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Abstract: We introduce and explore a family of vertex-coloring problems, which, surprisingly enough,
have not been considered before despite stemming from the problem of Wi-Fi channel assignment.
Given a spectrum of colors, endowed with a matrix of interferences between each pair of colors,
the THRESHOLD SPECTRUM COLORING problem fixes the number of colors available and aims to
minimize the interference threshold, i.e., the maximum of the interferences at the vertices. Conversely,
the CHROMATIC SPECTRUM COLORING problem fixes a threshold and aims to minimize the number
of colors for which respecting that threshold is possible. As the main theoretical results, we prove
tight upper bounds for the solutions to each problem. Since both problems turn out to be NP-hard,
we complete the scene with experimental results. We propose a DSATUR-based heuristic and
study its performance to minimize the maximum vertex interference in Wi-Fi channel assignment,
both for randomly-generated graphs and for a real-world scenario. Further, for all these graphs,
we experimentally check the goodness of the theoretical bounds.

Keywords: graph coloring; interference; chromatic number; DSATUR; frequency assignment;
Wi-Fi channel assignment

1. Introduction

Graphs are a very useful model to represent complex networks [1], and in particular, graph
coloring is one of the main problems in discrete mathematics, attracting researchers from both
mathematics and engineering because of its theoretical challenges and its applications [2,3]. One of the
most prominent applications of vertex-coloring problems is frequency assignment [4], with a huge
variety of models ranging from the most naive, forbidding monochromatic edges, to the most general,
with assignment constraints, interference constraints and an objective function.

The present work introduces and explores an intermediate model, which is shown to be interesting
enough for mathematicians and useful enough for engineers: an abstract graph G and a spectrum of
colors S = {c1, . . . , cs} endowed with a matrix W of non-negative distances Wij = W(ci, cj) between
each pair of colors, playing the role of interferences. Throughout this paper, the graph G will be
undirected, and thus, the matrix W will be symmetric. For such a pair (G, W), a coloring c of the graph
will induce at each vertex v an interference:

Iv(G, W, c) = ∑
u∈N(v)

W(c(u), c(v)).
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This model stems naturally from the problem of Wi-Fi channel assignment. We all use the IEEE
802.11 (Wi-Fi) technology, which has been widely deployed in local area networks, mostly because of
both its low cost and the use of unlicensed frequency bands. However, for a successful deployment,
there are some performance issues to be managed, such as avoiding an excessive interference that will
impact performance. There is a direct relation between interference and perceived throughput [5],
so that minimizing the interference would result in maximizing the available throughput. This is why
a frequency channel has to be selected for each access point (AP), accounting for interferences between
channels and trying to minimize the total interference in order to maximize performance. Similar
goals have been considered recently in the literature for related problems, like bandwidth allocation in
cellular networks [6].

In the recent past, we have successfully used our model to find efficient frequency assignments both
in wireless surveillance sensor networks [7] and in real-world scenarios [8]. We have even applied our
model to reconfigure a critical network in the event of a security incident [9]. With the present paper,
we aim to formally introduce a mathematically-rigorous description of the model, exploring two novel
coloring problems for which we provide theoretical bounds, show their complexity and finally propose
and test a heuristic.

In particular, the remainder of this section introduces the two novel coloring problems and
presents a case study to illustrate both of them, finishing with a compilation of relevant related work.
Section 2 is devoted to theoretical results, proving upper bounds for the solutions to each problem.
Section 3 starts showing that both problems are NP-hard, so a DSATUR-based heuristic is proposed for
each problem, and experimental results are given to compare these heuristics with selected reference
approaches for randomly-generated graphs. Section 4 goes a step further by showing experimental
results for a realistic setting. Finally, Section 5 summarizes our conclusions.

1.1. Two Novel Coloring Problems

First, we introduce the problem that best fits the setting of Wi-Fi channel assignment, which we
call the THRESHOLD SPECTRUM COLORING (TSC) problem: Given a graph G and a spectrum of k colors
(channels), endowed with a k× k matrix W of interferences between them, the goal is to determine the
minimum threshold t ∈ R≥0 such that (G, W) admits a k-coloring c (assignment of channels) in which
the interference at every vertex is at most t, i.e., Iv(G, W, c) ≤ t, ∀v. Such a minimum t will be called
the minimum k-chromatic threshold of (G, W), denoted as Tk(G, W).

Then, since the TSC problem fixes the parameter k and aims to minimize the parameter t, it is
natural to wonder about the complementary problem: In the CHROMATIC SPECTRUM COLORING (CSC)
problem, a threshold t ∈ R≥0 is fixed, and the spectrum is allowed to have as the size the number
|V(G)| of vertices, the goal being to determine the minimum number of colors (channels) k ∈ N
such that (G, W) admits a k-coloring c (assignment of channels) in which the interference at every
vertex is at most that threshold t. Such a minimum k will be called the t-interference chromatic
number of (G, W), denoted as χt(G, W). This CSC problem has also a translation in the context of
frequency assignment: it aims to compute the minimum number of frequencies (colors) that guarantees
a minimum throughput to every user in the network, so it can be seen as the problem of determining
the number of resources required to provide a certain quality of service.

1.2. A Case Study

Let us illustrate these two problems by analyzing an easy, but non-trivial, example using the paw
graph PG [10]; see Figure 1 (right).
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Figure 1. Left: Matrix W2ed and the interferences it induces on the different possible colorings of an
edge. Right: All proper three-colorings of the paw graph, the interferences they induce at every edge
and the induced interferences at the vertices (using typewriter font). Highlighted colorings achieve
interference ≤1 at every vertex.

For the TSC problem, consider a spectrum of k = 3 colors:

S = {red, green, blue}

endowed with the 3× 3 matrix of interferences with exponential decay of base two,

W2ed =

 1 1/2 1/4
1/2 1 1/2
1/4 1/2 1

 .

See Figure 1 (left) for an illustration. In this TSC problem, we have a fixed number of colors k,
and we want to find the smallest possible interference threshold t. Figure 1, right, shows all the proper
(without monochromatic edges) three-colorings of the paw graph, together with the interferences they
induced at the edges and the consequent interference Iv(PG, W2ed, c) at every vertex v. Observe that
the highlighted colorings achieve interference at most t = 1 at every vertex. This is impossible for
improper colorings, since the matrix W assigns interference of one to monochromatic edges, which,
therefore, will lead to one of its endpoints having interference greater than one.

Let us show now that, in this setting, no coloring can achieve a maximum vertex interference t
strictly smaller than one: Focus on the central vertex of the paw graph, and observe that, according
to the matrix W2ed, the vertex can only achieve an interference smaller than one if it is colored red
and its neighbors are colored blue, or vice versa. However, this gives rise to a monochromatic edge
between the left vertices of the paw, which implies interference greater than one at those two vertices.
See Figure 2.

Therefore, we have solved the corresponding TSC problem, proving that for the paw graph PG
with k = 3 colors and a matrix W2ed with exponential decay of base two, the minimum chromatic
threshold t achievable is one, i.e.,

T3(PG, W2ed) = 1.
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Figure 2. Possibilities for the central vertex of the paw graph to have interference smaller than one.

For the CSC problem, the size of the spectrum is allowed to equal the number of vertices, which is
four in the paw graph PG. Consider for example S = {red, green, blue, violet}, also endowed with the
matrix of interferences with exponential decay of base two, in this case of size 4× 4,

W2ed =


1 1/2 1/4 1/8

1/2 1 1/2 1/4
1/4 1/2 1 1/2
1/8 1/4 1/2 1

 .

In this setting, one can fix an interference threshold t = 1 and aim to find the smallest number k
of colors for which such a threshold is achievable. The discussion above for the previous problem
shows that the threshold t = 1 can be achieved with three of those colors, i.e., k = 3. We now show
that such a threshold is impossible to achieve with only k = 2 colors among the four colors available:
Focus again on the central vertex of the paw graph PG. If it has a neighbor with its same color, then a
monochromatic edge arises, and as above, this implies the interference at some vertex being greater
than one. If the central vertex has no neighbor with its same color, then all its neighbors share a
common color, so that again, a monochromatic edge arises, and there is a vertex with interference
greater than one. See Figure 3.
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Figure 3. Possibilities for the central vertex of the paw graph to have no neighbor with its same color,
when using k = 2 colors among the four colors available.

Therefore, we have solved the corresponding CSC problem proving that, for the paw graph PG
with threshold t = 1 and a matrix W2ed with exponential decay of base two, the interference chromatic
number is three, i.e.,

χ1(PG, W2ed) = 3.
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1.3. Related Work

Araujo et al. [11] considered a weight function w on the edges of the graph G instead of a matrix W
of interferences between colors, defining the interference at a vertex to be the sum of weights of incident
monochromatic edges. Although their bounds are similar to ours, using analogous techniques, we further
show tightness and follow a different, more detailed, scheme. Many other works impose conditions on
the colors of the endpoints of any edge. Most of them can be framed into L(p1, . . . , pk)-labellings [12],
where vertices at distance i must get colors at distance of at least pi. Particular instances include
distance coloring [13], where no two vertices at a distance of at most d can have the same color,
λ-coloring [14], where adjacent vertices must get colors at least two apart and vertices at a distance of
at most two must get different colors, as well as L(h, k)-labellings [15], where adjacent vertices must
get colors at least h apart and vertices at a distance of two must get colors at least k apart.

For another setting, in a bandwidth coloring [2], a distance dij is associated with each particular
edge ij, forcing its endpoints to get colors at least dij apart. A similar flavor has the T-coloring [16],
where adjacent vertices must get colors whose distance is not in a prescribed set T, and the S-coloring [17],
where the vertices have to be partitioned into sets with prescribed pairwise distances.

Of a different nature is the approach of coloring the edges of the graph instead of the vertices [18],
an approach that has been applied to minimize the number of distinct channels used to route messages
in a network [19].

Finally, of independent interest are the works on the frequency assignment problem, which use
different models to fit the characteristics of specific applications. The bibliography about this problem is
too extensive to include here even a selection. Instead, we prefer referring the reader to the comprehensive
survey by Aardal et al. [4].

2. Theoretical Results

In this section, we prove theoretical upper bounds for the goal of the TSC problem, the minimum
k-chromatic threshold Tk(G, W), and for the aim of the CSC problem, the t-interference chromatic
number χt(G, W).

Given a graph G, a matrix W and a coloring c, we denote the potential interference at vertex v if
this vertex had color i as:

Ii
v(G, W, c) = ∑

u∈N(v)
W(c(u), i).

Note that for i, the actual color of v, i.e., i = c(v), we get the actual interference at vertex v, that is,
Ic(v)
v (G, W, c) = Iv(G, W, c).

We will say that a k-coloring c of G is W-stable if, for every vertex, the actual interference is
no greater than any of the potential interferences, i.e., if for every vertex v, we have Iv(G, W, c) ≤
I j
v(G, W, c) for all j ∈ {1, . . . , k}. We first prove that stable colorings do exist:

Proposition 1. Given a graph G and a spectrum S of size |S| ≥ 2 endowed with a matrix W of interferences,
there exists a W-stable coloring of G.

Proof. Let I be the sum of edge-interferences for the current coloring c, i.e.,

I = ∑
uv∈E

W(c(u), c(v)).

(Note that this is actually half of the sum of interferences at every vertex.) Observe that any coloring
achieving the minimum for this sum of edge-interferences will be a W-stable coloring of G: if there is a
current interference Ic(v)

v that is greater than a potential interference Ii
v, then recoloring would lead to a

smaller sum I of edge-interferences. Furthermore, we can prove that such a stable coloring can be found
by a random greedy algorithm: start with a random coloring of the graph G = (V, E), and if there exist
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a vertex v ∈ V and a color j ∈ S such that the potential interference I j
v(G, W, c) for that color is smaller

than the current interference Ic(v)
v (G, W, c), then recolor the vertex v with color j and repeat.

Each step of the procedure increases I by I j
v(G, W, c) and decreases I by Ic(v)

v (G, W, c) (in both
cases, c is the initial coloring before the step). Hence, the sum of edge-interferences I decreases by a
positive amount Ic(v)

v (G, W, c)− I j
v(G, W, c), and the random greedy algorithm finishes with a W-stable

coloring of G.

Before proving our bounds, we also need the following lemma:

Lemma 1. Any W-stable k-coloring c of a graph G fulfills that, for each vertex v,

k Ic(v)
v (G, W, c) ≤ deg(v) ||W||∞,

where ||W||∞ = max
i

∑
j

Wij is the natural norm of the matrix W.

Proof. First, observe that such a coloring fulfills:

k Ic(v)
v (G, W, c) ≤

k

∑
j=1

I j
v(G, W, c),

because c being stable implies that the interference Ic(v)
v (G, W, c) is actually no greater than all of the

potential interferences I j
v(G, W, c). Restating the sum of the potential interferences at v as the sum of

interferences contributed by neighbors of each color while varying the color of v, the right-hand side
in the previous equation equals:

∑
u∈N(v)|c(u)=1

∑
j

W1j + · · · + ∑
u∈N(v)|c(u)=k

∑
j

Wkj

and this sum is no greater than the number of neighbors of v times the maximum of the sums ∑j Wij,
i.e., no greater than deg(v) ||W||∞.

Now, we are ready to prove an upper bound for the aim of the TSC problem:

Theorem 1. Given a graph G and a spectrum S of size |S| endowed with a matrix W of interferences, for any
fixed natural number 2 ≤ k ≤ |S|, the following bound holds for the minimum k-chromatic threshold Tk(G, W):

Tk(G, W) ≤ ∆(G) ||W||∞
k

,

where ∆(G) is the maximum vertex-degree in the graph G. Furthermore, this bound is tight.

Proof. By definition of Tk(G, W), in order to prove the bound, it is enough to prove that there
exists a coloring c0 of G with k colors for which the interference at every vertex does not exceed
the threshold t0 = ∆(G) ||W||∞

k . Because of Proposition 1 and k ≥ 2, we know that there exists a W-stable
coloring c0 of G using k colors. It just remains to prove the interference condition: For every vertex v
with maximum interference, we have:

k Tk(G, W) ≤ k Ic0(v)
v (G, W, c0) ≤ deg(v) ||W||∞,

where the leftmost inequality follows from Tk(G, W) being minimum and the rightmost inequality
comes from Lemma 1. The bound in the statement follows.
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For the final claim in the statement, it is enough to note that taking k = 2 and W = I, our bound
results in T2(G, W) ≤

⌈
∆(G)

2

⌉
, which is tight for the graph G being a cycle of odd length. In that

case, it is not possible to avoid monochromatic edges, with the best coloring achieving a single
monochromatic edge and, therefore, the smallest threshold of one, which matches the bound

⌈
∆(G)

2

⌉
=⌈ 2

2
⌉
= 1.

Next, we provide an upper bound for the aim of the CSC problem. The bound uses the generalization
of the greatest common divisor (gcd) to non-integer numbers, which is defined analogously just considering
that a number x divides a number y if the fraction y/x is an integer.

Theorem 2. Given a graph G and a spectrum S having size |S| ≥ 2 and endowed with a matrix W of
interferences, for any fixed threshold t being a multiple of gcd(W) and such that |S|t ≥ ∆(G) ||W||∞,
the following bound holds for the t-interference chromatic number χt(G, W):

χt(G, W) ≤
⌈

∆(G) ||W||∞ + gcd(W)

t + gcd(W)

⌉
.

If t is not a multiple of gcd(W), the bound can be expressed as:

χt(G, W) ≤

 ∆(G) ||W||∞ + gcd(W)

gcd(W)
⌊

t
gcd(W)

⌋
+ gcd(W)

 ,

where t is replaced by the nearest multiple of gcd(W) below t. Furthermore, these bounds are tight.

Proof. The number of colors has to be at least one, and the bound is trivially satisfied for χt(G, W) = 1,
so let us focus on the case χt(G, W) > 1. We start with the case of t being a multiple of gcd(W).

By definition of χt(G, W), in order to prove the bound, it is enough to prove that there exists a
coloring c0 of G with k0 =

⌈
∆(G) ||W||∞+gcd(W)

t+gcd(W)

⌉
colors for which the interference at every vertex does

not exceed the threshold t, i.e., Iv(G, W, c0) ≤ t, ∀v. Note that the condition on the threshold in the
statement ensures that k0 ≤ |S|.

Because of Proposition 1 and k0 ≥ 2, we know that there exists a W-stable coloring c0 of G using k0

colors. Hence, it just remains to prove the interference condition.
By contradiction, suppose that for the coloring c0, there is a vertex v in G with an interference

above the threshold t, i.e.,
Ic0(v)
v (G, W, c0) > t

which, because of t and the interferences around a vertex being multiples of gcd(W), implies:

Ic0(v)
v (G, W, c0) ≥ t + gcd(W).

Then, since the coloring c0 is stable, Lemma 1 leads to:

∆(G) ||W||∞ ≥ deg(v) ||W||∞ ≥ k0 Ic0(v)
v (G, W, c0) ≥ k0 (t + gcd(W)),

where the leftmost inequality follows from the definition of ∆(G).
However, then, our choice of k0 implies that:

∆(G) ||W||∞ ≥ ∆(G) ||W||∞ + gcd(W),

which is a contradiction.
The same arguments work for the case of t not being a multiple of gcd(W), taking into account

that interferences around a vertex have to be multiples of gcd(W). For the final claim in the statement,
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it is enough to take W = I and t = 0 (which is possible as long as |S| ≥ ∆(G) + 1, i.e., the coloring
is not forced to be improper). Thus, our bound coincides with Brooks’ bound [20] for the chromatic
number χ0(G, I) = χ(G) ≤ ∆(G) + 1, which is tight for the graph G being a cycle of odd length.

The reader can check that the case analyzed in Section 1.2 does fulfill the bounds in Theorems 1
and 2; respectively:

1 = T3(PG, W2ed) ≤
∆(PG) ||W2ed||∞

3
=

3 · 2
3

= 2

and:

3 = χ1(PG, W2ed) ≤
⌈

∆(PG)‖|W2ed||∞ + gcd(W2ed)

1 + gcd(W2ed)

⌉
=

⌈
3 · 9

4 + 1
8

1 + 1
8

⌉
= 7.

Note that, in this case, the small size of the graph makes the upper bound of seven exceed the
actual size of the spectrum |S| = |V(G)| = 4, because the chosen threshold t = 1 does not fulfill the
condition in the statement of Theorem 2:

4 = 4 · 1 = |S| · t < ∆(PG) · ||W2ed||∞ = 3 · 9
4
=

27
4

= 6.75.

Observation 1. The condition on the threshold t in the statement of Theorem 2 reflects the fact that a trade-off
is needed between the threshold t and the size |S| of the spectrum, since decreasing one of them might require an
increase in the other. Furthermore, the theorem still has useful practical implications for values of the threshold t
not fulfilling that condition: If the user were allowed to extend the spectrum S in such a way that (i) the bound
given in the theorem is now below the size |S| and (ii) neither ||W||∞, nor gcd(W) are increased, then the
threshold t would fulfill the condition. Thus, the user would get not only an upper bound for the t-interference
chromatic number, but also a certificate that for such a t, the problem would be solvable for the extended spectrum.
Finally, let us mention that the condition can be further refined to |S|t ≥ ∆(G) ||W||∞ − gcd(W)(|S| − 1).

It is interesting to note that, as long as the size of the spectrum is large enough for the chosen
threshold, our bounds do not depend on the number of vertices in the graph G, but only on its
maximum degree ∆(G). For the sake of applications to Wi-Fi channel assignment, this guarantees the
scalability of the bounds for a growing number of APs as long as the maximum number of interfering
APs can be restrained. Such a property has interesting implications in the design and planning
of wireless networks infrastructures, since the transmitting power of the APs could be adjusted to
guarantee that the degree of the graph stays below the necessary value, and therefore, to satisfy the
maximum interference threshold for a given performance requirement.

3. Experimental Results for Random Graphs

The well-known VERTEX COLORING (VC) problem, which aims at a proper coloring (with no
monochromatic edges), is a particular case of our CHROMATIC SPECTRUM COLORING problem,
using the identity I as the matrix of weights and a threshold t = 0. Therefore, the usual chromatic
number is the zero-interference chromatic number of (G, I), that is,

χ(G) = χ0(G, I).

With the same identity matrix and a threshold t, we get the IMPROPER COLORING problem, which allows
at most t monochromatic edges around a vertex. These two particular cases are NP-hard [21,22], hence so is
our CHROMATIC SPECTRUM COLORING problem. In addition, fixing any k ≥ 2, it is NP-complete to decide
if there exists a k-coloring with interference at most any threshold t ≥ 2; see [11] and the references therein.
This implies that our THRESHOLD SPECTRUM COLORING is also NP-hard.

The hardness of the VC problem has given rise to many heuristics and metaheuristics for different
vertex-coloring problems, e.g., [23–25]. With the TSC and CSC problems introduced in this paper
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being even more general, this section is devoted to experimentally test several techniques, in a range
of scenarios, and to compare their performance for the TSC and CSC problems.

As a bonus, these experiments will allow checking how tight or loose are, for average scenarios,
the theoretical upper bounds given in Theorems 1 and 2.

3.1. Settings

Although we are aware of the number of benchmarks available like, e.g., those in DIMACS [26],
the fact that this is a seminal work, introducing a new type of coloring from both theoretical and
applied perspectives, has led us to start the experiments by considering the widely-used Erdős–Renyi
(ER) random graphs [27]. In these graphs, every pair of vertices has a prescribed probability p of being
connected. We have created different categories of graphs, by varying the number of vertices n and the
probability of connection p. In particular, we generated 10 graphs for each combination of the same
settings used in [25,28], that is the number of vertices n ∈ {60, 70, 80} and the probability of connection
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, performing 20 repetitions of each experiment per graph.

For the matrix of interferences between colors, we have considered the exponential decay of
base two already used in Section 1.2, Wij = 1/2|i−j|. Other choices have also been explored, leading to
similar results, which are not included here in order to avoid an excessive length of the paper.

For the TSC problem, we have considered k ∈ {4, 6, 11} as values for the number of colors in
the spectrum, while for the CSC problem, we have considered thresholds t ∈ {np/4, np/2, 3np/4},
np being the expected average degree of the graph. These choices have a two-fold interest: on the
one hand, due to including the number k = 11 of channels available in the Wi-Fi problem, so that our
results show interference thresholds that can be achieved at every vertex; on the other hand, because
the choices for k turn out to be similar to the best number of colors obtained for the chosen values of t
and vice versa.

All the experiments in this paper have been conducted on an Intel R© Core
TM

i7-2600 with 8 CPUs
@3.40 GHz and 8 GB RAM, running Ubuntu 14.04.4 LTS.

3.2. Coloring Techniques Used for Benchmarking

For an experimental analysis of our two problems, we propose heuristics inspired by the sequential
greedy algorithm DSATUR [29] used for the VERTEX COLORING problem. Our implementation
TSC-DSATUR for the THRESHOLD SPECTRUM COLORING problem looks for the color minimizing the
interference at v, as shown in Algorithm 1. The algorithm starts with an undefined coloring (1) and
iterates by selecting at each iteration the uncolored vertex with the highest saturation degree, that
is the one with more already-colored neighbors, the one with the highest degree in the case of a tie
or a random vertex among the highest-degree vertices in the case of a double tie (2). Once a vertex
v has been selected, a color is assigned from the available set so that the interference at vertex v is
minimized (3).

Algorithm 1: TSC-DSATUR coloring algorithm.
Input:

G = (V, E): graph to be colored; S = {ci}: spectrum of colors
W: matrix of interferences
k | 2 ≤ k ≤ |S|: maximum color number to be used from the spectrum

Output:
c: k-coloring of the graph G

c(v) := ∅, ∀v ∈ V;
1 while ∃v ∈ V | c(v) = ∅ do
2 v = argmaxx∈V;c(x)=∅ saturation_degree(x);
3 c(v) := argminci |i≤k ∑u∈N(v);c(u) 6=∅ W(c(u), ci)

end
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Our implementation CSC-DSATUR for the CHROMATIC SPECTRUM COLORING problem is shown
in Algorithm 2. The algorithm looks for a color that does not make the interference at v exceed the
product of the fixed threshold t by the proportion of neighbors already colored (1). That is, if vertex v
has five neighbors, but only three of them have been colored so far, the color chosen should guarantee
the interference at v to be at most 3

5 t. For a color to be chosen, this constraint must hold not only for v,
but also for any neighbor of v which has already been colored (2). This is a conservative approach,
to ensure that it is not possible to have a solution where the maximum interference per vertex is above
the threshold.

Algorithm 2: CSC-DSATUR coloring algorithm.
Input:

G = (V, E): graph to be colored; S = {ci}: spectrum of colors
W: matrix of interferences
t: threshold on the maximum interference per vertex

Output:
c: coloring of the graph G, c(v) := ∅, ∀v ∈ V if no valid coloring is found

c(v) := ∅, ∀v ∈ V;
while ∃v ∈ V | c(v) = ∅ do

v = argmaxx∈V;c(x)=∅ saturation_degree(x)
i = 1; Imax := ∞

1 while Imax > |{v∈N(v)|c(v) 6=∅}|
|N(v)| t; i ≤ |S| do

c(v) := ci
Imax = ∑u∈N(v);c(u) 6=∅ W(c(u), ci)

if Imax ≤ |{v∈N(v)|c(v) 6=∅}|
|N(v)| t then

2 foreach u ∈ N(v) | c(u) 6= ∅ do
Imax = ∑w∈N(u);c(w) 6=∅ W(c(w), ci)

if Imax > |{v∈N(u)|c(v) 6=∅}|
|N(u)| t then

break
end

end
end

end
if i > |S| then

c(v) := ∅, ∀v ∈ |V|;
break

end
end

For comparison with our heuristics, we have tested a generic nonlinear optimizer based in particle
swarm optimization (PSO) [30].

For the TSC problem, we have used the sum of the interferences per vertex as the objective
function, since our experiments proved that PSO performed significantly worse when using the
maximum interference per vertex. For the CSC problem, we have used the same PSO optimizer as for
TSC in an iterative manner, progressively increasing the number of colors k from one to |V|, until we
get a solution whose maximum interference per vertex is below the threshold t.

Moreover, as a baseline reference, we have evaluated a random coloring approach, which simply
selects the color for each vertex from a uniform distribution on the color set. As in the case of PSO,
for the CSC problem, this reference has been run in an iterative manner with an increasing number of
colors k until a valid solution has been found.
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3.3. Results

Recall that the bound in Theorem 1 was tight, since for some graphs, it cannot be improved.
However, this does not mean that tightness is achieved for every graph. Hence, we start our
experimental results by showing, in Table 1, the theoretical bound given in Theorem 1 and the
gap between the best value obtained by the different techniques under study, random, TSC-DSATUR
and PSO, expressed as a percentage of the bound (note that the gap is computed with real values and
rounded afterwards). It can be observed that the more complex is the graph, the tighter is the bound in
Theorem 1.

On the other hand, Tables 2–4 show the results obtained for the THRESHOLD SPECTRUM COLORING

with k equal to 4, 6 and 11 colors, respectively, and for each graph category. In columns, we have
represented the average (showing in boldface the best value of each row) and standard deviation for the
maximum vertex interference Tk(G, W) achieved using each evaluated strategy: the random reference,
our implementation of TSC-DSATUR and the nonlinear optimizer PSO. In addition, we also show the
average time required to compute that interference Tk(G, W).

Table 1. Bounds for the maximum vertex interference Tk(G, W) for THRESHOLD SPECTRUM COLORING

(TSC). Each row shows a specific combination of the number of vertices n and the probability of
connection p.

k = 4 k = 6 k = 11

n p Bound Gap (%) Bound Gap (%) Bound Gap (%)

60

0.1 6.7 39.3 5.2 58.1 3.2 75.7
0.3 14.9 26.8 11.6 35.0 7.1 47.0
0.5 21.0 15.2 16.4 22.5 10.0 35.7
0.7 27.3 14.4 21.2 19.3 13.0 25.5
0.9 32.5 12.0 25.2 15.5 15.4 15.6

70

0.1 7.4 34.7 5.7 48.5 3.5 72.5
0.3 17.1 23.5 13.3 33.6 8.1 44.6
0.5 25.1 18.0 19.6 22.1 11.9 33.2
0.7 32.0 14.4 24.9 20.6 15.2 22.6
0.9 37.7 11.6 29.3 16.2 17.9 15.0

80

0.1 8.3 31.2 6.5 46.5 4.0 69.5
0.3 19.1 19.8 14.8 28.6 9.1 39.5
0.5 28.6 15.5 22.2 22.9 13.6 29.0
0.7 35.8 14.4 27.8 18.4 17.0 21.7
0.9 43.4 12.3 33.7 14.7 20.6 15.5

It is important to observe that the results in Table 4 provide, for the Wi-Fi channel assignment
problem in the corresponding graph, an interference threshold that can be ensured to be achievable at
every vertex.

As for the algorithms, the results show that the performance in terms of Tk(G, W) of our heuristic
TSC-DSATUR is better than the performance of PSO, except for a very limited number of cases.
Moreover, in those few cases where PSO is better than TSC-DSATUR, the difference is very small.
If we analyze the running times of both techniques, we can observe that TSC-DSATUR runs about
1000-times faster than PSO. From these results, we can conclude that the use of the heuristic algorithm
TSC-DSATUR is very advisable, as it is able to obtain results that are usually better than those obtained
by the nonlinear optimizer PSO, but with much lower computation requirements.

If we compare both algorithms in more detail, and in general, we can conclude that the
performance of TSC-DSATUR in comparison to PSO decreases as the complexity of the graph increases,
i.e., as p increases, both performances being fairly similar when p = 0.9. This is due to the fact that PSO
deals better with complex nonlinear problems. Furthermore, the standard deviations are noticeable
lower in PSO than in TSC-DSATUR. As expected, the values obtained for the random algorithm are
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always much worse than the other approaches. In particular, it is interesting to see that for k = 4 and
k = 6 the random algorithm achieves results very close to the theoretical bound, while with the highest
number of colors that approach is worse than the bound.

Table 2. Maximum vertex interference Tk(G, W) and running times for TSC with k = 4.

Random TSC-DSATUR PSO

Tk(G, W) Tk(G, W) Time Tk(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 6.9 0.7 4.1 0.5 2.6 ms 5.2 0.5 3.6 s
0.3 14.9 0.7 10.9 0.8 3.2 ms 12.5 0.5 5.1 s
0.5 21.6 1.0 17.8 1.3 5.5 ms 18.3 0.8 6.2 s
0.7 27.7 0.5 23.4 0.6 7.6 ms 23.9 0.6 7.6 s
0.9 32.8 0.5 28.8 0.5 9.0 ms 28.6 0.1 8.6 s

70

0.1 7.7 0.5 4.8 0.6 2.9 ms 6.0 0.5 4.5 s
0.3 17.2 0.6 13.1 0.9 4.5 ms 14.6 0.6 6.5 s
0.5 25.1 0.7 20.6 1.4 8.0 ms 21.8 0.6 8.2 s
0.7 32.2 0.6 27.4 0.9 10.4 ms 28.2 0.4 9.9 s
0.9 38.3 0.6 33.5 0.8 12.1 ms 33.3 0.2 11.4 s

80

0.1 8.5 0.6 5.7 0.9 3.6 ms 6.8 0.5 5.7 s
0.3 19.2 0.6 15.3 0.7 6.7 ms 16.7 0.5 8.3 s
0.5 28.8 0.7 24.1 1.5 10.8 ms 25.0 0.4 11.1 s
0.7 36.2 0.6 30.6 0.7 13.4 ms 31.7 0.7 13.0 s
0.9 44.1 0.6 38.0 0.5 15.7 ms 38.3 0.3 15.6 s

Table 3. Maximum vertex interference Tk(G, W) and running times for TSC with k = 6.

Random TSC-DSATUR PSO

Tk(G, W) Tk(G, W) Time Tk(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 5.6 0.5 2.2 0.4 2.7 ms 3.5 0.3 4.2 s
0.3 12.0 0.4 7.5 0.6 3.5 ms 9.2 0.4 5.6 s
0.5 17.0 0.7 12.7 0.6 5.0 ms 13.8 0.7 6.7 s
0.7 21.8 0.6 17.1 0.6 7.6 ms 18.0 0.5 7.7 s
0.9 25.8 0.3 21.5 0.4 10.1 ms 21.3 0.1 8.7 s

70

0.1 6.3 0.3 3.0 0.4 3.1 ms 4.4 0.4 5.1 s
0.3 13.6 0.5 8.8 0.9 4.6 ms 10.9 0.5 6.9 s
0.5 20.0 0.5 15.2 0.7 7.3 ms 16.4 0.3 8.4 s
0.7 25.9 0.4 19.8 0.8 10.6 ms 21.3 0.5 10.7 s
0.9 30.1 0.4 24.6 0.4 13.6 ms 25.1 0.3 11.5 s

80

0.1 6.9 0.4 3.5 0.3 3.8 ms 5.2 0.3 6.7 s
0.3 15.3 0.3 10.6 1.0 5.8 ms 12.5 0.5 8.4 s
0.5 22.8 0.4 17.1 0.9 9.9 ms 18.8 0.5 11.4 s
0.7 28.8 0.7 22.7 0.8 13.9 ms 24.2 0.5 12.8 s
0.9 34.6 0.2 28.8 0.7 17.9 ms 28.8 0.2 15.2 s

It is very interesting to inspect the results also in terms of the expected average degree of the
graphs, given by np, as is shown in Figure 4. In Figure 4a–c, we can identify a linear trend between
the achieved maximum interference Tk(G, W) and the expected average degree of the graphs for k
equal to 4, 6 and 11 colors, respectively. Finally, in Figure 4d, we show how the quotient between the
running times between PSO and TSC-DSATUR decreases as np increases.
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Table 4. Maximum vertex interference Tk(G, W) and running times for TSC with k = 11.

Random TSC-DSATUR PSO

Tk(G, W) Tk(G, W) Time Tk(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 4.0 0.3 0.8 0.1 3.2 ms 1.9 0.2 5.5 s
0.3 8.2 0.3 3.7 0.5 4.7 ms 5.5 0.2 6.3 s
0.5 11.6 0.4 6.4 0.4 6.5 ms 8.4 0.4 7.6 s
0.7 14.5 0.2 9.7 0.5 8.8 ms 11.1 0.2 8.9 s
0.9 17.0 0.3 13.0 0.3 13.0 ms 13.3 0.1 10.3 s

70

0.1 4.6 0.2 1.0 0.1 3.9 ms 2.5 0.1 6.8 s
0.3 9.3 0.3 4.5 0.3 6.1 ms 6.6 0.3 8.3 s
0.5 13.4 0.2 8.0 0.5 8.8 ms 10.1 0.1 10.3 s
0.7 17.0 0.4 11.8 0.7 12.2 ms 13.2 0.2 11.9 s
0.9 19.5 0.3 15.2 0.3 17.6 ms 15.4 0.1 13.8 s

80

0.1 4.9 0.2 1.2 0.2 4.9 ms 3.0 0.2 7.9 s
0.3 10.4 0.3 5.5 0.6 7.8 ms 7.8 0.3 10.4 s
0.5 15.1 0.4 9.6 0.7 11.4 ms 11.7 0.2 12.8 s
0.7 18.9 0.3 13.3 0.7 15.8 ms 15.0 0.3 15.2 s
0.9 22.5 0.4 17.4 0.7 23.4 ms 17.7 0.1 17.3 s

(a) k = 4. (b) k = 6.

(c) k = 11. (d) Running times.

Figure 4. Effect of expected average degree of the graphs (np) in the THRESHOLD SPECTRUM

COLORING problem.
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Regarding CHROMATIC SPECTRUM COLORING, Table 5 shows the value of the tight theoretical
bound given in Theorem 2 and the gap, for the graphs considered, between the best experimental
result and the theoretical bound. The main conclusion is that the gap for the theoretical upper bound
again gets narrower when the complexity of the graph increases.

Table 5. Bounds for the number of colors χt(G, W) for CHROMATIC SPECTRUM COLORING (CSC).

t = np/4 t = np/2 t = 3np/4

n p Bound Gap (%) Bound Gap (%) Bound Gap (%)

60

0.1 24 62.9 12 52.5 8 47.5
0.3 18 41.1 9 31.1 6 33.8
0.5 15 26.7 8 27.5 5 34.5
0.7 14 17.1 7 25.3 5 40.0
0.9 13 14.0 7 28.6 5 40.0

70

0.1 23 58.3 12 49.2 8 48.8
0.3 18 40.0 9 33.3 6 33.3
0.5 16 28.8 8 25.1 6 43.3
0.7 14 15.7 7 23.7 5 40.0
0.9 13 15.4 7 28.6 5 40.0

80

0.1 23 55.7 12 45.8 8 47.5
0.3 17 35.3 9 33.3 6 33.3
0.5 16 27.5 8 23.9 6 44.3
0.7 14 17.9 7 24.9 5 40.0
0.9 13 13.2 7 28.6 5 40.0

Tables 6–9 show the results obtained with a threshold t on the maximum interference per vertex
equal to np/4, np/2 and 3np/4, respectively. Again, each row corresponds to a different graph
category, given by np, and again, we have marked the best values in boldface. In columns, we have
represented the average and standard deviation for the number of colors χt(G, W) achieved for each
graph coloring approach evaluated together with the running time needed to obtain those results.
Keep in mind that, as mentioned in Section 3.2, both PSO and the random reference are implemented
for CSC in an iterative manner, that is they are run with an increasing number of candidate colors
until we find the smaller value χt for which the result satisfies the threshold t. We can observe again
that our heuristic CSC-DSATUR generally outperforms PSO, especially for the lowest values of p.
It is also interesting to note that the difference between the results obtained by our heuristic and the
random reference are significantly lower as the average degree of the graph (which depends on p)
increases. Although this may seem counter-intuitive, we must keep in mind that we are adjusting the
threshold t proportionally with the expected average degree np, which keeps around the same values
the minimum number of different colors needed by the solutions whose interference falls below the
threshold. Finding such a solution randomly is a different issue, however, and it becomes easier when
the expected average degree increases, since the proportion of such solutions in the global solution
space increases when increasing the degrees of freedom (i.e., the number of edges) per vertex. Finally,
in Figure 5, we show the quotient between the running times required to obtain the results using PSO
and CSC-DSATUR, concluding that the time gain obtained when using CSC-DSATUR decreases as
the expected average degree of the graph, np, increases, although this gain is at least of two orders
of magnitude.
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Table 6. Number of colors χt(G, W) and running times for CSC with t = np/4.

Random CSC-DSATUR PSO

χt(G, W) χt(G, W) Time χt(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 32.0 1.4 8.9 0.7 3.9 ms 12.5 0.7 6.0 s
0.3 21.7 0.7 10.6 0.8 12.3 ms 13.3 0.7 6.9 s
0.5 18.1 0.7 11.0 0.8 30.0 ms 12.6 0.6 8.3 s
0.7 16.2 0.3 11.6 0.5 56.0 ms 12.1 0.2 9.5 s
0.9 14.7 0.3 11.2 0.4 99.9 ms 11.2 0.1 10.6 s

70

0.1 32.7 1.3 9.6 0.7 5.4 ms 13.9 0.8 8.2 s
0.3 22.0 0.5 10.8 0.6 18.4 ms 13.9 0.4 8.9 s
0.5 18.3 0.3 11.4 0.5 45.6 ms 13.2 0.4 11.0 s
0.7 16.3 0.2 11.8 0.4 89.9 ms 12.4 0.3 12.9 s
0.9 14.6 0.3 11.0 0.0 154.9 ms 11.3 0.1 14.3 s

80

0.1 34.9 1.7 10.2 1.0 6.7 ms 15.2 0.7 10.1 s
0.3 22.0 0.5 11.0 0.6 27.7 ms 14.4 0.4 11.2 s
0.5 18.7 0.2 11.6 0.5 70.0 ms 13.5 0.3 13.7 s
0.7 16.2 0.5 11.5 0.5 129.7 ms 12.4 0.2 15.8 s
0.9 14.4 0.3 11.5 0.5 230.7 ms 11.3 0.1 18.2 s

Table 7. Number of colors χt(G, W) and running times for CSC with t = np/2.

Random CSC-DSATUR PSO

χt(G, W) χt(G, W) Time χt(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 15.0 1.0 5.7 0.5 3.4 ms 7.4 0.5 4.9 s
0.3 9.4 0.5 6.2 0.4 10.1 ms 6.6 0.3 5.8 s
0.5 7.6 0.4 5.8 0.6 23.7 ms 5.8 0.3 6.8 s
0.7 6.8 0.2 5.4 0.5 43.3 ms 5.2 0.2 7.7 s
0.9 6.1 0.2 5.0 0.0 63.8 ms 5.0 0.0 8.5 s

70

0.1 14.7 1.1 6.1 0.3 4.6 ms 8.0 0.6 6.0 s
0.3 9.1 0.4 6.0 0.6 15.4 ms 6.7 0.3 7.2 s
0.5 7.7 0.2 6.1 0.3 34.6 ms 6.0 0.2 8.9 s
0.7 6.8 0.3 5.4 0.5 65.6 ms 5.3 0.2 10.3 s
0.9 6.0 0.1 5.0 0.0 99.1 ms 5.0 0.0 11.6 s

80

0.1 14.0 0.8 6.5 0.5 6.0 ms 8.1 0.6 7.0 s
0.3 9.0 0.3 6.0 0.4 22.4 ms 6.7 0.2 8.7 s
0.5 7.6 0.3 6.1 0.3 49.9 ms 6.1 0.2 11.1 s
0.7 6.7 0.2 5.7 0.5 95.6 ms 5.3 0.1 12.6 s
0.9 6.2 0.1 5.0 0.0 145.4 ms 5.0 0.0 15.1 s

Table 8. Number of colors χt(G, W) and running times for CSC with t = 3np/4.

Random CSC-DSATUR PSO

χt(G, W) χt(G, W) Time χt(G, W) Time

n p avg std avg std avg avg std avg

60

0.1 8.4 0.9 4.2 0.6 3.5 ms 5.1 0.5 4.6 s
0.3 5.1 0.4 4.0 0.0 10.0 ms 4.0 0.3 5.5 s
0.5 4.1 0.3 3.5 0.5 21.1 ms 3.3 0.3 6.5 s
0.7 3.6 0.1 3.0 0.0 35.6 ms 3.0 0.0 7.3 s
0.9 3.0 0.0 3.0 0.0 49.6 ms 3.0 0.0 8.6 s
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Table 9. Cont.

Random CSC-DSATUR PSO

χt(G, W) χt(G, W) Time χt(G, W) Time

n p avg std avg std avg avg std avg

70

0.1 8.2 0.8 4.1 0.5 4.5 ms 5.2 0.4 5.9 s
0.3 5.1 0.3 4.0 0.0 14.4 ms 4.0 0.2 7.2 s
0.5 4.2 0.2 3.4 0.5 32.6 ms 3.5 0.3 8.4 s
0.7 3.5 0.2 3.0 0.0 52.7 ms 3.0 0.0 9.8 s
0.9 3.1 0.1 3.0 0.0 74.1 ms 3.0 0.0 11.1 s

80

0.1 7.8 0.7 4.2 0.4 5.7 ms 5.2 0.4 6.7 s
0.3 5.0 0.3 4.0 0.0 20.0 ms 4.1 0.2 8.9 s
0.5 4.2 0.2 3.8 0.4 45.3 ms 3.3 0.2 10.7 s
0.7 3.4 0.2 3.0 0.0 76.9 ms 3.0 0.0 12.1 s
0.9 3.1 0.1 3.0 0.0 113.4 ms 3.0 0.0 14.5 s

Figure 5. Comparison between the running times of CSC-DSATUR and PSO for the CSC problem.

4. Experimental Results in a Realistic Setting

In addition to the experimental results presented in Section 3, we have also performed a first
step towards the application of our proposal to a realistic setting. The problem consists of assigning a
Wi-Fi channel to each of the deployed APs of a Wi-Fi network in order to minimize the interference
threshold. We consider a fixed number of channels (colors) k = 11 and want to minimize the maximum
of the interferences at the vertices; therefore, we have a TSC problem. More specifically, we have made
use of the real layout of the Wi-Fi network at the Polytechnic School of our university, as shown in
Figure 6a. The sides of this building, approximately square-shaped, are 130 m long. Its main features
are its 48 classrooms and its central courtyard. Moreover, we have made use of the real positions of the
26 access points (APs) deployed in the building (green dots in Figure 6a).

The signal strength from each AP ranges from high coverage (red) to low coverage (blue). Note the
low signal coverage for the central courtyard. For this layout, we have considered three different
and representative scenarios, depending on the number of network users. In the first one, called low
density (LD), we consider that there are only 10 classrooms in use with 20 students each, making
a total of 200 users. Note that in all scenarios, the position of the students in a classroom has been
taken from a normal distribution centered around the center of each class and a standard deviation
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of 0.05 (considering that the size of the scenario is normalized to one). In the second one, called
medium density (MD), we consider that there are 100 students uniformly distributed in the building
and also 24 classrooms in use with 25 students each, for a total of 700 network users. Finally, the third
scenario, called high density (HD), extends MD to have all 48 classrooms in use, for a total of 1300 users.
To model each scenario, we have considered a graph, whose vertices are the APs, removing those APs
that do not have any client attached to it. Note that we have considered that clients are attached to their
closest AP. Moreover, the edges of the graph represent the possible interferences between two APs if
they use a Wi-Fi channel that is close enough. We have taken into account not only the interferences due
to AP transmissions, but also from clients, i.e. two APs i and j will be connected in the graph if the AP
i or any of its attached clients interferes with the AP j or with any of its clients. Figure 6b–d shows the
resulting graph for each of the three scenarios. Note that, since the aim of this paper is to introduce and
explore an intermediate model between mathematics and engineering, we have considered just the
abstract graphs, thus not taking into account the effect of distances between nodes in the interference
(which we have considered in the engineering-oriented conference paper [8]). For the interferences
between channels, we have used the values empirically measured in [31], shown in Table 10, which
are similar to those defined in [32]. Since these references use only 11 channels, corresponding to the
most common 2.4-GHz wireless frequency band, this will be the setting used here.

(a) Scenario plan.
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(b) Graph model for LD.
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(c) Graph model for MD.
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(d) Graph model for HD.

Figure 6. Scenario and graph models for the realistic setting. LD, low density; MD, medium density;
HD, high density.
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The figure also shows

Table 10. Interference matrix Wij used in the realistic setting [31].

|i− j| 0 1 2 3 4 5 ≥6

Wij 1 0.8 0.5 0.2 0.1 0.001 0

For the three above-mentioned scenarios (LD, MD and HD), Table 11 shows the computed
theoretical bounds according to Theorem 1 and the gap between the best experimental result obtained
and the corresponding bound. As in the previous examples, the gap decreases with the increase of the
complexity of the graphs.

Figure 7 shows, for each graph, the channel assignment obtained as the solution at one of the
20 repetitions performed for that graph.
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(a) LD.
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(b) MD.
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(c) HD.

Figure 7. Particular colorings (channel assignments) obtained in one of the executions for each of LD,
MD and HD.
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Table 11. Bounds for the maximum vertex interference Tk(G, W) for TSC in the Wi-Fi scenario with
k = 11.

Scenario Bound Gap (%)

LD 3.1 45.5
MD 6.5 44.1
HD 6.1 37.3

On the other hand, Table 12 shows the average and standard deviation of the maximum vertex
interference Tk(G, W) and the computation times for the different techniques under study.

Results show that, clearly, random offers always the worst performance and that the performance
of TSC-DSATUR and PSO is fairly similar, although the running times of PSO are more than
one thousand-times (i.e., three orders of magnitude) higher than the running times required by
TSC-DSATUR, for LD, MD and HD, respectively. Finally, we are interested not only in the maximum
interference, but also in the interference experienced by each AP, to study if the coloring obtained by
TSC-DSATUR is similar to the one obtained by PSO. Figure 8 studies this behavior.

ITSC−DSATURv = 0.8936, IPSOv = 0.8997
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Figure 8. Heat map of the differences of interferences.
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Table 12. Maximum vertex interference Tk(G, W) and running times for TSC in the Wi-Fi scenario with
k = 11.

Random TSC-DSATUR PSO

Scenario Tk(G, W) Tk(G, W) Time Tk(G, W) Time

avg std avg std avg avg std avg

LD 3.9 0.7 1.8 0.2 0.7 ms 1.7 0.4 0.9 s
MD 6.5 1.1 3.6 0.1 1.4 ms 3.7 0.5 1.6 s
HD 6.9 1.1 3.8 0.4 1.4 ms 4.0 0.4 1.9 s

In this figure, for each AP, we plot a heat map of the difference between the interference obtained
by that AP using TSC-DSATUR (ITSC−DSATUR

v ) minus the interference obtained by that AP using PSO
(IPSO

v ). Hence, in this figure, an AP in red means that the interference of TSC-DSATUR is higher than
that of PSO, and the opposite holds for blue. Results show that, in general, most of the colors are either
light blue, light red or white, so the difference in performance between TSC-DSATUR and PSO is low.
However, it is quite interesting to see that, for the MD scenario, there two dark blue APs, for which
the performance of TSC-DSATUR is much higher than the one of PSO. Finally, in the lower part of
Figure 8, we also show the average interference experienced by each AP. As we can see, TSC-DSATUR
behaves slightly better than PSO for LD and MD, while in HD, PSO has a better performance than
TSC-DSATUR.

5. Conclusions and Future Work

We have introduced two vertex-coloring problems for graphs, in which we are given a spectrum of
colors endowed with a matrix of interferences between them. The THRESHOLD SPECTRUM COLORING

problem (TSC), motivated by Wi-Fi channel assignment, looks for the smallest threshold below which
the interference at every vertex can be kept. The CHROMATIC SPECTRUM COLORING problem (CSC) is
the complement, in which a threshold is given and the aim is to find the smallest number of colors
allowing one to respect that threshold. We have illustrated these two problems with a case study.

For such problems, we have provided theoretical results, showing that both of them are NP-hard
and proving upper bounds for the smallest threshold in TSC and the smallest number of colors in CSC.

In order to complete the scene, we have first presented experimental results for different coloring
techniques, tested on Erdős–Renyi random graphs of n ∈ {60, 70, 80} vertices and probabilities
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9} of connection, with an interference matrix of exponential decay. For the
coloring techniques, we have proposed a DSATUR-based heuristic for each of the TSC and CSC
problems, in order to account for the given spectrum. We have compared these heuristics with PSO,
a nonlinear optimizer based on particle swarm optimization, for TSC problems of k ∈ {4, 6, 11} colors
and CSC problems of thresholds t ∈ {np/4, np/2, 3np/4}, where np is the expected average degree of
the graph.

Further, we have performed an evaluation of our proposal in a realistic setting, the Wi-Fi network
at the Polytechnic School of our university. We have made use of the real positions of the 26 access
points (APs) deployed in the building, and we have considered three different and representative
scenarios, with 200, 700 and 1300 network users, respectively.

The experiments show that the performance of our heuristics TSC-DSATUR and CSC-DSATUR is
better than PSO for the simplest graphs, although this improvement decreases as the complexity of the
graphs increases. This makes sense, since higher degrees involve more interdependencies between
vertex colorings, which is the kind of constraints for which nonlinear optimizers are designed.

Finally, we have also checked the gap between the theoretical upper bounds and the best values
obtained in the experiments, observing that the more complex is the graph, the smaller is this gap.
As possible future work, we aim to develop and test more realistic models of the problem, like using 3D
graphs to model interferences among different floors of the building.



Symmetry 2018, 10, 65 21 of 22

Acknowledgments: All the authors are supported by MINECO Projects TIN2014-61627-EXP and TIN2016-80622-P
(AEI/FEDER, UE) and by the University of Alcalá Project CCG2016/EXP-048. In addition, David Orden is
supported by MINECO Projects MTM2014-54207 and MTM2017-83750-P, as well as by the European Union’s
Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 734922.

Author Contributions: All authors have made relevant contributions to this work. The problems considered
stem from numerous meetings involving all of the authors, who later led different parts of the work. David Orden
led the formulation of the problems and the theoretical results, Jose Manuel Gimenez-Guzman led the design of
the experiments and the analysis of the data obtained, and Ivan Marsa-Maestre and Enrique de la Hoz led the
choice and use of the optimization techniques. All authors have reviewed, read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carreño, J.J.; Martínez, J.A.; Puertas, M.L. Efficient Location of Resources in Cylindrical Networks. Symmetry
2018, 10, 24.

2. Malaguti, E.; Toth, P. A survey on vertex coloring problems. Int. Trans. Oper. Res. 2010, 17, 1–34.
3. Tuza, Z. Graph coloring. In Handbook of Graph Theory, 2nd ed.; Gross, J.L., Yellen, J., Zhan, P., Eds.; CRC Press:

Boca Raton, FL, USA, 2003; Volume 25, Chapter 5, pp. 408–438.
4. Aardal, K.I.; van Hoesel, S.P.; Koster, A.M.; Mannino, C.; Sassano, A. Models and solution techniques for

frequency assignment problems. Ann. Oper. Res. 2007, 153, 79–129.
5. Bazzi, A. On Uncoordinated Multi User Multi RAT Combining. In Proceedings of the IEEE Vehicular technology

conference (VTC Fall), San Francisco, CA, USA, 5–8 September 2011; pp. 1–6.
6. Bar-Yehuda, R.; Polevoy, G.; Rawitz, D. Bandwidth allocation in cellular networks with multiple interferences.

Discret. Appl. Math. 2015, 194, 23–36.
7. De la Hoz, E.; Gimenez-Guzman, J.M.; Marsa-Maestre, I.; Orden, D. Automated Negotiation for Resource

Assignment in Wireless Surveillance Sensor Networks. Sensors 2015, 15, 29547–29568.
8. De la Hoz, E.; Marsa-Maestre, I.; Gimenez-Guzman, J.M.; Orden, D.; Klein, M. Multi-Agent Nonlinear

Negotiation for Wi-Fi Channel Assignment. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2017), Sao Paulo, Brazil, 8–12 May 2017; Das, S., Durfee, E., Larson, K.,
Winikoff, M., Eds.; pp. 1035–1043.

9. De la Hoz, E.; Gimenez-Guzman, J.M.; Marsa-Maestre, I.; Cruz-Piris, L.; Orden, D. A Distributed, Multi-Agent
Approach to Reactive Network Resiliencet. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2017), Sao Paulo, Brazil, 8–12 May 2017; Das, S., Durfee, E., Larson, K.,
Winikoff, M., Eds.; pp. 1044–1053.

10. West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2001.
11. Araujo, J.; Bermond, J.C.; Giroire, F.; Havet, F.; Mazauric, D.; Modrzejewski, R. Weighted improper colouring.

J. Discret. Algorithms 2012, 16, 53–66.
12. Griggs, J.R.; Kral, D. Graph labellings with variable weights, a survey. Discret. Appl. Math. 2009, 157, 2646–2658.
13. Sharp, A. Distance coloring. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; Volume 4698,

pp. 510–521.
14. Bodlaender, H.L.; Kloks, T.; Tan, R.B.; van Leeuwen, J. λ-coloring of graphs. In Lecture Notes in Computer Science;

Springer: Berlin, Germany, 2000; Volume 1770, pp. 395–406.
15. Calamoneri, T. The L(h, k)-labelling problem: An updated survey and annotated bibliography. Comput. J.

2011, 54, 1344–1371.
16. Roberts, F.S. T-colorings of graphs: Recent results and open problems. Discret. Math. 1991, 93, 229–245.
17. Gastineau, N. Dichotomies properties on computational complexity of S-packing coloring problems. Discret. Math.

2015, 338, 1029–1041.
18. Louis Hakimi, S.; Kariv, O. A generalization of edge-coloring in graphs. J. Graph Theory 1986, 10, 139–154.
19. Sun, Y.; Jin, Z.; Li, F. On total rainbow k-connected graphs. Appl. Math. Comput. 2017, 311, 223–227.
20. Brooks, R. On coloring the nodes of a network. Commun. ACM 1979, 22, 251–256.
21. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R.E.,

Thatcher, J.W., Eds.; Springer: Berlin, Germany, 1972.



Symmetry 2018, 10, 65 22 of 22

22. Woodall, D. Improper colourings of graphs. In Graph Colourings; Pitman Research Notes in Mathematics
Series; Nelson, R., Wilson, R.J., Eds.; Longman Scientific & Technical: New York, NY, USA, 1990; Volume 218,
pp. 45–63.

23. Di Blas, A.; Jagota, A.; Hughey, R. A range-compaction heuristic for graph coloring. J. Heuristics 2003, 9,
489–506.

24. Eiben, Á.E.; Van Der Hauw, J.K.; van Hemert, J.I. Graph coloring with adaptive evolutionary algorithms.
J. Heuristics 1998, 4, 25–46.

25. San Segundo, P. A new DSATUR-based algorithm for exact vertex coloring. Comput. Oper. Res. 2012, 39,
1724–1733.

26. Johnson, D.S.; Trick, M.A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
11–13 October 1993; American Mathematical Society: Providence, RI, USA, 1996; Volume 26.

27. Newman, M.E.; Watts, D.J.; Strogatz, S.H. Random graph models of social networks. Proc. Natl. Acad. Sci. USA
2002, 99, 2566–2572.

28. Méndez-Díaz, I.; Nasini, G.; Severín, D. A DSATUR-based algorithm for the Equitable Coloring Problem.
Comput. Oper. Res. 2015, 57, 41–50.

29. Brélaz, D. New methods to color the vertices of a graph. Commun. ACM 1979, 22, 251–256.
30. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications.

Math. Probl. Eng. 2015, 2015, 931256.
31. Chowdhury, K.R.; Akyildiz, I.F. Cognitive wireless mesh networks with dynamic spectrum access. IEEE J.

Sel. Areas Commun. 2008, 26, doi:10.1109/JSAC.2008.080115.
32. Shrivastava, V.; Rayanchu, S.; Yoonj, J.; Banerjee, S. 802.11 n under the Microscope. In Proceedings of the

ACM 8th ACM SIGCOMM Conference on Internet Measurement, Vouliagmeni, Greece, 20–22 October 2008;
pp. 105–110.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Two Novel Coloring Problems
	A Case Study
	Related Work

	Theoretical Results
	Experimental Results for Random Graphs
	Settings
	Coloring Techniques Used for Benchmarking
	Results

	Experimental Results in a Realistic Setting
	Conclusions and Future Work
	References

