q-conditional symmetries are given in Theorem 8. The simplest case occurs if one
applies operator (60) with coefficients (62). We again use Substitution (73) to simplify the calculations.

The corresponding overdetermined system takes the form:

vxx = v−1vt − 3λvvx − λ2v3 − λ0 − λ1v− λ2v−1, (94)

Q(v) ≡ vt + avvx + λav3 + a2v2 −
(

λλ2

a
+ λ0

)
v− λ2 = 0, (95)

where a is a root of the fourth-order polynomial:

a4 + λ1a2 + λλ0a + λ2λ2 = 0. (96)

Extracting vt from (95) and substituting into (94), we arrive at a nonlinear ODE (with the variable
t as a parameter), which reduces to the form:

v∗yy + 3v∗v∗y + (v∗)3 + 3pv∗ + 2q = 0 (97)

by the substitution v = v∗ − a
3λ , x = 1

λ y. Hereafter:

p =
1

9λ2 (2a2 + 3λ1), q = − 1
54λ3a

(7a4 + 9λ1a2 + 27λ2λ2).

We use now the well-known substitution v∗ = wy
w (see, e.g., [41]) to linearize Equation (97):

wyyy + 3pwy + 2qw = 0. (98)
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Equation (98) is the linear third order ODE; hence, its general solution can be easily constructed.
Four different cases occur depending on p and q. The corresponding calculations are rather cumbersome.
Here, we present only the final results.

Case 1: p = q = 0. The exact solutions of the nonlinear RDC Equation (59) are:

u = ln
(

3
a2t + 3λx

− a
3λ

)
(99)

and

u = ln
[

6(a2t + 3λx)
(a2t + 3λx)2 + 18aλt

− a
3λ

]
,

where the coefficient restrictions

λ0 = − 8a3

27λ
, λ1 = −2a2

3
, λ2 = − a4

27λ2

are assumed.
Case 2: p3 = −q2 6= 0. The exact solutions of Equation (59) are:

u = ln

[
α(1− 2ce−α(x−vt))

3λ(1 + ce−α(x−vt))
− a

3λ

]
(100)

and

u = ln

[
α(x + v2t) + 3− 2αce−α(x+v1t)

3λ(x + v2t + ce−α(x+v1t))
− a

3λ

]
,

where α = ±
√
−2a2 − 3λ1, 2a2 + 3λ1 < 0, v1 = a

3λ (a− α), v2 = a
3λ (a + 2α).

In this case, the coefficients of Equation (59) must satisfy the restriction:

∆ ≡ 4(2a2 + 3λ1)
3 + (20a3 + 27λλ0 + 18λ1a)2 = 0,

where a is a root of (96).
Case 3: p3 + q2 < 0. The corresponding exact solution involves three different exponents and has

the form:

u = ln


3
∑

i=1
αici exp

(
λαi(x + vit)

)
3
∑

i=1
ci exp

(
λαi(x + vit)

) − a
3λ

 , (101)

where vi = a( a
3λ + αi), and the parameters αi, i = 1, 2, 3 are calculated by the Cardano formulae:

α1 = 2
√−p cos

( β
3
)
,

α2 = −2
√−p cos

( β
3 + π

3
)
,

α3 = −2
√−p cos

( β
3 −

π
3
)
,

where cos β = − q√
−p3

. In this case, the coefficients of Equation (59) must satisfy the restriction ∆ < 0,

where a is a root of (96).
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Case 4: p3 + q2 > 0. The corresponding exact solution involves periodic functions and has
the form:

u = ln
[(

α1− a
3λ

)
cos[γ(x+v1t)]−β1 sin[γ(x+v1t)]−C

(
2α1+

a
3λ

)
e−3λα1(x+v2t)

Ce−3λα1(x+v2t) + cos[γ(x + v1t)]

]
,

where:

γ = λβ1, v2 = a
(

α1 +
β2

1
3α1
− a

3λ

)
, v1 = a

(
2α1 +

a
3λ

)
,

α1 = − 1
2

(
3
√
−q +

√
p3 + q2 − 3

√
q +

√
p3 + q2

)
,

β1 =
√

3
2

(
3
√
−q +

√
p3 + q2 + 3

√
q +

√
p3 + q2

)
;

here −2α1 and α1 ± iβ1 are the roots of the characteristic equation of Equation (98). In this case,
the coefficients of Equation (59) must satisfy the restriction ∆ > 0, where a is a root of (96).

Thus, the simplest Q-conditional symmetry of the nonlinear RDC (59) was successfully applied
for searching exact solutions.

In contrast to the above case, the symmetry operator (60) with the coefficients from Table 7 has a
very cumbersome structure. As a consequence, essential difficulties arise if one applies such operator
for searching exact solutions. Here, we show only an example, while a complete examination is a
highly non-trivial task.

Let us examine the simplest Q-conditional operator, which occurs if we take the functions Γ from
Case 4 of Table 7. Having Γ, the functions a and f can be easily calculated via Formulae (67); therefore,
the Q-conditional operator (60) takes the form:

Q = ∂t −
3c4λx2 + 2c3x + c2

c4λx3 + c3x2 + c2x + c1 − 6c4t
eu∂x+

[
λ(3c4λx2 + 2c3x + c2)

c4λx3 + c3x2 + c2x + c1 − 6c4t
e2u−

− 6c4λx + 2c3

c4λx3 + c3x2 + c2x + c1 − 6c4t
eu +

6c4

c4λx3 + c3x2 + c2x + c1 − 6c4t

]
∂u.

(102)

This operator produces the invariant surface equation:

(c4λx3 + c3x2 + c2x + c1 − 6c4t)ut − (3c4λx2 + 2c3x + c2)euux =

λ(3c4λx2 + 2c3x + c2)e2u − (6c4λx + 2c3)eu + 6c4,

which is very cumbersome. Because it is a non-trivial task to derive the ansatz for arbitrary parameters
ci, we were able to construct that in the particular case c3 = c4 = 0. In fact, the above equation with
c3 = c4 = 0 (up to ET) takes the form:

xut − euux = λe2u,

Making straightforward calculations, the following ansatz in an implicit form was derived:

t +
1
6

x2 (3e−u − λx
)
− ϕ(ω) = 0, ω = e−u − λx. (103)

Differentiating (103) with respect to t and x, we obtain the first-order derivatives:

ut =
2eu

x2 − 2ϕ′(ω)
, ux =

2λeu ϕ′(ω)− λx2eu + 2x
x2 − 2ϕ′(ω)

. (104)
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Now, we turn to the equation in question, i.e., (59). Case 4 of Table 7 says that the coefficients
λ0 = λ1 = λ2 = 0 (otherwise Formulae (104) do not produce any ansatz); hence, the RDC Equation
(59) takes the form:

ut = (euux)x + 3λe2uux + λ2e3u. (105)

Substituting (104) into (105), we derive the reduced ODE:

ϕ′′(ω) = 0, (106)

which is trivial (in contrast to Equation (105)!). Substituting the general solution of Equation (106) into
(103) and using the ET (9), we obtain the exact solution:

u = ln
(

3x2 + c
λx3 + cλx− 6t

)
(107)

of the nonlinear RDC equation (105). To the best of our knowledge, it is a new solution of Equation (105).
Now, we present a brief analysis of the exact solutions constructed above. First of all, it should

be stressed that all the solutions obtained in this subsection have the structure u = ln f (t, x), where
f (t, x) is the correctly-specified function; hence, each solution is real only under condition f (t, x) > 0.

One notes that the nonlinear RDC Equation (56) with λ2 6= 0 admits only the two-dimensional
group of invariance consisting of the time and space translations. Thus, all the solutions with λ2 6= 0
are not obtainable by the classical Lie method, except the special cases when some of them are reduced
to a plane wave solution by vanishing some constants (e.g., either c1 = 0 or c2 = 0 in (82)).

If λ2 = 0 and λ 6= 0, then this equation (depending on λ, λ0 and λ1) admits three or
four-dimensional group of invariance (see Cases 3–6 of Table 1). This means that some solutions
found above can be also obtainable via Lie symmetries. Let us present a very nontrivial example
for Equation (56) with λ2 = 0 and λ1 = 2λ2

9 , which admits the four-dimensional MAI (see Case 4 of
Table 1). This equation possesses the invariant solution [40]:

u(t, x) = ln
[

9
2λ2

1

c1 exp(− 1
3 λ1x) + c2 exp(− 2

3 λ1x)− λ0

1 + a0 exp(−λ0t)

]
. (108)

Now, one may check that the exact solution (92) with λ2 = 0 and λ1 = 2λ2

9 reduces exactly to (108)!
Therefore, we may guarantee that (92) is the non-Lie solution only in the case λ2 6= 0.

Now, we compare the solutions obtained above with those found earlier. We have also checked
that Solutions (84) and (85) with λ = 0 produce the solutions obtained in [30] (see Formulae (3.11a),
(3.11b), (3.11c) therein). In the paper [42], exact solutions of Equation (56) were constructed using
the generalized conditional symmetries. The first, second and third solutions listed in Table 4 [42]
are nothing else but particular cases of the exact solution (92) of the nonlinear Equation (56) with
λ2 6= 0, while the fourth and fifth solutions from Table 4 [42] are also obtainable by the Q-conditional
symmetries (see Solutions (82) and (83)).

It can be noted that the solutions found for the RDC Equation (59) are not obtainable by using
Lie symmetries provided |λ0| + |λ1| + |λ2| 6= 0. In fact, Equation (59) with |λ0| + |λ1| + |λ2| 6= 0
admits the trivial Lie algebra, hence plane wave solutions can be only derived (in particular,
Solutions (99) and (100)). Obviously, all the other solutions derived above for Equation (59) are
non-Lie solutions. In the case of Equation (105), the situation is different because this equation admits
the three-dimensional Lie algebra of invariance (see Case 6 of Table 1). However, we have checked that
the exact Solution (107) is not obtainable via any Lie symmetry belonging to the Lie algebra mentioned
above; hence, it is a non-Lie solution.

It should be pointed out that several sets of non-Lie solutions of the RDC Equation (56) were
independently constructed in [40,42] (see also Section 5.2 in [7]) using other methods. It was established
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much later [38] (comparison with the solutions obtained in [42] is presented above) that these solutions
are also obtainable via the relevant Q-conditional symmetries.

Finally, we point out that examples of exact solutions of multidimensional RD equations with
exponential nonlinearities are presented in [11,43,44].

6. Application of an Exact Solution for Solving a Boundary-Value Problem Arising in
Population Dynamics

Here, we show how to apply the exact solutions obtained for solving boundary-value problems
related to population dynamics.

Let us consider the following RDC equation with exponential nonlinearities:

ut = (emuux)x + λemuux + λ0 + λ1emu + λ2e−mu, m 6= 0 (109)

This equation can be applied for mathematical modeling processes in population dynamics,
when density (concentration) depends on the diffusivity and convection velocity by exponential law.
The exponential law of growth for coefficients may be treated as the further generalization of the
known models with power density-dependent coefficients [45,46].

In the particular case, using the known series expansion:emu = 1 + mu + m2u2

2 + . . .

e−mu = 1−mu + m2u2

2 + . . . ,
(110)

one can construct the generalized equation:

ut = [(1 + mu)ux]x + λ(1 + mu)ux + λ∗1u− λ∗2u2 (111)

from Equation (109) as some approximation under the restriction:

λ0 + λ1 + λ2 = 0 (112)

and assuming |mu| < 1. This equation is simplified to the form:

ut = [(1 + mu)ux]x + λ∗uux + λ∗1u− λ∗2u2 (113)

by the Galilei boost x → x + λt and renaming λ = λ∗
m . Equation (113) with m = λ∗ = 0 is the classical

Fisher equation [47], while the one with λ∗ = 0 is the Fisher equation with the simplest nonconstant
diffusivity, which was investigated in [40,48] (see also Section 5.2.3 in [7]). Equation (113) with m = 0
coincides with the Murray equation introduced in [49]; its exact solutions were extensively studied in
our previous works, and the results are summarized in [7] (see Section 4.3.1). It should be stressed that
all these equations play an important role in mathematical biology and ecology [46,50,51].

Thus, it is important to look for the solutions of Equation (109) and to study their properties.
One notes that this equation reduces to the form:

ut = (euux)x + λeuux + λ0 + λ1eu + λ2e−u (114)

by the renaming mu → u, λi → λi
m , i = 0, 1, 2. Since the Fisher and Murray equations possess two

nonnegative steady-state points and without loss of generality, they can be set u0 = 0, u1 = 1, we apply
the same requirement for (114), and this leads to the condition (112) and λ2 = eλ1. Hence, we consider
the nonlinear RDC equation:

ut = (euux)x + λeuux + λ1[eu + e1−u − (1 + e)], λ1 > 0, (115)
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possessing the steady-state points u0 = 0, u1 = 1.
Now, we specify among the solutions constructed above those satisfying Equation (115) and the

zero flux boundary conditions, which are typical biologically-motivated requirements. Because the
coefficients in (115) satisfy the inequality D = λ2

1(e− 1)2 > 0, this essentially restricts our choice.
One notes that exact solutions (91)–(93) with the restriction D > 0 possess the structure:

u = ln
[

1+e
2 −

√
D

2λ1
tanh(

√
D

2 t) + c1 f1(x)+c2 f2(x)

exp( λ
2 x+ λ1(e+1)

2 t) cosh(
√

D
2 t)

]
, (116)

where c1 and c2 are arbitrary constants while the functions f1 and f2 can be easily derived from (91)–(93).
Notably, the second family of solutions can be obtained replacing in (116) the functions tanh and cosh
by those coth and sinh, respectively.

Let us assume that Equation (115) describes the population density in the unbounded domain
Ω = {(t, x) ∈ (0,+∞)× (0,+∞)} and zero flux conditions (the zero Neumann conditions) take place
at x = 0 and x = ∞. Using the solution (116) with f1 = 1 and f2 = x (see Formula (91)) and the
correctly-specified constants c1 and c2, the following statement was proven by direct calculations.

Theorem 9. ([38]) The exact solution of the boundary-value problem consisting of the nonlinear Equation (115)
(with λ = 2

√
λ1, λ1 > 0), the zero flux conditions:

ux(t, 0) = 0, ux(t,+∞) = 0, (117)

and the initial condition:

u(0, x) = ln
[

1 + e
2

+ c(
√

λ1x + 1)e−
√

λ1x
]

(118)

is given in the domain Ω by the formula:

u = ln
[

e + 1
2
− e− 1

2
tanh

(λ1(e− 1)
2

t
)
+

2c(
√

λ1x + 1)
e
√

λ1x(eλ1t + eλ1et)

]
. (119)

Moreover, Solution (119) is bounded and positive in the domain Ω provided c > 1−e
2 .

We remind the reader that Equation (115) possesses two steady-state points u0 = 0 and u1 = 1.
It can be easily established that one of them is stable while the other is unstable, and this is the common
peculiarity for many equations arising in population dynamics. Theorem 9 gives the space-time
distribution of a population for the situation when the steady-state point u0 = 0 is stable. One notes
that Solution (119) is vanishing if t→ +∞; therefore, the population dies.

To predict another scenario for the population evolution, exact solutions of the RDC equation (115)
with negative λ1 should be examined. In this case, one obtains P > 0; hence f1 and f2 are the
exponential functions (see Formulas (92) and (116)).

An interesting case occurs when Equation (115) with P = λ2 − 4λ1 < 0 possesses quasi-periodic
solutions of the form (92), namely:

u = ln
[

1 + e
2
−
√

D
2λ1

tanh(

√
D

2
t) +

c1 sin
(√−P

2
x
)
+ c2 cos

(√−P
2 x

)
exp(

λ

2
x +

λ1(e + 1)
2

t) cosh(

√
D

2
t)

]
. (120)

As a result, a similar theorem to Theorem 9 can be formulated; however, in this case, domain
Ω can be also bounded (with a correctly-specified size) with respect to the variable x. Notably,
the corresponding exact solution is periodic if λ = 0 (i.e., the equation does not contain the convective
term), and an example of such a solution is presented in Figure 1. In the case λ 6= 0, the solution is
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quasi-periodic, and the example is pictured in Figure 2. One also sees that Solution (120) with λ > 0 is
vanishing if t→ +∞, and this means population extinction. The case λ < 0 is similar to λ > 0.

Figure 1. Exact solution (120) with λ = 0, λ1 = 1, c1 = 1
2 , c2 = 0.

Figure 2. Exact solution (120) with λ = 1
8 , λ1 = 1, c1 = 1

2 , c2 = 0.

7. Conclusions

In this review, all the known results about Lie and Q-conditional (nonclassical) symmetries of
the class of RDC equations with exponential nonlinearities (6) and their application for finding exact
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solutions are summarized. Many results about Lie symmetries and Lie’s (invariant) solutions of these
equations have been known for a long time. However, we applied here two different approaches,
the Lie–Ovsiannikov algorithm and the modern LSC algorithm based on FPTs, to the PDE class in
question in order to show that all such equations with a non-trivial Lie symmetry are reducible just to
two RDC equations (see Table 4). Moreover, a new theorem (see Theorem 3) is proven, which describes
explicitly all FPTs for the PDE class (6), and examples of new exact solutions of some nonlinear RDC
equations belonging to the above class are found.

In contrast to Lie’s symmetries, a vast majority of the Q-conditional symmetries presented here
were derived very recently. As one may note, the structure of these symmetries is rather complicated
(see Theorems 7 and 8). This notwithstanding, we were able to apply many Q-conditional symmetries
to find exact solutions. The correctly-specified restrictions are found, which guarantee that they are
non-Lie solutions. It was also shown that some of the exact solutions derived are obtainable via other
modern techniques. Interestingly, the Q-conditional symmetry operator (102) with a cumbersome
structure leads to the relatively simple non-Lie solution (107) of Equation (105), which seems to be
new. We foresee that other symmetry operators presented in Theorem 8 can lead to new solutions of
the nonlinear RDC Equation (59) and plan to report more new results in a forthcoming paper.

Many of the solutions obtained possess attractive properties and can be used for analytically
solving the relevant boundary-value problems. In that particular case, exact solutions have been used
to solve the boundary-value problem with the zero Neumann conditions for a generalization of the
Fisher and Murray equations (see Theorem 9). As a result, a possible interpretation was presented for
population dynamics. Moreover, the quasi-periodic solution was identified in order to demonstrate
another scenario of the population evolution.

Finally, we present the following observation. The Q-conditional symmetry (57) with a = 0
(see Case 2 of Table 6) takes the form:

Q = ∂t + ( f (t) + λ2e−u)∂u. (121)

The first-order prolongation of this operator is:

Q
1
= ∂t + ( f (t) + λ2e−u)∂u − λ2e−uux∂ux − ( f ′(t)− λ2e−uut)∂ut . (122)

Consider the boundary-value problem in the domain Ω = {(t, x) ∈ (0,+∞)× (A, B)} (A and B
are constants) consisting of Equation (56) and the zero flux conditions:

ux(t, A) = 0, ux(t, B) = 0. (123)

Using Definition 2 [52], one can easily check that this nonlinear boundary-value problem (not its
governing equation only!) admits the Q-conditional symmetry (121). Therefore, we foresee that exact
solutions can be derived for such a kind of problem.
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