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Abstract: A description of the 11 well-known uninodal planar nets is given by Cayley color graphs
or alternative Cayley color graphs of plane groups. By applying methods from topological graph
theory, the nets are derived from the bouquet Bn with rotations mostly as voltages. It thus appears
that translation, as a symmetry operation in these nets, is no more fundamental than rotations.
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1. Introduction

What is the origin of symmetry in crystal structures? The interplay between topology and
symmetry in crystal structures has already been considered in [1] and [2]. However, what is at stake is
the very origin of symmetry and, more particularly, translational symmetry in condensed matter.
Clearly, if some local geometric configuration corresponds to a minimum potential energy for
the compositional unit, then a stable extended structure will be generated when every structural
subset of identical composition reproduces this same configuration. As a particularly important
consequence, translational symmetry may follow as a combination of proper or improper rotational
symmetry operations. However, conversely, rotational symmetry operations may result from
translational symmetry combined with topological restrictions, as previously discussed in [2]; that is, a
full space-group may arise out of a small set of local topology and symmetry conditions. Uninodal nets
for which the asymmetric unit displays a single node provide a suitable material to illustrate these
relations. It is known for instance that the full symmetry group of the square lattice net can be deduced
from its labeled quotient graph [2], a topological description of the periodic structure with no reference to
point-symmetry. In this essay, we analyze the complementary proposition and show that two-periodic
(planar) uninodal nets can be sufficiently described by using only rotational symmetry operations in
association with a topological description.

A well-suited theoretical framework for such a study, called topological graph theory, combines
topology and group theory into a single mathematical object named a voltage graph [3]. Labeled quotient
graphs, introduced by Chung et al. [4] in the “vector method”, were the first application of topological
graph theory to crystallography. In this method, a finite graph with edges labeled by lattice vectors
represents the topology of the structure. Further progress was made by Klein [5], who used
symmetry-labeled graphs: the use of symmetry operations as labels of the graph led to a substantial
reduction in the size of the graph. However, symmetry labels were taken from a given space-group, and
vertices were assigned a specific Wyckoff position in this space-group. These graphs were thus called
spatial graphs by Klein, emphasizing that they represent graphs embedded in Euclidian space and not
abstract graphs. In general, spatial graphs are not quotient graphs. The concept of symmetry-labeled
quotient graphs was introduced by Eon [6]. Such graphs were obtained as quotient graphs of the
periodic net by a non-trivial subgroup H of their space-group G (i.e., T < H < G, where T is the full
translation subgroup of the net), with edges assigned symmetry operations that generate H. These
objects are truly combinatorial in nature, in the sense that the derived periodic net is isomorphic with
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the initial net, independently of any geometric support. However, the respective symmetry operations
used in that paper were most frequently glide reflections or screw rotations. In this work, we consider
only proper rotations or reflections as symmetry labels.

The paper is organized as follows. Definitions and main properties of voltage graphs and their
application to the description of the combinatorial topology of crystal structures are reviewed in
Section 2. The main text deals with the application of the methodology to the description of uninodal
two-periodic (planar) nets. These nets were chosen because of their importance in crystal chemistry [7]
as well as for their scarce number: it is known that there are exactly 11 uninodal two-periodic planar
nets [8]. Section 3 presents a description of the square lattice net sql according to the vector-method,
including an analysis of the ideal two-dimensional space-group (plane group) of the net. Section 4
introduces a description of sql using a symmetry-labeled quotient graph, showing that the full plane
group of the net, including its translational symmetry, is generated by two proper rotations. The
analysis of the 10 remaining uninodal two-periodic planar nets is performed along the same lines in
the next sections; the different nets are analyzed in order of growing complexity. The paper ends with
some general observations concerning the description of uninodal planar nets.

2. Methodology

The method is adapted from the work developed by Gross and Tucker [3]. Voltage graphs applied
to the analysis of crystal structures are graph-theoretical objects that can be informally interpreted
as a combinatorial description of the asymmetric unit of a periodic structure. However, a voltage
graph also carries information about the symmetry operations that are necessary to recreate the whole
structure from the asymmetric unit, which makes them so powerful. Because here we restrict our
analysis to uninodal nets, the asymmetric unit contains a single vertex; in this case, all edges of the
voltage graph start and end at the same vertex. Such edges are called loops and the corresponding
graph is called a bouquet; the bouquet Bn admits n loops. These loops are oriented and assigned a
symmetry operation, called the voltage on the loop. A unique structure can then be derived from this
voltage graph as follows. First, we form the symmetry group G generated by the whole set of voltages.
We call V the single vertex of the bouquet Bn; the vertex set of the derived graph is defined as the set
{Vg: g ∈ G}. Voltages indicate which vertices of the derived graph have to be linked. We suppose
some loop is assigned voltage σ. Then, for every g ∈ G, there is an edge starting at vertex Vg and
ending at vertex Vgσ. This edge, usually denoted as σg, is an oriented edge. From [3], it is known that
the group G acts freely on the derived graph as follows: A symmetry operation f ∈ G maps (i) vertex
Vg to vertex Vf g, and (ii) edge σg = VgVgσ to edge σf g = Vf gVf gσ. Hence, G is a subgroup of the full
symmetry group of the derived graph. In fact, the graph obtained from the previous construction is
known as the Cayley color graph of the group G with voltages as generators (colors). It may happen
that Cayley color graphs present double edges when the respective generator has order 2. Indeed,
supposing σ2 = 1, then both edges σg and σgσ, which are different by construction, link the two
vertices Vg and Vgσ. In this case, we substitute the pair of oriented edges by a single non-oriented edge.
This modified construction is known as the alternative Cayley color graph of the group. Of course, crystal
structures bear no orientation, but it may be helpful to keep orientations in the derived graph in order
to make clear the relationship with the voltage graph.

A correlated approach is used in [9], where the authors provide different descriptions of the 17
two-dimensional space-groups (plane groups) through a list of possible generators and associated
relators. They have also drawn the respective Cayley diagrams (Cayley and alternative Cayley
graphs), which are naturally isomorphic to uninodal two-periodic planar nets. However, several of the
generated nets happen to be isomorphic, and, conversely, not all planar nets have been derived. The
four nets cem, fsz, htb and tts are missing. This paper focuses on planar nets, asking whether they
can all be derived from the bouquet Bn exclusively using point-symmetry operations as voltages. The
proposed description also follows a principle of economy, looking for the smallest possible number of
loops in the bouquet. Clearly, a minimum of two loops is necessary to describe a two-periodic net,
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whatever the nature of the voltage. The results reported in Table 1 show that most planar nets can be
obtained from B2 or B3.

3. The Square Lattice Net

3.1. The Vector Method

As an illustration of the general method, we consider the description of the sql net from its labeled
quotient graph, the bouquet B2, as given in Figure 1. In this case, according to the vector method [4],
voltages are vectors in Z2, and the generated group is a translation group of rank 2. The vertex set is
defined as {Vt : t ∈ Z2}. If two orthogonal vectors a and b are used as a basis of the lattice in the plane,
with correspondence a = 10 and b = 01, one obtains the derived net with the orientation as given in
Figure 1. We observe that, locally, the derived net has the same structure as the voltage graph: for each
color, there is one outgoing and one incoming edge at every vertex. The green edge at links vertex Vt

to vertex Vt+a, and the red edge bt links vertex Vt to vertex Vt+b.

Figure 1. (Left) A geometric realization (embedding) of the square lattice net (sql) in the Euclidian
plane with oriented edges, and (Right) its labeled quotient graph with voltages in Z2. The two classes
of edges in the net are given the same color as the representative loop in B2.

We consider now the full symmetry group of the sql net. Because sql is a lattice net, it is a
crystallographic net [10], which means, by definition, that its automorphism group is isomorphic
to a space-group [11]. Because it is also a minimal net [12], the factor group of its space-group is
isomorphic to the automorphism group of the voltage graph [2]. In order to determine the point group
of sql, we thus look for generators of the automorphism group of the bouquet B2 and then for an
interpretation as symmetry operations in Euclidian space.

These mathematical properties arise from the relationship between loops in the bouquet and
lines in the embedding of the net. As a result of the construction method described above, a loop
unwraps along an infinite line oriented in the crystallographic direction given by the associated
voltage; the relationship is evidenced in Figure 1 through both the color and the orientation of the
respective elements. For instance, the red loop with voltage 01 unwraps along red lines with direction
01. Equivalently, any red (green) line projects onto the red (green) loop. The effect of a point symmetry
operation on the net is to perform a permutation of the loops in the voltage graph. For instance,
the reflection in the a-axis changes the orientation of every line along b; as a permutation, it can be
written (b,−b). The automorphism group of the bouquet B2 is generated by the three permutations
(a,−a), (b,−b) and (a, b) associated respectively to reflections in the axes (0, x), (x, 0) and (x, x) and
is thus of order 8. Because there is a single vertex per unit cell, the maximum space-group of sql is the
symmorphic group p4mm.
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3.2. An Example of a Symmetry-Labeled Quotient Graph

The above description of sql is based on translation operations in the Euclidian plane. In this
section, we consider extensively a derivation of sql from the bouquet B2 with two 4-fold rotations as
voltages on the loops, as shown in Figure 2. The given representation of the net was obtained after
placing the initial vertex close to the origin and considering two anticlockwise 4-fold rotations α and β

with centers at (1/2,−1/2) and (−1/2, 1/2), respectively. These initial elements are shown in brown
in the figure. Because voltages have order 4, each loop unwraps to a 4-cycle: starting from vertex V1 at
the origin, the green loop unwraps to the green 4-cycle around the center of rotation β, and similarly
the red loop unwraps to the red 4-cycle around the center of rotation α. Because we know that β acts
freely on the derived net, we also obtain by this rotation the three other red 4-cycles at the corners of
the unit cell. We note that this unit cell, as drawn in Figure 2, corresponds to the space-group generated
by the two rotations α and β, which happens to be a 2× 2 supercell of sql.

α

β

Figure 2. (Left) The square lattice net and a symbolic representation of the space-group generated
by a single vertex and two 4-fold rotation centers (in brown) using (Right) the bouquet B2 with the
respective rotations α and β as voltages. The two classes of edges in the net are given the same color as
the representative loop in B2. Note that the initial vertex has been slightly shifted in relation to the
origin, thus providing a truly p4 embedding with a 2× 2 unit cell.

To obtain a better understanding of the derived net, or equivalently of the Cayley color graph of
the generated group, we can use a representation of the two initial rotations by extended 3× 3 matrices
such as follows:

α =

 0 −1 0
1 0 −1
0 0 1

 , β =

 0 −1 0
1 0 1
0 0 1


We note first that the two combinations αβ and βα represent 2-fold rotations with centers at

(−1/2,−1/2) and (1/2, 1/2), respectively.

αβ =

 −1 0 −1
0 −1 −1
0 0 1

 , βα =

 −1 0 1
0 −1 1
0 0 1


We also note that monomials of degree 4 correspond to translations, such as the two

following combinations.
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α3β =

 1 0 2
0 1 0
0 0 1

 , βα3 =

 1 0 0
0 1 2
0 0 1


More generally, the two generators satisfy the three relations α4 = β4 = (αβ)2 = 1. From an

abstract point of view, these relations are enough to define the group G = 〈α, β〉. It can be checked that
the group T = 〈α3β, βα3〉, generated by the two given translations, is abelian and normal in G = 〈α, β〉
and that the factor group G/T admits four cosets represented by 1, β, β2 and β3, showing that G, as an
abstract group, is isomorphic to the space-group p4, but with a 2× 2 unit cell in comparison with the
primitive cell of the former embedding shown in Figure 1. The identification of the derived net N with
sql can be achieved by analyzing the labeled quotient graph N/T, as follows.

It is more appropriate in this case to construct N/T directly from N/G instead of using the
derived net N. This can be done by denoting the four vertex cosets as Tβn with n ∈ {0, 1, 2, 3} and
working out the edges between them as well as the respective voltages in T. We consider first the loop
with voltage β in N/G: this loop indicates that, for any t ∈ T, there are two edges linking vertex tβn to
vertices tβn−1 and tβn+1. We thus have four edges forming a 4-cycle with zero voltage in N/T. The
case of the loop with voltage α is more difficult. There are similarly two edges from tβn to tβnα and
tβnα3; these vertices should be first rewritten as txβm with x ∈ T in order to assign voltage x to the
edge from tβn to tβm in N/T. For instance,

βα = xβm =⇒ {m = 2 and x = βαβ2 = α3β} (1)

The value m = 2 is chosen in order to obtain a monomial of degree 4 for the translation x. The final
result comes from the relation βαβ = α3 in G (a consequence of the relations α4 = (αβ)2 = 1). We should
thus add an edge from Tβ to Tβ2 with voltage α3β. The complete labeled quotient graph is shown
in Figure 3, where the two translations α3β and βα3 have been written as 20 and 02, respectively,
in accordance with the above matrices.

T

TT

T

23

02

20

02

20

01

10

v
h

Figure 3. (Left) The labeled quotient graph N/T of the net N derived from the symmetry-labeled
bouquet B2 in Figure 2; vertices correspond to T-cosets in G = 〈α, β〉; edge colors match the classes
according to the two generators α and β, as given in Figure 2. The quotient by the reflections θv and θh
through blue lines h and v is (Right) the bouquet B2 with half voltages 10 and 01 (see text).

The isomorphism between the derived net N and sql can be worked out through labeled quotient
graphs, as indicated in Figure 3. There are indeed two freely acting automorphisms of N/T that leave
the voltages over cycles unchanged and that should be interpreted as images of translations in N,
thus extending the group T. We first define the automorphism θv = (T, Tβ)(Tβ2, Tβ3) exchanging
(i) T with Tβ and Tβ2 with Tβ3; (ii) green and red horizontal edges between T and Tβ, as well as
those between Tβ2 and Tβ3; and (iii) vertical edges between T and Tβ3 with those of the same color
between Tβ and Tβ2. A second automorphism θh = (T, Tβ3)(Tβ, Tβ2) is defined similarly, this time
exchanging colors for vertical edges and keeping colors for horizontal edges; θv and θh act on N/T as
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reflections in the blue v and h lines, respectively. The graph N/T thus has a single vertex class and
two edge classes for the automorphism group 〈θh, θv〉; the four horizontal edges form a first class and
the four vertical edges form a second class. Hence its quotient is the bouquet B2 with all horizontal
edges mapped on the upper loop and all vertical edges mapped on the lower loop. More precisely,
both 2-cycles with voltage 02 (resp. 20) are wrapped on the upper (resp. lower) loop. This means that
the voltages on the loops are respectively 01 and 10.

4. The Kagome Net

We consider more briefly a second example of a symmetry-labeled bouquet, this time in order to
derive the kagome (kgm) net. As given in Table 1, we use as voltages on the loops of the bouquet B2

the 3-fold rotations α and β with centers at (1/3,−1/3) and (−1/3, 1/3), respectively. These symmetry
operations can be represented by the following 3× 3 matrices:

α =

 0 −1 0
1 −1 −1
0 0 1

 , β =

 0 −1 0
1 −1 1
0 0 1


It is easily verified that these matrices satisfy the relation (αβ)3 = 1, and, conversely, that the

group generated by these two matrices is isomorphic to the abstract group G = 〈(α, β)|α3, β3, (αβ)3〉.
Because monomials of degree 3 have the identity as the rotation part, they generate a translation group
T; in this case, T = 〈α2β, βα2〉 with α2β = 20 and βα2 = 02. This group is normal in G, with only three
cosets given, for example, as T, Tα and Tα2. The determination of the labeled quotient graph N/T
of the derived net N and its identification are performed as explained above for sql. For instance,
according to the voltages assigned to loops in the bouquet B2, the green edge outgoing from Tα in
N/T goes to Tαβ. After this vertex has been rewritten in the form xTαm, one can see that the respective
edge goes from Tα to Tαm and must be assigned voltage x. In particular, we have

αβ = xαm =⇒ {m = 2 and x = αβα = β2α2β2 = β2ααβ2 = 22} (2)

where the relation (αβ)3 = 1 was used to develop the product αβα in the basis (α2β, βα2). The resulting
labeled quotient graph is shown in Figure 4. The identification of the net as kgm can be performed by
using, for instance, the program SYSTRE [13].

α

β

T

2

22

2002

Tα Tα

Figure 4. (Left) The bouquet B2 with loops assigned 3-fold rotations, and (Right) the labeled quotient
graph N/T of the derived net N = kgm with translation group T = 〈20, 02〉 (see text).

The net is shown in Figure 5, where the symmetry group p3 of the Cayley color graph has been
put into evidence. The correspondence between the labeled quotient graph and the net can be seen by
analyzing the local structure at any vertex. In kgm, any vertex admits one incoming and one outgoing
red (resp. green) edge, in accordance with the bouquet B2. The nature of the respective symmetry
operation can be read in the open space between the two edges of the same color, here as a 3-fold
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rotation. This observation applies to any net in further sections. We note also the two-color 6-cycle
(strong ring) associated with the relator (αβ)3. It is a general fact that generators form one-color cycles
while relators give rise to multicolor cycles.

Figure 5. The kgm net derived from the bouquet B2 with loops assigned 3-fold rotations (in the center
of the unit cell).

Table 1. Generators used as voltages for bouquets in the description of uninodal two-periodic nets,
respective relators, space-groups and unit cell size of an embedding of the alternative Cayley color
graph in comparison with those of the net.

Net Bouquet Generators Relators Space-Groups Unit Cell

cem B4 α, β, γ, δ α2, β2, γ2, αβδ, [δ, γ] p2/c2mm 1× 1
fes B2 α, β α4, β2, (αβ)4 p4/p4mm 1× 1
fsz B3 α, β, γ α6, β3, γ2, γβα p6/p6 1× 1
fxt B3 σ1, σ2, σ3 σ2

1 , σ2
2 , σ2

3 , (σ1σ2)
6, (σ1σ3)

3, (σ2σ3)
2 p6mm/p6mm 1× 1

hca B2 α, β α3, β2, (αβ)6 p6/p6mm 1× 1
hcb B2 α, β α6, β2, (αβ)3 p6/p6mm 3× 1
htb B2 α, β α6, β3, (αβ)2 p6/p6mm 1× 1
hxl B3 α, β, γ α3, β3, γ3, αβγ p3/p6mm 3× 1

kgm B2 α, β α3, β3, (αβ)3 p3/p6mm 1× 1
sql B2 α, β α4, β4, (αβ)2 p4/p4mm 2 × 2
tts B3 α, β, γ α4, β4, γ2, αβγ p4/p4gm 1× 1

5. The Honeycomb Net

The square lattice and kagome nets do not represent the general situation, since vertices have
an even degree in both nets. In this case, we have been able to identify the net derived from the
symmetry-labeled bouquet with the Cayley color graph of the group generated by the voltages. We
study here the example of the honeycomb (hcb) net with vertices of degree 3, which is identified with
an alternative Cayley color graph. To this end, we consider the bouquet B2 with loops assigned a
6-fold rotation α and a 2-fold rotation β with respective centers at (1, 2) and (−1/2,−1), represented
by the following matrices:

α =

 1 −1 2
1 0 1
0 0 1

 , β =

 −1 0 −1
0 −1 −2
0 0 1


It can be verified that these matrices satisfy the relations α6 = β2 = (αβ)3 = 1. The bouquet and

the derived net are shown in Figures 6a and 6c, respectively. Because β is of order 2, the respective
outgoing and incoming edges at any vertex are identified in the derived net, which thus has degree
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3. Any vertex can be used as the initial vertex for generating the whole net if the 2-fold rotation is
that associated to the incident red edge and the 6-fold rotation is that located in the angle between
the two incident green edges. It is worth noting that the two relators α6 and (αβ)3 are associated with
strong rings (6-cycles) of the net. The formal identification of the derived net N with hcb runs as in the
previous cases. We first note that the two combinations a = αβα2 and b = α3β generate a translation
(abelian) group T of rank 2, which is normal in the abstract group G = 〈(α, β)|α6, β2, (αβ)3〉; there
are six T-cosets that may be written as Tαn with 0 ≤ n ≤ 5. Using these cosets, the bouquet can be
unwrapped to the labeled quotient graph shown in Figure 6b. The analysis of the automorphism
(T, Tα2, Tα4)(Tα, Tα5, Tα3) shows that it can be associated to the existence of a translation τ of the
derived net with 3τ = a− b, indicating that the derived net is indeed isomorphic to hcb, with a triple
unit cell.

α

β

Tα

T

Tα

Tα

TαTα

2

3

45

10 01

11

(a)

(b)

(c)

Figure 6. (a) The bouquet B2 with loops assigned 6-fold and 2-fold rotations, (b) the labeled quotient
graph unwrapped from the bouquet B2, and (c) the derived hcb net showing all symmetry elements in
the extended unit cell. We note the absence of orientation on red edges obtained after the identification
of ingoing and outgoing edges associated to the 2-fold rotation β (see text).

6. Decorated sql and hcb Nets

As for the honeycomb net, the nets fes (decorated sql) and hca (decorated hcb) are described by
the bouquet B2 with two rotations as voltages: (i) a 4-fold rotation α and a 2-fold rotation β with an
extra relator (αβ)4 for fes, and (ii) a 3-fold rotation α and a 2-fold rotation β with an extra relator (αβ)6

for hca. These relators are interpreted as 8- and 12-cycles in the respective derived nets. A translation
(normal, abelian) group T is generated by the two combinations α2β and αβα with four cosets Tαi

(i = 0, 1, 2, 3) in the case of fes. The translation group T of hca is generated by the two combinations
αβαβα and α2βαβ. There are six cosets: Tαi and Tβαi (i = 0, 1, 2). Because the derivation is rather
straightforward, only the final nets are shown in Figure 7. We note that the edges associated to 2-fold
rotations have no orientation.
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(a) (b)

Figure 7. (a) The fes net and (b) the hca net generated from the bouquet B2. We note the absence of
orientation on red edges obtained after identification of ingoing and outgoing edges associated to the
respective 2-fold rotations (see text).

7. The htb Net

The htb (hexagonal tungsten bronze) net, shown in Figure 8, is described by the bouquet B2 with
a 6-fold rotation α and a 3-fold rotation β as voltages, with relator (αβ)2. The translation group T is
generated by the two combinations α4β and βα4 and admits six cosets given as Tαi (i = 0, ..., 5). We
note again the presence in the net of a two-color 4-cycle (strong ring), associated to the relator.

Figure 8. The htb net generated from the bouquet B2 with 6- and 3-fold rotations as voltages.

8. The Hexagonal Lattice Net

The hexagonal lattice net (hxl) is regular, of degree 6 and can be described using the bouquet B3

with voltages α, β and γ, corresponding to 3-fold rotations, which can be represented by the following
3× 3 matrices:

α =

 0 −1 1
1 −1 0
0 0 1

 , β =

 0 −1 0
1 −1 1
0 0 1

 , γ =

 0 −1 −1
1 −1 −1
0 0 1


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These operations satisfy the relations α3 = β3 = γ3 = αβγ = 1. Clearly, every monomial of
degree 3 in α, β and γ defines a translation in the plane. The two combinations β2α and αβ2 can be
used as a basis for the translation group T. Using the three cosets T, Tα and Tα2, one may construct
the labeled quotient graph shown in Figure 9b, which can then be unwrapped to the representation of
the hxl net given in Figure 9c. The net hxl is thus isomorphic to the Caley color graph of p3 with the
three generators α, β and γ. We note again the correlation between strong rings of the net and relators
of the space-group, in particular, the relator αβγ associated to the green–blue–red 3-cycle.

T

T

T

2

01

111110

10

01
11

(a) (b)

(c)

Figure 9. (a) The bouquet B3 with loops assigned 3-fold rotations. (b) The labeled quotient graph
unwrapped from (a). (c) The derived hxl net showing all symmetry elements in the extended unit cell
(see text).

9. fsz

Three voltages on the bouquet B3, given as a 6-fold rotation α, a 3-fold rotation β and a 2-fold
rotation γ with relator γβα, are necessary to describe the net fsz shown in Figure 10. As for the htb net,
the translation group is generated by the two combinations βα4 and α4β. We note the blue–red–green
cycle associated with the relator γβα.

Figure 10. The net fsz as derived from the bouquet B3 with loops assigned 6-, 3- and 2-fold rotations.
We ntoe the absence of orientation on the blue edge associated to the 2-fold rotation.
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10. tts

Again, three voltages on the bouquet B3, given as two 4-fold rotations α and β and a 2-fold
rotation γ with relator αβγ, are necessary to describe the net tts shown in Figure 11. We note the
strong similarity of this representation of tts with that of sql given in Figure 2. This fact clearly reflects
the similarity of their symmetry-labeled quotient graphs, as that of tts is obtained from that of sql by
adding a third loop with voltage γ = αβ. The relationship is evident in Table 1.

Figure 11. The net tts as derived from the bouquet B3 with loops assigned two 4-fold rotations and one
2-fold rotation. We note the absence of orientation on the blue edge associated to the 2-fold rotation
and the three-color 3-cycle associated to the relator.

11. fxt

Differently from the other two-periodic uninodal nets, fxt only admits three reflections, σ1, σ2

and σ3, as voltages of the bouquet B3. These reflections are coupled as a 6-fold rotation α = σ1σ2, a
3-fold rotation β = σ1σ3 and a 2-fold rotation γ = σ2σ3. As a result, the alternative Cayley color graph
has no orientation and its space-group is the full group p6mm. The determination of the translation
group T can be performed by comparison with htb. Indeed, only even combinations of reflections can
generate a translation, and the pairing of reflections yields then a combination of the three rotations α,
β and γ, which is quite similar to the expression of translations for htb whose generators obey similar
relations. Hence, we can take the two combinations α4β and βα4 as generators of T, which admits 12
cosets, given as Tαi and Tαiσ1 (i = 0, ..., 5). The derived net is shown in Figure 12.

Figure 12. The net fxt as derived from the bouquet B3, where each loop has been assigned a reflection;
we note the absence of orientation.
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12. cem

The last net of the list has degree 5 and admits the bouquet B4 as its quotient graph. Three out of
the four voltages correspond to 2-fold rotations α, β and γ. The fourth voltage is in fact the translation
formed by the combination of the first two rotations: δ = βα. The relator [δ, γ] is called the commutator
of δ and γ, a notation used for the combination δγδ−1γ−1 = βαγαβγ. Because any monomial of
degree 2 in α, β and γ defines a translation, the latter relator expresses the linear dependence of the
three possible combinations as βα.γα.βγ = 1 so that the derived net shown in Figure 13 is indeed
two-periodic. We note that the relator αβδ is associated to a 3-cycle, while [δ, γ] is associated to a
4-cycle, both strong rings of the net. Because there are only 2-fold rotations, the generated group is
isomorphic to p2, with only two cosets, represented as T and Tα, for instance.

Figure 13. Symmetric representation in p2mm of the alternative Cayley color graph isomorphic to
the net cem, as derived from the bouquet B4, where three out of the four loops have been assigned a
reflection; only symmetry elements from p2 are shown. We note the absence of orientation along the
respective edges.

13. Final Considerations

The results of the previous sections are summarized in Table 1, where a set of generators and
respective relators is provided for the whole collection of uninodal planar nets, as given in the Reticular
Chemistry Structure Resource [14]; also given are the symbols of the generated two-dimensional
space-groups versus those of the full space-groups of the nets and the relative size of the unit cells. We
note that relators and relations are in a one-to-one correspondence: r is a relator if and only if r = 1 is a
relation. We observe also that more than one set of generators is usually possible to describe the same
net.

All nets but cem are generated by using rotations or reflections as voltages of some bouquet
Bn with n = 2, 3, 4. Even in the case of cem, it must be said that a single voltage corresponds to
a translation, and this translation is given as the combination of two 2-fold rotations, themselves
given as voltages. Hence, in all cases, the whole space-group is generated by no more than three
point-symmetry operations. Of course, these operations have distinct fixed points; otherwise they
would generate a point-group. This is quite different from the conventional description of space-groups
in International Tables, for instance, where given relations strictly concern the linear part of symmetry
operations, because translations are always implicitly assumed and explicitly given as generators. In
fact, even the geometrical interpretation as point-group operations, of generators given in Table 1,
is needless. The space-group is abstractly generated from the relations listed in Table 1. Following
general theorems from topological graph theory, the generated group acts freely (without fixed points)
on the derived graph, that is, on the alternative Cayley color graph of the group, so that the generated
space-group is a subgroup of the full space-group of the respective net.
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The use of symmetry-labeled quotient graphs as representations of periodic nets presents some
advantages compared with the more usual description by translation-labeled quotient graphs. Indeed,
the description by the bouquet Bn is more compact and brings immediate information concerning the
transitivity class of the net. It clearly shows the existence of a single kind of vertex and provides an
upper limit to the number of edges, equal to the number of loops. Moreover, strong rings of the net
are immediately known from the given generators and their relators. A single glance at Table 1, for
instance, informs that fes admits 4- and 8-rings. We emphasize again that translations appear in this
analysis as a simple consequence of point-symmetry operations; of course, this does not generalize to
an arbitrary net.
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