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Abstract: The compatibility method is used for a generalized variable-coefficient Gardner equation
(GVGE) with a forcing term. By the compatibility of the considered equation and a non-classical
symmetry of a given form, four types of symmetry are obtained. Then, by solving the characteristic
equations of symmetry, the GVGE is reduced to variable coefficients ordinary differential equations,
and rich varieties of new similarity solutions are presented. Our results show that the compatibility
method can be employed for variable coefficients nonlinear evolution equations with forcing terms.
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1. Introduction

In the area of mathematics and physics, a considerable number of systems, ranging from
gravitational dynamics and plasma dynamics to thermodynamics, can be modeled by nonlinear
evolution equations. Exact solutions of a nonlinear evolution equation offer direct and valuable
insight into the physical aspects of the problem modeled by the equation. Therefore, the search
for exact solutions of nonlinear evolution equations has gained much attention in the past decades
from the mathematical physics community, and a large number of methods have been proposed,
such as the tanh method [1,2], the inverse scattering method [3], the homogeneous balance
method [4], the (G′/G)-expansion method [5,6], the sine-cosine method [7], the Frobenius integrable
decomposition method [8], the improved Exp-function method [9], the generalized Kudryashov
method [10], the local fractional Riccati differential equation method [11], the Hirota bilinear
method [12–14], the Darboux transformation method [15,16] and the group methods [17–25]. As stated
in [26], symmetry is the key to solving differential equations. In 2006, a systematic method (named
the compatibility method) was developed in [27] to seek non-classical symmetries and similarity
solutions of a class of variable coefficients Zakharov–Kuznetsov equations. After that, the method was
extended to investigate the high-dimensional breaking soliton equation [28], the variable coefficients
Broer–Kaup system [29], the Wick-type stochastic Korteweg–de Vries equation [30] and the variable
coefficients coupled KdVsystem [31], consecutively. As shown in [27–31], the method is capable
of obtaining abundant symmetry reductions and similarity solutions of the considered nonlinear
evolution equations. In addition, it is able to greatly reduce the computational complexity in
comparison to the non-classical group methods (see, for instance, [17,18]).
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In this paper, the compatibility method will be used to solve the generalized variable coefficients
Gardner equation (GVGE) with the forcing term given in [32]:

us + a(s)uux + b(s)u2ux + h(s)uxxx + d(s)ux + f (s)u = R(s), (1)

where a(s), b(s), h(s) 6= 0, d(s), f (s) and R(s) are arbitrary smooth functions of s. It is worth pointing
out that Equation (1) is widely applied in different physical areas, including nonlinear lattice,
hydrodynamics, plasma physics, fluid dynamics and quantum field theory. Let the forcing term
R(s) = 0; Equation (1) turns into:

us + a(s)uux + b(s)u2ux + h(s)uxxx + d(s)ux + f (s)u = 0. (2)

In [33], with symbolic computation, the Bäcklund transformation, Lax pair and N-soliton-like
solution of Equation (2) were investigated. By employing the Hirota bilinear method, a number
of multi-solitary-wave solutions of Equation (2) was proposed in [34]. By using the sine-Gordon
expansion method, new solitary and optical wave structures solutions of Equation (2) were given
in [35]. In addition, let b(s) = 0; Equation (1) changes into the variable coefficient KdV equation:

us + a(s)uux + h(s)uxxx + d(s)ux + f (s)u = R(s). (3)

In [36], the extended mapping method was used to obtain new exact solutions of Equation (3),
including soliton solutions, periodic solutions and rational solutions.

The rest of the paper is outlined as follows. In Section 2, by using the compatibility method,
we obtain a series of symmetries of Equation (1). In Section 3, we give the symmetry reductions of
Equation (1). In Section 4, we derive some similarity solutions of Equation (1). In the last section,
we present the conclusions.

2. Symmetry

The fundamental idea of the compatibility method is to exploit a non-classical symmetry of a
given nonlinear evolution equation such as Equation (1) as follows:

us = α(x, s)ux −Φ(x, s, u(x, s)). (4)

In Equation (4), α(x, s) and Φ(x, s, u(x, s)) are functions to be determined later by the compatibility
of Equations (1) and (4). By substituting Equation (4) into Equation (1), we have:

uxxx =
(

R(s)− α(x, s)ux + Φ(x, s, u(x, s))− a(s)uux

−b(s)u2ux − d(s)ux − f (s)u)
)
/h(s). (5)

In terms of the equality in uss of Equations (1) and (4), we can obtain:(
R(s)− α(s)uux − b(u)u2ux − h(s)uxxx − d(s)ux − f (s)u

)
s

= (α(x, s)ux −Φ(x, s, u(x, s)))s . (6)

Expanding Equation (6) and substituting Equations (4) and (5) into it result in the following
equation with the help of Maple:

3h(s)Φxuuu2
x + h(s)Φuuuu3

x + F1(x, s, u, ux, ...) = 0, (7)

where F1 is not dependent on u2
x and u3

x. In order to guarantee Equation (7) for an arbitrary solution u,
we set the coefficients of u2

x and u3
x to be zero. Then, we obtain:
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Φxuu = Φuuu = 0, i.e., Φ(x, s, u(x, s)) = β(s)u2 + γ(x, s)u + δ(x, s). (8)

In Equation (8), β(s), γ(x, s) and δ(x, s) are functions to be solved later. Based on Equation (8),
Equation (7) can be simplified as:

− 2b(s)β(s)h(s)u3ux − b(s)γxh(s)u3 + F2(x, s, u, ux, ...) = 0, (9)

where F2 is not dependent on u3ux and u3, which means β(s) = γx = 0. Following the same steps,
we can obtain:

α(x, s) = α1(s)x + α2(s), Φ(x, s, u(x, s)) = γ(s)u + δ(s),

where α1(s), α2(s), γ(s) and δ(s) are functions to be determined. The determining equations are
as follows:

h
′
(s)α1(s)− h(s)α

′
1(s) + 3α2

1(s)h(s) = 0, (10)

h
′
(s) f (s) + h(s)γ

′
(s)− f

′
(s)h(s)− h

′
(s)γ(s)− 3α1(s)h(s)γ(s) + 3α1(s)h(s) f (s) = 0, (11)

h
′
(s)α2(s)− h(s)α

′
2(s)− d

′
(s)h(s) + h

′
(s)d(s) + 3α1(s)α2(s)h(s)

+ 2α1(s)h(s)d(s) + α(s)δ(s)h(s) = 0, (12)

−h
′
(s)R(s) + h(s)R

′
(s) + δ

′
(s)h(s)− h

′
(s)δ(s)− 3α1(s)δ(s)h(s)

− 3α1(s)h(s)R(s) + f (s)δ(s)h(s) + γ(s)h(s)R(s) = 0, (13)

h
′
(s)b(s)− h(s)b

′
(s) + 2α1(s)h(s)b(s) + 2b(s)h(s)γ(s) = 0, (14)

h
′
(s)a(s)− h(s)a

′
(s) + 2α1(s)h(s)a(s) + 2b(s)h(s)δ(s) + a(s)γ(s)h(s) = 0. (15)

According to α1(s), a(s) and b(s), we discuss the following four concrete cases:

(i1) α1(s) 6= 0, a(s) 6= 0 and b(s) 6= 0

First consider the Equation (10), which is a Bernoulli equation of α1(s). Solving Equation (10),
we have:

α1(s) = h(s)/
(∫
−3h(s)ds + C1

)
, (16)

where C1 is an integral constant. Solving Equations (11)–(13) leads to:

γ(s) = f (s)− C2α1(s),

δ(s) = α1(s) exp (−
∫

f (s)ds)(
∫

∆1(s) exp(
∫

f (s)ds) /α1(s)h(s)) ds+C3) ,

α2(s) = α1(s)
(∫

(∆2(s)/α1(s)h(s))
)

ds + C4, (17)

where C2, C3 and C4 are integral constants,

∆1(s) = h
′
(s)R(s)− h(s)R

′
(s) + 3α1(s)h(s)R(s)− R(s)h(s) f (s) + C2h(s)R(s)α1(s),

∆2(s) = h
′
(s)d(s)− h(s)d

′
(s) + 2α1(s)h(s)d(s) + a(s)δ(s)h(s).

In addition, a(s), b(s), h(s), d(s), f (s) and R(s) satisfy certain constraint conditions:

2b(s)h(s) (α1(s) + f (s)− C2α1(s)) + b(s)h
′
(s)− h(s)b

′
(s) = 0, (18)

a(s)h(s) (2α1(s) + f (s)− C2α(s)) + a(s)h
′
(s)− h(s)a

′
(s) + 2b(s)δ(s)h(s) = 0. (19)

Thus, Equation (1) allows symmetry as follows:
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σ1 = (α1(s)x + α2(s)) ux − us − γ(s)u− δ(s), (20)

where α1(s), α2(s), γ(s) and δ(s) are given in Equations (16) and (17).

(i2) α1(s) 6= 0, a(s) 6= 0 and b(s) = 0

In this case, Equation (1) turns into Equation (3). Solving Equations (11)–(13), we obtain:

α1(s) = h(s)/
(∫
−3h(s)ds + C1

)
,

γ(s) = f (s)− C2α1(s),

α2(s) = α1(s)
(∫

(∆2(s)/α1(s)h(s)) ds + C4

)
,

δ(s) = α1(s) exp(−
∫

f (s)ds))(
∫
(∆1(s) exp (

∫
f (s)ds))/α1(s)h(s))ds + C3) , (21)

where C1, C2, C3 and C4 are integral constants,

∆1(s) = h
′
(s)R(s)− h(s)R

′
(s) + 3α1(s)h(s)R(s)− R(s)h(s) f (s) + C2h(s)R(s)α1(s),

and:
∆2(s) = h

′
(s)d(s)− h(s)d

′
(s) + 2α1(s)h(s)d(s) + a(s)δ(s)h(s),

where a(s), b(s), h(s), d(s), f (s) and R(s) satisfy the constraint condition:

a(s)h(s) (2α1(s) + f (s)− C2α1(s)) + a(s)h
′
(s)− h(s)a

′
(s) = 0. (22)

Thus, Equation (3) admits the symmetry:

σ2 = (α1(s)x + α2(s)) ux − us − γ(s)u− δ(s), (23)

where α1(s), α2(s), γ(s) and δ(s) are given by Equation (21).

Remark 1. Let a(s) = 1, h(s) = b0e(m−2)a0s, d(s) = R(s) = 0, f (s) = a0, C1 = C3 = C4 = 0,
C2 = 3/(2−m)− 1, then we have σ2 = α0(m− 2)xux + 3us− a0(m− 2)u, which is the symmetry generator
X3 in [37] of a(s) = a0, b(s) = b0e(m−2)a0s. Let a(s) = 1, b(s) = b0sm, d(s) = R(s) = 0, f (s) = 1/s,
C1 = C3 = C4 = 0, C2 = −1, then we obtain σ2 = (m + 1)xux + 3tus − (m− 2)u, which is the symmetry
generator X3 in [37] of a(s) = 1/s, b(s) = b0sm.

(i3) α1(s) 6= 0, a(s) = 0 and b(s) 6= 0

In this case, Equation (1) becomes the variable coefficient mKdVequation, which allows symmetry
as follows:

σ3 = (α1(s)x + α2(s)) ux − us − γ(s)u, (24)

where:

α1(s) = h(s)/
(∫
−3h(s)ds + C1

)
,

γ(s) = f (s)− C2α1(s), α2(s) = α1(s)
(∫

(∆2(s)/α1(s)h(s)) ds + C4

)
,

C1, C2 and C4 are integral constants, and:

∆2(s) = h
′
(s)d(s)− h(s)d

′
(s) + 2α1h(s)d(s),
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b(s), h(s), d(s), f (s) and R(s) satisfy certain constraint conditions:

2b(s)h(s) (α1(s) + f (s)− C2α1(s)) + b(s)h
′
(s)− h(s)b

′
(s) = 0, (25)

h(s)R(s) ( f (s)− 3α1(s)− C2α1(s)) + R(s)h
′
(s) + h(s)R

′
(s) = 0. (26)

Remark 2. Let b(s) = 1, h(s) = b0, d(s) = R(s) = f (s) = 0, C1 = C4 = 0, C2 = 1, then we have
σ3 = xux + 3tus + u, which is the symmetry generator X3 in [38] of a(s) = 0, b(s) = b0. Let b(s) = 1, h(s) =
b0ems, d(s) = R(s) = f (s) = 0, C1 = C4 = 0, C2 = −1/2, then it leads to σ3 = mxxu/3 + us − mu/6,
which is the symmetry generator X3 in [38] of a(s) = 0, b(s) = b0sm. Thus, we generalize the results in [38].

(i4) α1(s) = 0, a(s) and b(s) are arbitrary functions

In this case, we have:

γ(s) = f (s)− C1h(s), (27)

α2(s) = h(s)
(

C2 +
∫

(α(s)δ(s)/h(s)) ds
)
− d(s),

δ(s) = exp
(∫ (

− f (s)ds) + h
′
(s)/h(s)

)
ds
)

×
(

C3 +
∫

ε(s)
(

R(s)h
′
(s)/h(s)− R

′
(s)− R(s)γ(s)

)
ds
)

,

where ε(s) = exp
(∫ (

f (s)− h
′
(s)/h(s)

)
ds
)

, C1, C2 and C3 are integral constants, In addition,
a(s), b(s), h(s), d(s), f (s) and R(s) satisfy the constraint condition:

2b(s)h(s)γ(s) + b(s)h
′
(s)− h(s)b

′
(s) = 0, (28)

a(s)h(s)γ(s) + a(s)h
′
(s)− h(s)a

′
(s) + 2b(s)δ(s)h(s) = 0, (29)

Thus, Equation (1) admits the symmetry:

σ4 = α2(s)ux − us − γ(s)u− δ(s), (30)

where α2(s), γ(s) and δ(s) are determined by Equation (27).

3. Symmetry Reduction

In order to obtain the symmetry reduction of the considered equation by the compatibility method,
we should first solve the associated characteristic equations of σ = 0 to get similarity variables and
then substitute them into Equation (1) to obtain the corresponding reduced equations.

(j1) σ1 = (α1(s)x + α2(s))ux − us − γ(s)u− δ(s)

The characteristic equations of σ1 = 0 are as follows:

dx
α1(s)x + α2(s)

=
ds
−1

=
du

γ(s)u + δ(s)
, (31)

where α1(s), α2(s), γ(s) and δ(s) are given in Equations (16) and (17). Solving Equation (31), we can
obtain the following expression:

u = exp(−
∫

γ(s)ds)(F(ξ)−
∫

δ(s) exp(
∫

γ(s)ds)ds), (32)

where:
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ξ = x exp(
∫

α1(s)ds) +
∫

α2(s) exp(
∫

α1(s)ds)ds),

and F are similarity variables. By substituting Equation (32) into Equation (1), we have a reduced
equation in the form:

F
′′′
+ c1F2F′ + c2F + c3F′F + c4ξF

′
+ c5F

′
+ c6 = 0, (33)

which is a third-order variable coefficients ordinary differential equation of F(ξ), where c1, c2, c3, c4,
c5 and c6 are coefficients, and:

c1 = b(s) exp
(
−2

∫
(γ(s) + α1(s)) ds

)
/h(s),

c2 = C2α1(s) exp
(
−3

∫
α1(s)ds

)
/h(s),

c3 = α(s) exp(−
∫
(γ(s) + 2α1(s))ds)/h(s)− 2c1

∫
δ(s) exp(

∫
γ(s)ds)ds,

c4 = c2/C2,

c5 = (α2(s) + d(s)− α(s) exp(−
∫

γ(s)ds)
∫

δ(s) exp(
∫

γ(s)ds)ds)

× exp(−2
∫

α1(s)ds)/h(s) + c1(
∫

δ(s) exp(
∫

γ(s)ds)ds)2

− α1(s) exp(−3
∫

α1(s)ds)
∫

α2(s) exp(
∫

α1(s)ds)ds/h(s),

c6 = −(R(s) + δ(s)) exp(
∫

γ(s)− 3α1(s))ds)/h(s)− c2
∫

δ(s) exp(
∫

γ(s)ds)ds.

Note that when c2 = c4, integrating Equation (33) once about ξ yields:

F
′′
+ c1F3/3 + c2ξF + c3F2/2 + c5F + c6ξ + c7 = 0, (34)

where c7 is an integral constant. If c1 = c2 = c5 = c7 = 0, c3 = −12, c6 = −1, Equation (34) is the
Painleve I equation. If c3 = c5 = c6 = 0, c1 = −6, c2 = −1, Equation (34) is the Painleve II equation.
If c2 = c6 = 0, Equation (34) is the elliptic equation.

(j2) σ2 = (α1(s)x + α2(s))ux − us − γ(s)u− δ(s)

The characteristic equations of σ2 = 0 are as follows:

dx
α1(s)x + α2(s)

=
ds
−1

=
du

γ(s)u + δ(s)
,

where α1(s), α2(s), γ(s) and δ(s) are given in Equation (21). Solving the above equations, we get:

u = exp(−
∫

γ(s)ds)(F(ξ)−
∫

δ(s) exp(
∫

γ(s)ds)ds),

where:
ξ = x exp(

∫
α1(s)ds) +

∫
α2(s) exp(

∫
α1(s)ds)ds,

and F are similarity variables. By substituting the expression into Equation (3), we have a reduced
equation in the form:

F
′′′
+ c1F + c2F

′
F + c3ξF

′
+ c4F

′
+ c5 = 0, (35)

where c1, c2, c3, c4 and c5 are coefficients, which are similar to the coefficients of Equation (33), except for
b(s) = 0.

(j3) σ3 = (α1(s)x + α2(s))ux − us − γ(s)u
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The characteristic equations of σ3 = 0 are as follows:

dx
α1(s)x + α2(s)

=
ds
−1

=
du

γ(s)u
,

where α1(s), α2(s) and γ(s) are given in Equation (24). Solving the above system, we get:

u = F(ξ) exp(−
∫

γ(s)ds),

where:
ξ = x exp(

∫
α1(s)ds) +

∫
α2(s) exp(

∫
α1(s)ds)ds,

and F are similarity variables. By substituting the expression into Equation (1) with α(s) = 0, we have
a reduced equation in the form:

F
′′′
+ c1F + c2F

′
F2 + c3ξF

′
+ c4F

′
+ c5 = 0, (36)

where c1, c2, c3, c4 and c5 are coefficients, which are similar to the coefficients of Equation (33) except
for α(s) = 0 and ξ(s) = 0.

(j4) σ4 = α2(s)ux − us − γ(s)u− δ(s)

The characteristic equations of σ4 = 0 are as follows:

dx
α2(s)

=
ds
−1

=
du

γ(s)u + δ(s)
,

where α2(s), γ(s) and δ(s) are given by Equations (28) and (29). Solving the above equations, we get:

u = exp(−
∫

γ(s)ds)(F(ξ)−
∫

δ(s) exp
∫
(γ(s)ds)ds),

where:
ξ = x +

∫
α2(s)ds,

and F are similarity variables. By substituting the expression into Equation (1), we have a reduced
equation in the form:

F
′′′
+ c1F2F

′
+ c2F + c3FF

′
+ c4F

′
+ c5 = 0, (37)

where c1, c2, c3, c4 and c5 are coefficients given by:

c1 = b(s) exp(−2
∫

γ(s)ds)/h(s), c2 = c1,

c3 = a(s) exp(−
∫

γ(s)ds)/h(s)− 2b(s) exp(−2
∫

γ(s)ds)(
∫

δ(s)

× exp(
∫

γ(s)ds)ds)/h(s),

c4 = (α2(s) + d(s))/h(s)− a(s) exp(−
∫

γ(s)ds)(
∫

δ(s) exp(
∫

γ(s)ds)ds)/h(s)

+ b(s) exp(−2
∫

γ(s)ds)(
∫

δ(s) exp(
∫

γ(s)ds)ds)2/h(s)),

c5 = −(R(s) + δ(s)) exp(
∫

γ(s)ds)/h(s)− c2

∫
δ(s) exp(

∫
γ(s)ds)ds.
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4. Similarity Solutions

In this section, we can derive the corresponding similarity solutions of the GVGE by solving the
obtained reduced equation in Section 3. Solving Equation (33) or Equation (34) leads to the following
solutions of F(ξ):

F1(ξ) = D1 exp(−ξ) + exp(ξ/2)(D2 sin(
√

3ξ/2) + D3 cos(
√

3ξ/2)),

c1 = c3 = c4 = c5 = c6 = 0, c2 = 1,

F2(ξ) = D1 + D2 +
∫

Ai(−ξ)dξ + D3

∫
Bi(−ξ)dξ,

c1 = c2 = c3 = c5 = c6 = 0, c4 = 1,

F3(ξ) = D1ξ2 + D2ξ + D3, c1 = c2 = c3 = c4 = c5 = c6 = 0,

F4(ξ) = D1 + D2 exp(−kξ) + D3 exp(kξ), c1 = c2 = c3 = c4 = c6 = 0,

c5 = −k2,

F5(ξ) = D1 + D2 sin(kξ) + D3 cos(kξ), c1 = c2 = c3 = c4 = c6 = 0,

c5 = k2,

F6(ξ) = ± tanh(ξ),± coth(ξ), c1 = −6, c5 = 2, c2 = c3 = c6 = c7 = 0,

F7(ξ) = 6 sec h(ξ)/(
√

13 + sec h(ξ)), c1 = 2, c3 = 1, c5 = −1,

c2 = c6 = c7 = 0,

F8(ξ) = ± tan(ξ),± cot(ξ), c1 = −6, c5 = −2, c2 = c3 = c6 = c7 = 0,

F9(ξ) = D1 + 3D1 tan2(
√

3D1/2(ξ + D2))/2, c1 = c2 = c5 = c6 = 0,

c3 = −12, c7 = 3D2
1/2(D1 > 0),

F10(ξ) = 1/(1 + D1ξ + D2ξ2), c2 = c4 = c5 = c6 = 0, c1 = −6(D2
1 − 4D2),

c3 = −12D2,

F11(ξ) = 1/(1 + cn2ξ), c2 = c5 = c6 = 0, c1 = 144/5, c3 = −84/5, c7 = 2/5,

F12(ξ) =
√

2cnξ/(snξ +
√

2cnξ + 2
√

2dnξ), c2 = c5 = c6 = 0, c1 = −33/8,

c3 = −3/2, c7 = 1/8,

F13(ξ) = (
√

1/2cnξ ± dnξ)/(1/2+(
√

1/2cnξ ± dnξ)+(
√

1/2cnξ ± dnξ)2), ,

c2 = c5 = c6 = 0, c1 = 9/2, c3 = 6, c7 = −1/2,

F14(ξ) = ρ(ξ, D1, D2), c1 = c2 = c5 = c6 = 0, c3 = −12, c7 = D1/2,

where:
ξ = x exp(

∫
α1(s)ds) +

∫
α2(s) exp(

∫
α1(s)ds)ds,

D1, D2 and D3 are arbitrary constants, Ai(ξ) and Bi(ξ) are the first and the second Airy functions
and p(·, ·, ·) is the Weierstrass elliptic function. Therefore, the GVGE with the forcing term has the
following solution:

ui = exp(−
∫

γ(s)ds)(Fi(ξ)−
∫

δ(s) exp(
∫

γ(s)ds)ds),

where Fi(ξ)(i = 1, 2, · · · 14) is determined by the above system.

Remark 3. Let c1 = −6a4, c2 = c6 = 0, c3 = −3a3, c5 = −a2, c7 = −a1/2. By solving Equation (34),
one can obtain all solutions φ of Appendix A, Appendix B and Appendix C in [32].

Choosing some values for the given functions and parameters, we discuss the similarity solutions
and the corresponding figures of the generalized variable-coefficient Gardner equation with the forcing
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term. Figure 1 is the plot of the one-solitary-wave solution, which can be obtained by choosing
a(s) = 1, b(s) = 2, h(s) = 1, d(s) = f (s) = R(s) = 0, C1 = 0. In this case, Equation (1) becomes a
constant-coefficient Gardner equation, which can be reduced to the following third-order ordinary
differential equation:

F
′′′
+ 2F2F

′
+ FF

′
+ cF

′
= 0, (38)

which has the solution F7(ξ), ξ = x + cs and u = F(ξ) are similarity variables obtained by σ4 = 0.
By choosing a(s) = 12es, b(s) = −6, h(s) = 1, d(s) = f (s) = 0 and the forcing term R(s) = es, we find
that Equation (1) has the solution u(x, s) = tanh(x + 2s − 3e2s) + es, the plot of which is Figure 2.
There is a changing amplitude in the wave propagation for the effects of a(s) = 12es and R(s) = es

in Figure 2.

Figure 1. The solution of the constant-coefficient Gardner equation with c = 1.

Figure 2. The solution of Equation (1) with R(s) = es.



Symmetry 2018, 10, 112 10 of 11

5. Conclusions

The compatibility method is a systematic and effective method for solving nonlinear evolution
equations. Such a method can be used to obtain abundant symmetry reductions and similarity
solutions. In addition, it is capable of greatly reducing the computational complexity in comparison to
the non-classical group methods. In this paper, the method is first used to solve variable coefficients
nonlinear evolution equations with a forcing term. With the aid of Maple, four types of symmetry of
GVGE have been presented. Then, by solving the characteristic equations of the symmetry, a variety of
similarity solutions has been obtained, which contain Airy function solutions u2, triangular periodic
solutions u5, u8, u9, rational function solutions u3, u10, Weierstrass elliptic function solutions u14,
and so on. Many solutions found in this paper have not been reported in the literature.
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