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Abstract: In this paper, a new approach is proposed to identify sectional deformation modes
of the doubly symmetric thin-walled cross-section, which are to be employed in formulating a
one-dimensional model of thin-walled structures. The approach considers the three-dimensional
displacement field of the structure as the linear superposition of a set of sectional deformation
modes. To retrieve these modes, the modal analysis of a thin-walled structure is carried out based
on shell/plate theory, with the shell-like deformation shapes extracted. The components of classical
modes are removed from these shapes based on a novel criterion, with residual deformation shapes
left. By introducing benchmark points, these shapes are further classified into several deformation
patterns, and within each pattern, higher-order deformation modes are derived by removing the
components of identified ones. Considering the doubly symmetric cross-section, these modes are
approximated with shape functions applying the interpolation method. The identified modes are
finally used to deduce the governing equations of the thin-walled structure, applying Hamilton’s
principle. Numerical examples are also presented to validate the accuracy and efficiency of the new
model in reproducing three-dimensional behaviors of thin-walled structures.

Keywords: thin-walled structures; higher-order deformation modes; identification; doubly symmetric
cross-sections; shell-like deformation

1. Introduction

Thin-walled structures are widely used in civil, aeronautical, and mechanical engineering.
In the processes of designing and manufacturing them, a mathematical model is essential to predict
their structural behaviors. For simplicity and efficiency, one-dimensional (beam) models are more
widely used than two-dimensional (plate/shell) and three-dimensional (solid) theories. However,
conventional beam models face a limit in capturing cross-sectional deformation, which is quite usual
but significant for the mechanical properties of a thin-walled structure. Therefore, refined beam models
must be developed, taking out-of-plane warping and in-plane distortion into consideration. The issue
is that an efficient beam theory needs a general procedure for identifying a complete set of sectional
deformation modes [1], which are hierarchically capable of forming a reduced model, and presenting
the physical interpretation in a clear way. For this reason, the development of advanced beam theories
is still appealing.

During the last few decades, many refined beam models have been proposed. Some main
contributions are outlined in the review article by Carrera et al. [2]. For the sake of completeness,
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a brief review of refined beam theories is given here. First, particular attention should be paid
to the work of Vlasov [3], who introduced warping functions in modeling thin-walled beams.
The Saint–Venant solution is also useful in developing advanced beam theory. For example,
Yoon et al. [4] proposed a finite element formulation for nonlinear torsional analysis of 3D beams
with arbitrary composite cross-sections, based on the Saint–Venant solution. In addition, the proper
generalized decomposition method is useful in reducing the numerical complexity of reproducing
three-dimensional behaviors of thin-walled structures; recent progress can be seen in the work of
Sibileau et al. [5]. Asymptotic methods are powerful tools for describing the three-dimensional
displacement field of beam models, and have evolved into the well-known variational asymptotic
method for thin-walled structures (see Ghorashi [6]). In comparison, the Carrera unified formulation
is valuable for defining the displacement field by exploiting arbitrary expansions of unknown
variables. In this regard, Carrera et al. [7–9] have made sustained efforts and contributed significantly
to development of a theory able to consider various structural problems with no need for ad
hoc assumptions.

In practical applications, some structural behaviors are observed and fused in the refinement
of thin-walled beam models. For example, the shear lag effect is proven to play a certain role in the
performances of box bridges, and has been taken into consideration in the definition of shear warping
functions by Cambronero-Barrientos et al. [10] and Yu et al. [11]. In addition, shear correction factors
have also been introduced to enhance beam models by accounting for shear deformation effects by
Lim and Kim [12], and Akgöz and Civalek [13]. The resulting secondary effects of shear deformation
on tall buildings have been studied especially by Lacidogna [14]. In manufacturing, thin-walled
metal structures have been shown to exhibit time-varying deformation, which was studied by Tuysuz
and Altintas [15] in developing an updated model for reduced-order workpiece dynamic parameters.
Furthermore, some new concepts, including reliability, have been introduced into the prediction of
dynamic behaviors of thin-walled structures [16]. Meanwhile, experiments have always been one
of the main methods for studying thin-walled structures. For example, the deformation in coupled
bending and torsional vibrations of non-uniform thin-walled beams has been validated and studied in
experiments by Zhou et al. [17].

Recently, some higher-order theories have focused on the identification of a complete set of
physically meaningful cross-section deformation modes for thin-walled structures. Among them,
generalized beam theory (GBT) is one of the most recent contributions. GBT originates from the work
of Schardt [18,19], and has been extended into almost every field of structural analysis of thin-walled
beams by Davies et al. [20], Silvestre et al. [21], and Camotim et al. [22]. By applying a piece-wise
description of cross-sections and performing cross-section analyses, GBT is able to handle arbitrary
prismatic cross-sections [23] and provide a set of deformation modes hierarchically organized into
several families. Following the development of GBT, Vieira et al. [24,25] have established a criterion
for uncoupling the beam governing equations to derive a set of uncoupled deformation modes
representing higher-order effects. One might say that these theories are powerful enough to handle
almost any prismatic cross-sections, and any structural analyses, with optimal precision. However,
the issue lies in the fact that both of them are based on the solution of the nonlinear eigenvalue problem
associated with the government of differential equations in the process of defining deformation
modes, which is quite demanding for the nonprofessional. In this sense, a more practicable approach,
with fewer features but acceptable accuracy, is more suitable in some cases [26].

Towards this end, a new, more user-friendly procedure for identifying higher-order deformation
modes in thin-walled structures with a doubly symmetric cross-section is proposed. The displacement
field is considered through a linear combination of a set of linear independent deformation modes,
defined over the cross-section, and their amplitudes, only dependent on the longitudinal axis,
which has naturally separated the variable dependencies of the cross-section and beam axis dimensions.
To present these deformation modes, a modal analysis of the thin-walled structure is carried out
employing two-dimensional plate/shell elements, with the shell-like deformation shapes extracted
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and decomposed into in-plane and out-of-plane components. Then, considering the doubly symmetric
cross-section, a novel procedure is implemented by uncoupling classical and higher-order deformation
modes first and by defining the shape function for each new mode then. The whole procedure
only involves elementary calculation of matrix and vectors, being quite simple but effective enough.
The new set of deformation modes are finally adopted in the formulation of the one-dimensional
higher-order model for thin-walled structures.

2. One-Dimensional Formulation

The thin-walled cross-section is constituted by a set of rectilinear walls that are symmetrically
distributed about two axes vertical to each other. The cross-section may be open or closed, but must
be sufficiently thin to suit the Kirchhoff hypothesis. On this basis, a brief review of deriving the
one-dimensional formulation is presented in this section.

2.1. Displacement Fields

The displacement of a point on the mid-surface of the cross-section is defined with the axial u,
tangential v and normal w components, which are prescribed to be positive along the axial direction
of the local coordinate system (n, s, z) adopted for each wall. In addition, a global coordinate system
(x, y, z) is set with its origin located in the centroid of the cross-section at one end of the structure.
The two coordinate systems are shown in Figure 1.
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Figure 1. The global (x, y, z) and local (s, n, z) coordinate systems of the thin-walled structure with a 
doubly symmetric cross-section. 

The displacement of an arbitrary point on the structure is described with three components of 
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Figure 1. The global (x, y, z) and local (s, n, z) coordinate systems of the thin-walled structure with a
doubly symmetric cross-section.

The displacement of an arbitrary point on the structure is described with three components of U,
V and W in the global coordinate system. By considering both the membrane and flexural behaviors of
the plate, the displacement field, D = [U, V, W], is obtained as

U(n, s, z) = u(s, z)− nw,s(s, z),
V(n, s, z) = v(s, z)− nw,s(s, z),

W(n, s, z) = w(s, z),
(1)

where a subscript comma denotes differentiation with respect to the following variable. Here,
the components, v and w, are in-plane (sn plane) displacements and u is the out-of-plane displacement.
By separating the variable dependencies on the s (over the cross-section) and z (along the longitudinal
axis) dimensions, these components on the mid-surface are approximated through a set of independent
basis functions defined along the coordinate s as
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u(s, z) =
N1
∑

k=1
φk(s)χk(z),

v(s, z) =
N2
∑

h=1
ψh(s)χN1+h(z),

w(s, z) =
N2
∑

h=1
ωh(s)χN1+h(z),

(2)

where the subscripts k and h are the numbers of out-of-plane and in-plane deformation modes,
respectively; φ, ψ, ω are the shape functions of sectional deformation modes on the axial, tangential
and normal directions, respectively; and χ is the amplitude function varying along the longitudinal
axis, which is also referred to as the generalized displacement. It should be noted that one in-plane
mode corresponds to two shape functions ψ and ω, while out-of-plane modes one-to-one match shape
functions φ.

Substitute Equation (2) into Equation (1), and the three-dimensional displacement D can be
written in a one-dimensional way with a transformation matrix H as

D(n, s, z) = Hx =

 ϕ −nω ∂
∂z

0 ψ− nω,s

0 ω

{ xO

xI

}
, (3)

where the generalized displacement vector x, spanned by the set of amplitude functions χ, is separated
into two column submatrices, xO and xI; the two submatrices correspond to the out-of-plane and
in-plane deformation modes, respectively; andφ, ψ andω are the shape function vectors constituted
by the set of φ, ψ and ω, respectively.

2.2. Strain and Stress Fields

The strain and stress fields are obtained under the small displacement hypothesis, which are
further written in the Kirchhoff’s formulation as

ε(n, s, z) =


εzz(n, s, z)
εss(n, s, z)
γsz(n, s, z)

 = CD, (4)

σ(n, s, z) =


σzz(n, s, z)
σss(n, s, z)
τsz(n, s, z)

 = Eε, (5)

where the compatibility operator C and the constitutive matrix E for the plane stress condition are
respectively given by

C =

 ∂
∂z 0 0
0 ∂

∂s 0
∂
∂s

∂
∂z 0

,

E =


E

1−ν2
Eν

1−ν2 0
Eν

1−ν2
E

1−ν2 0
0 0 E

2(1+ν)

.

(6)

Here, E and ν are the material Young’s modulus and Poisson’s ratio, respectively.
Substituting Equations (3) and (6) into Equations (4) and (5) yields

ε(n, s, z) =

 ϕ ∂
∂z −nω ∂2

∂z2

0 ψ,s − nω,ss

ϕ,s (−nω,s +ψ− nω,s)
∂
∂z

{ xO

xI

}
, (7)
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σ(n, s, z) =
E

1 + ν

 1
1−νϕ

∂
∂z − 1

1−ν nω ∂2

∂z2 +
ν

1−ν

(
ψ,s − nω,ss

)
ν

1−νϕ
∂
∂z − ν

1−ν nω ∂2

∂z2 +
1

1−ν

(
ψ,s − nω,ss

)
1
2ϕ,s

1
2 (−nω,s +ψ− nω,s)

∂
∂z

{ xO

xI

}
. (8)

2.3. Beam Governing Equations

The beam energy components are essential for the application of Hamilton’s principle, including
the strain energy Ust, the kinetic energy Tkn and the potential energy Upt. By definition, the former
two are respectively given by

Ust =
1
2

y

V

εTσdV, (9)

Tkn =
1
2

y

V

ρ
∂DT

∂t
∂D
∂t

dV, (10)

where V is the beam volume and ρ is the material density. The beam is subjected to distributed loads,
being defined with the load vector p = [p, q, r]T. Here p, q and r represent the force densities in the
axial, tangential and normal directions, respectively. The potential energy Upt can then be given by

Upt = −
∫
L

∫
A

DTpdAdz. (11)

Hamilton’s principle states

δ

t2∫
t1

(
Tkn −Ust −Upt

)
dt = 0, (12)

where t1 and t2 are the start time and the end time, respectively.
Substituting Equations (3)–(5) and Equations (9)–(11) into Equation (12) yields

∫
L

∫
A

δxTHTρH
∂2x
∂t2 dAdz +

∫
L

∫
A

δxTHTcTEcHxdAdz−
∫
L

∫
A

δxTHT pdAdz = 0, (13)

where A and L are the cross-section area and the beam length, respectively. By applying the condition

δ x| t=t1
= δ x| t=t2

= 0, (14)

Equation (13) becomes

∫
L

∫
A

ρϕTϕ ∂2 xO
∂t2 dAdz +

∫
L

∫
A

E∗ϕTϕx′′ OdAdz +
∫
L

∫
A

Gϕ,s
Tϕ,sxOdAdz +

∫
L

∫
A

(
E∗νϕTψ,s + Gϕ,s

Tψ
)
x′IdAdz

=
∫
L

∫
A
ϕT pdAdz

, (15)

∫
L

∫
A

ρn2ωTω ∂2x′ I
∂t2 dAdz +

∫
L

∫
A

ρ
(
ψTψ+ n2ω,s

Tω,s +ωTω
)

∂2xI
∂t2 dAdz +

∫
L

∫
A

E∗n2ωTωxI
(4)dAdz

+
∫
L

∫
A

[
E∗νn2ωTω,ss + E∗νn2ω,ss

Tω+ G
(

4n2ω,s
Tω,s +ψ

Tψ
)]

x′′ IdAdz

+
∫
L

∫
A

E∗
(
ψ,s

Tψ,s + n2ω,ss
Tω,ss

)
xIdAdz +

∫
L

∫
A

(
E∗νψ,s

Tϕ+ GψTϕ,s

)
x′OdAdz

=
∫
L

∫
A

(
ψTq +ωTr

)
dAdz

, (16)

where the superscripts ′ and ′′ denote the first and second derivatives with respect to the variable z,
respectively; E* = E/(1 − ν2) and G = E/2(1 + ν). Equations (15) and (16) are the governing differential
equations of thin-walled structures with a doubly symmetric cross-section.
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For the ease of computing, the governing equations are usually interpolated along the longitudinal
axis to form one-dimensional finite elements. In view of the two-order partial differential operator
in the governing equations, quadratic Lagrange functions are recommended for the interpolation.
A special study can be seen in Zhang et al. [26].

3. Higher-Order Deformation Modes

The procedure to identify sectional deformation modes is begun with the modal analysis based
on the shell/plate theory. In this process, the shell-like deformation of the cross-section is presented.
The cross-section may be open or closed, with or without branches. Without loss of generality,
a thin-walled cross-section possessing all the features above, as shown in Figure 1, is chosen as an
example to illustrate the proposed approach.

3.1. Shell-Like Deformation

Figure 2 shows a thin-walled structure with a doubly symmetric cross-section. For the convenience
of modeling, the structure is fixed at one end with the other end free. Associated geometry and material
parameters are set as: section height h = 0.3 m, section width b1 = 0.3 m, flange width b2 = 0.15 m, axial
length L = 1.5 m, wall thickness τ = 0.01 m, Young’s modulus E = 2 × 1011 Pa, Poisson’s ratio ν = 0.3
and material density ρ = 7850 kg/m3. It should be pointed out that the choice of these parameters is
arbitrary; however, there should be noticeable cross-section deformation.
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Figure 2. A cantilevered thin-walled structure with a branched, doubly symmetric cross-section. 

Since the walls are thin enough, the shell/plate theory is applicable in presenting the shell-like 
deformation of the cross-section. The shell/plate theory assumes that a mid-surface plane can be used 
to represent a three-dimensional plate/shell in a two-dimensional form. Currently, the theory has 
been developed for various shell/plate elements that have been employed in commercial finite 
element software, such as ANSYS, ABAQUS, ADINA and MSC. ANSYS Shell 181 element is available 

Figure 2. A cantilevered thin-walled structure with a branched, doubly symmetric cross-section.

Since the walls are thin enough, the shell/plate theory is applicable in presenting the shell-like
deformation of the cross-section. The shell/plate theory assumes that a mid-surface plane can be
used to represent a three-dimensional plate/shell in a two-dimensional form. Currently, the theory
has been developed for various shell/plate elements that have been employed in commercial finite
element software, such as ANSYS, ABAQUS, ADINA and MSC. ANSYS Shell 181 element is available
to be used to model the thin-walled structure in Figure 2. A total of 1080 quadrilateral elements
are employed, with 30 elements evenly distributed in the longitudinal direction and 36 over the
cross-section. By applying the modal analysis function, the first 12 modal shapes are obtained as the
object modes. It should be noted that the number of object modes is related to the number of sectional
deformation modes to be identified, which can affect the accuracy of the final one-dimensional model.

Figure 3 presents the deformed contours of the thin-walled structure that have been projected
onto the global xy plane. The results show that sectional deformations are dominant for almost every
mode shape and that they have become non-negligible factors for the performances of thin-walled
structures. In fact, the phenomenon has also been observed in some experiments. For example,
noticeable cross-section deformations due to axial and transversal loadings are recreated and exhibited
by Debski et al. [27] (see Figure 4) and Ciesielczyk and Studziński [28] (see Figure 5), respectively.
In this sense, the conventional beam theory is no longer suitable for these cases. At the same time,
it also explains why it is important to study the higher-order deformation of thin-walled structures.
Moreover, the sectional deformation modes have been presented, and the next challenge is how to
retrieve them.
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To obtain these deformation modes, the nodal displacements of the free end cross-section are
extracted and decomposed into in-plane (distortion in the xy plane) and out-of-plane (warping vertical
to the xy plane, see Carpinteri et al. [29]) components. Figures 6 and 7 exhibit the two deformation mode
families, respectively. It should be noted that the out-of-plane family members are not definite before a
numerical analysis since not all deformation modes possess out-of-plane components. For example,
the z-direction displacements of modes 5, 6, 9 and 11 are almost zero or less than 1/100,000 of the
ones along the x- or y-axis. In these cases, the relevant deformation will be passed over. Therefore,
only eight out-of-plane deformation modes are obtained from the first 12 modal shapes.
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Figure 7. Out-of-plane deformation mode family retrieved from the first 12 modal shapes of the
thin-walled structure with a branched, doubly symmetric cross-section.

Obviously, those deformed cross-section shapes in Figures 6 and 7 are the superposition of rigid
movements of the whole cross-section (classical Timoshenko modes including three translations and
three rotations) and sectional elastic deformations (higher-order deformation modes). Since the classical
modes have been obtained, the next procedure is pivotal to retrieve the higher-order deformation
modes from the modal shapes by removing the components of classical modes.
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3.2. Benchmark Points

The retrieval of higher-order deformation modes is also mandatory from the view of obtaining
a set of sectional deformation modes in hierarchy to form a reduced model. The implementation
presupposes the uncoupling of the classical and higher-order modes in the sectional deformation
shapes shown in Figures 6 and 7.

For the implementation with a computer, a set of benchmark points are defined on the cross-section
to indicate deformation patterns in a digitized way. In other words, each deformation pattern
corresponds to a kind of cross-section deformation shapes described with a group of displacement
signs stemming from the benchmark points. Therefore, the deformation pattern can indicate whether
one sectional deformation mode participates in an object modal shape or not. In Figure 8, 12 benchmark
points are set on the corner nodes (points 1, 3, 6 and 9), free end nodes (points 4, 7, 10 and 12) and
intermediate nodes (2, 5, 8 and 11). The displacement component of one benchmark point may be
one of the three cases: positive (marked as “+”), negative (marked as “-”) or null (marked as “0”).
The in-plane deformation modes are expressed with the normal and tangential displacements (two
degrees of freedom) of the benchmark points while axial displacements for the out-of-plane modes.
In this sense, the 12 benchmark points can identify a total of 3 (number of displacement signs) ×
12 (number of benchmark points) × 2 (degrees of freedom) = 72 in-plane modes. Similarly, half of
out-of-plane modes can be distinguished since half of degrees of freedom are set for them.
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Figure 8. Benchmark points on the doubly symmetric cross-section: (a) 12 benchmark points; (b) one
in-plane mode and (c) one out-of-plane mode indicated with benchmark points; (d) equivalent form of
the in-plane mode shown in (b); (e) equivalent form of the out-of-plane mode shown in (c).

Figure 8b,c show one in-plane and one out-of-plane deformation modes indicated with the
deformation signs of benchmark points, respectively. The problem is that two deformation modes,
such as the two shown in Figure 8b,d or the two shown in Figure 8c,d, may have opposite displacement
components. Essentially, the two forms describe the same deformation mode from the view of the
energy method. That is to say, the two forms of deformation modes are equivalent in mechanics.
Accordingly, the set of 12 benchmark points can distinguish only half of the sectional deformation
modes, namely 36 in-plane modes and 18 out-of-plane ones. In fact, these modes are enough to form a
reduced one-dimensional model with a qualified accuracy in most structural analyses.

Moreover, it should be noted that the number of benchmark points needed is related not only to
the number of sectional deformation modes to be identified but also to the cross-section configuration.
Generally, the corner points and free end points on the cross-section are basic, and a certain number
of intermediate points are optional. For example, eight benchmark points may be employed in
the cross-section shown in Figure 9a, which can determine 24 in-plane deformation modes and 12
out-of-plane ones. However, the number of benchmark points can be reduced to 4, as shown in
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Figure 9b, when less sectional deformation modes are needed. In addition, for a cross-section where
the lengths of walls vary a lot, some amount of intermediate nodes may be essential to separate the
walls into several segments with approximately equal lengths. This measurement is supposed to
contribute to the accurate description of the sectional deformation. For example, the I-section in
Figure 9c employs two intermediate benchmark points on the web wall, while no intermediate points
are introduced in the flange walls of the dual-cell cross-section in Figure 9d. The difference stems from
the experience that relatively longer walls usually deform more complexly, where more interpolation
nodes are needed to capture the deformation features.
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3.3. Identification of Deformation Modes

As shown in Figures 6 and 7, the modal shapes consist of rigid movements of the whole
cross-section and the sectional elastic deformation. A novel approach is needed to uncouple them by
removing the components of rigid movements of the whole cross-section.

Here, classical Timoshenko modes [30], including three translations and three rotations,
are adopted to describe the rigid movements of the cross-section, which are shown in Figure 10.
The first three indicate the out-of-plane modes, being numbered as modes I, II and III corresponding
to the rotation about z-axis, the translations along y- and x-axis, respectively, while the latter three
embody the in-plane ones, which are given the numbers as modes i, ii and iii to represent the extension
along z-axis, the rotations about x- and y-axis, respectively. In addition, 12 benchmark points are
employed to distinguish these modes for the identification with a computer.
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Figure 10. Classical modes indicated with benchmark points, numbered as modes I, II, III for the
out-of-plane ones and modes i, ii, iii for the in-plane ones: (a) rotation about z-axis; (b) translation along
y-axis; (c) translation along x-axis; (d) extension along z-axis; (e) rotation about x-axis and (f) rotation
about y-axis.
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To remove the components of rigid movements of the cross-section, the key is to determine
their participations in the sectional deformation shape. Here, a criterion is proposed to uncouple
deformation modes in this subsection.

3.3.1. Uncoupling Deformation Modes with a Novel Criterion

The uncoupling is first implemented within each category of sectional deformations. The concept
means a group of deformation shapes which contain the components of the same classical Timoshenko
mode. In consideration of the doubly symmetric cross-section, the concept can be further simplified
to be the deformation patterns indicated with the displacement component signs of the four corner
benchmark points (the solid circles in Figure 10). Actually, there are six categories of sectional
deformation modes in accordance with the six classical Timoshenko modes. We might as well classify
them into categories 1–6 for convenience. In other words, focusing on the four corner benchmark points,
if all their nodal displacements along z-, y- or x-axis are with the same values, the corresponding
deformation shapes are supposed to belong to category 1, category 5 or category 6, respectively;
if the nodal displacements are opposite about x- or y-axis, the corresponding deformation shapes are
supposed to belong to category 2 or category 3, respectively; if the nodal displacement components
along x- and y-axis are central symmetric about the cross-section centroid, the corresponding
deformation shape is supposed to belong to category 4.

Hence, the modal shapes shown in Figures 6 and 7 can be separated into several categories.
Among the in-plane family, modes 1, 8 and 10 belong to category 5, modes 2, 7 and 12 belong to
category 4, and modes 3, 6 and 11 belong to category 6. In particular, the deformation of modes 4, 5
and 9 are zero on the corner benchmark points, implying no components of classical modes. Among
the out-of-plane family shown in Figure 7, modes 1, 8 and 10 belong to category 2, and modes 3 and 4
belong to category 3.

Then, within each category, the participations of classical modes can be determined and removed
from the modal shapes. Since the cross-section is doubly symmetric, the process can be implemented
just on a quarter of the cross-section. For the categories above except category 4, the process can be
carried out with the solution of the following equation:

Θk
‖Θk‖∞

− γ
Θc

‖Θc‖∞
= Θi, γ =


Θk(m,1)‖Θc‖∞
Θc(m,1)‖Θk‖∞

, for Θk(m, 1) 6= 0, Θk(m, 2)= 0
Θk(m,2)‖Θc‖∞
Θc(m,2)‖Θk‖∞

, for Θk(m, 1)= 0, Θk(m, 2) 6= 0
, (17)

where ‖‖∞ means the infinite norm; Θk is the vector constructed by the corresponding nodal
displacement components of a deformation shape to be identified; γ is a ratio to guarantee the
displacement components of a corner benchmark point to be null after the process; Θc is the vector
consisting of nodal displacements of an classical mode; Θi is the vector constituted with the nodal
displacements of the newly identified deformation mode, and m is the node number of one corner
benchmark point.

For category 4, where both the tangential and normal displacement components are nonzero,
another formulation needs to be solved to determine the participation of one sectional mode:

Θk
‖Θk‖∞

− γ
Θc

‖Θc‖∞
− λ

Θr

‖Θr‖∞
= Θi, γ =

[Θk(m, 1) + Θk(m, 2)]‖Θc‖∞
[Θc(m, 1) + Θc(m, 1)]‖Θk‖∞

, (18)

where Θr is the vector constructed by the nodal displacements of Vlasov distortion [30] and λ is the
ratio to guarantee removing the corresponding deformation components.

Actually, a novel criterion has just been expressed in Equations (17) and (18) in uncoupling
classical modes and sectional deformation modes. With the process above, the components of sectional
rigid movements are removed from the modal shapes, with the residual deformation shapes left to
define sectional deformation modes. Furthermore, the process is also useful in the identification of
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new sectional deformation modes from residual deformation shapes sharing the same deformation
pattern. The implementation is to be illustrated in the next subsection.

3.3.2. Higher-Order Deformation Modes

The identification of higher-order deformation modes can be classified into three cases, considering
the physical interpretation and the clear hierarchy to form a reduced one-dimensional model.

In the first case, the object modal shapes that fall outside of the six categories are directly
identified as higher-order deformation modes, which reflect the distortion or warping of the
thin-walled cross-section. In modeling a thin-walled structure, these modes play important roles in the
improvement of the model accuracy. In this respect, they are classified as the primary deformation
modes, next to the classical Timoshenko modes. In the present example, two deformation modes of
this kind can be identified, including mode 4 of the in-plane family in Figure 6, and mode 2 of the
out-of-plane family in Figure 7.

In the second case, the object modal shapes that fall inside of the six categories are decomposed
into the components of classical modes and those of residual deformation shapes, by applying the
criterion shown in Equations (17) and (18). The residual deformation shapes can be identified as
higher-order deformation modes. Since always working with the classical modes, rather than playing
roles independently in a modal shape, they are not vital for the accuracy of a one-dimensional model.
Hence, they are classified as the secondary deformation modes, next to the primary ones. For example,
within category 5, removing the components of mode iii from the deformation shape of mode 3 yields
mode vi, as a secondary mode. Figure 11 demonstrates the whole process, where one in-plane and one
out-of-plane secondary deformation modes are identified, respectively.
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Figure 11. Deriving the secondary deformation modes for the doubly symmetric thin-walled
cross-section: (a) in-plane mode iv from in-plane mode 1; (b) out-of-plane mode V from out-of-plane
mode 1.

In the third case, more than one higher-order mode, sharing the same deformation pattern,
is identified in the former two cases. These modes are different in physical interpretation, but cannot
be distinguished through deformation patterns indicated with the displacement signs of benchmark
points. To guarantee their independency, among these residual deformation shapes, the ones derived
from a higher order modal will eliminate the components of the one derived from a lower order modal.
In this process, the criterion expressed with Equations (17) and (18) should be applied again. The final
residual deformation shapes can be identified as new higher-order deformation modes. However,
since they are not dominant in any modal shapes, their priority is lower than the secondary modes.
Therefore, they are classified as the spare deformation modes. In fact, they can be neglected in a
reduced model when the computation efficiency is more significant. Figure 12 has displayed the
process, where one in-plane and one out-of-plane spare modes are identified, respectively.



Symmetry 2018, 10, 759 13 of 22
Symmetry 2018, 10, x FOR PEER REVIEW  14 of 23 

 

 
Figure 12. Deriving the spare deformation modes for the doubly symmetric thin-walled cross-section: 
(a) mode viii from mode 5; (b) mode xiii from mode 10. 

To better exhibit the procedure above, a flow chart is provided in Figure 13, which shows how 
to uncouple the deformation modes to retrieve primary, secondary and spare deformation modes, 
respectively. It should be noted that the procedure does not refer to the geometry parameters of the 
cross-section. However, the double symmetry of the cross-section should be guaranteed since it is 
essential in the uncoupling of deformation modes by means of the novel criteria. That is to say, the 
proposed procedure of identifying higher-order deformation modes is general for any doubly 
symmetric cross-sections. 

 
Figure 13. The flowchart providing a brief view of the process involved in uncoupling higher-order 
deformation modes of the doubly symmetric thin-walled cross-section. 

3.3.3. Shape Functions of Sectional Deformation Modes 

To be adopted in the approximation of the displacement field shown in Equation (2), these 
identified deformation modes need to be described with shape functions in a mathematical way. This 
process can be carried out by means of the curve fitting technique or the interpolation method. Since 
the shape functions should be continuous at end nodes of each cross-section wall, the interpolation 
method is more advisable in this case for the determinacy of passing through one point. Furthermore, 
the piecewise interpolation is deemed to enhance the capability of capturing the sectional 
deformation with lower-order polynomials. 

Figure 12. Deriving the spare deformation modes for the doubly symmetric thin-walled cross-section:
(a) mode viii from mode 5; (b) mode xiii from mode 10.

To better exhibit the procedure above, a flow chart is provided in Figure 13, which shows how
to uncouple the deformation modes to retrieve primary, secondary and spare deformation modes,
respectively. It should be noted that the procedure does not refer to the geometry parameters of
the cross-section. However, the double symmetry of the cross-section should be guaranteed since it
is essential in the uncoupling of deformation modes by means of the novel criteria. That is to say,
the proposed procedure of identifying higher-order deformation modes is general for any doubly
symmetric cross-sections.
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Figure 13. The flowchart providing a brief view of the process involved in uncoupling higher-order
deformation modes of the doubly symmetric thin-walled cross-section.

3.3.3. Shape Functions of Sectional Deformation Modes

To be adopted in the approximation of the displacement field shown in Equation (2), these
identified deformation modes need to be described with shape functions in a mathematical way.
This process can be carried out by means of the curve fitting technique or the interpolation
method. Since the shape functions should be continuous at end nodes of each cross-section wall,
the interpolation method is more advisable in this case for the determinacy of passing through one
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point. Furthermore, the piecewise interpolation is deemed to enhance the capability of capturing the
sectional deformation with lower-order polynomials.

As shown in Figure 14, the interpolation is conducted in the first quadrant, actually. Then,
the piecewise shape functions for the other three quadrants are completed by applying the symmetry
condition. Even in the first quadrant, the interpolation has been separated into three pieces
corresponding to the three wall segments. The derived shape function is also related to the number
of interpolation nodes to be applied. Generally, the most frequently used interpolation polynomials,
namely the linear, quadratic and cubic ones, need two, three and four nodes to determine the unknown
coefficients, respectively. Just as shown in Figure 14, the two in-plane modes are interpolated with
cubic polynomials, involving four nodes for each segment, while the two out-of-plane modes apply
quadratic and linear polynomials, respectively. Naturally, the latter two employ fewer interpolation
nodes. It should be pointed out that the two end nodes must be taken into account in the interpolation
though a variable number of nodes may be needed for different polynomials. The purpose is to ensure
the continuity of the shape function over the whole cross-section.
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Figure 14. Interpolation of the shape functions of the doubly symmetric thin-walled cross-section:
(a) one in-plane mode in symmetry and (b) one in-plane mode in anti-symmetry described with cubic
functions, respectively; (c) one out-of-plane mode in symmetry described with quadratic functions;
(d) one out-of-plane mode in anti-symmetry described with linear functions.

Although polynomials of any order may be acceptable in describing a sectional mode, some
conventional experience still deserves attention. For example, the tangential component of a sectional
deformation mode is usually interpolated with a linear polynomial since it usually varies moderately
along the cross-section mid-surface, while the normal component needs a cubic function to make its
two-order partial derivative with respect to s keep nonzero in the governing equations. As for the
axial component, it is always approximated with linear functions in view of the relatively small values
compared with the normal ones. However, quadratic or cubic polynomials may also be used in some
cases where an in-depth cross-section analysis is in need. For example, the identified deformation
modes of the presented cross-section are described with cubic polynomials for the normal and axial
components and with linear ones for the tangential component, as shown in Figure 15.
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Figure 15. The shape functions of the identified out-of-plane and in-plane higher-order deformation
modes of the doubly symmetric thin-walled cross-section.

4. Applications and Illustrative Examples

The application of the proposed approach to the presented doubly symmetric cross-section leads
to a set of 15 sectional deformation modes, being exhibited in Figure 15. They can be divided into
classical modes and higher-order deformation modes, and the latter ones can be further classified into
primary, secondary and spare ones according to the way they are identified. By substituting them into
the governing equations, a new one-dimensional higher-order model can be obtained for the analysis
of thin-walled structures. In this section, numerical studies are carried out to validate the versatility of
the new model. Furthermore, for the ease, the thin-walled cross-section in Figure 1 is employed in
numerical studies.

4.1. Convengence of the Finite Element

A quadratic finite element has been developed based on the governing equations, and its
convergence is checked in this part. By applying the element in the free vibration analysis of the
structure in Figure 2, the relative errors of the first 15 natural frequencies have been demonstrated in
Figure 16, varying with the number of employed elements. It should be noted that the structure is
meshed equally along the length, and that the converged frequencies are obtained with 100 proposed
finite elements, which are considered to become stable.



Symmetry 2018, 10, 759 16 of 22
Symmetry 2018, 10, x FOR PEER REVIEW  17 of 23 

 

20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
mode 1
mode 2
mode 3
mode 4
mode 5

20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
mode 6
mode 7
mode 8
mode 9
mode 10

20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
mode 11
mode 12
mode 13
mode 14
mode 15

R
el

at
iv

e e
rr

or
s

R
el

at
iv

e e
rr

or
s

R
el

at
iv

e e
rr

or
s

 
Figure 16. Convergence of the first 15 natural frequencies of the thin-walled structure varying along 
with the number of employed proposed elements: (a) the 1st-5th modes; (b) the 6th-10th modes and 
(c) the 11th-15th modes. 

The presentation reveals that the frequencies of the first 15 modes converge with different rates 
but finally achieve similar relative errors smaller than 0.1%, when 90 proposed elements are 
employed. As a consequence, we just employ no fewer than 90 elements in the numerical examples 
of thin-walled structures. 

4.2. Case Study 1: A Thin-Walled Structure Fixed at One End 

In order to demonstrate the validity and the accuracy of the proposed element, the thin-walled 
structure with one end fixed and the other end free is considered as the first numerical example. 
Accordingly, 90 proposed elements are employed to mesh it along the beam axis with an equal length. 
The results are compared with those of the ANSYS shell model, which consists of 1440 Shell 181 4-
node shell elements, distributed as 30 along the length and 48 over the cross-section. Table 1 presents 
the results about the natural frequencies of the first 15 modes. It should be pointed out that the 
relative errors are calculated based on the assumption that the results derived from ANSYS shell 
theory are accurate enough. 

Table 1. Natural frequencies of the first 15 modes of the cantilevered thin-walled structure. 

Mode Present Model [Hz] ANSYS Shell [Hz] Relative Errors [%] 
1st 145.63 140.38 3.74 
2nd 178.26 171.89 3.71 
3rd 181.35 175.63 3.26 
4th 183.62 185.45 −0.99 
5th 207.44 215.37 −3.68 
6th 256.86 262.87 −2.29 
7th 257.87 263.73 −2.22 
8th 262.62 263.86 −0.47 
9th 263.46 270.28 −2.52 

10th 274.70 277.07 −0.86 
11th 279.30 278.06 0.45 
12th 297.71 309.49 −3.81 
13th 310.89 324.74 −4.26 
14th 312.69 324.75 −3.71 
15th 332.30 346.36 −4.06 

Figure 16. Convergence of the first 15 natural frequencies of the thin-walled structure varying along
with the number of employed proposed elements: (a) the 1st-5th modes; (b) the 6th-10th modes and
(c) the 11th-15th modes.

The presentation reveals that the frequencies of the first 15 modes converge with different
rates but finally achieve similar relative errors smaller than 0.1%, when 90 proposed elements are
employed. As a consequence, we just employ no fewer than 90 elements in the numerical examples of
thin-walled structures.

4.2. Case Study 1: A Thin-Walled Structure Fixed at One End

In order to demonstrate the validity and the accuracy of the proposed element, the thin-walled
structure with one end fixed and the other end free is considered as the first numerical example.
Accordingly, 90 proposed elements are employed to mesh it along the beam axis with an equal length.
The results are compared with those of the ANSYS shell model, which consists of 1440 Shell 181 4-node
shell elements, distributed as 30 along the length and 48 over the cross-section. Table 1 presents the
results about the natural frequencies of the first 15 modes. It should be pointed out that the relative
errors are calculated based on the assumption that the results derived from ANSYS shell theory are
accurate enough.

Table 1. Natural frequencies of the first 15 modes of the cantilevered thin-walled structure.

Mode Present Model [Hz] ANSYS Shell [Hz] Relative Errors [%]

1st 145.63 140.38 3.74
2nd 178.26 171.89 3.71
3rd 181.35 175.63 3.26
4th 183.62 185.45 −0.99
5th 207.44 215.37 −3.68
6th 256.86 262.87 −2.29
7th 257.87 263.73 −2.22
8th 262.62 263.86 −0.47
9th 263.46 270.28 −2.52

10th 274.70 277.07 −0.86
11th 279.30 278.06 0.45
12th 297.71 309.49 −3.81
13th 310.89 324.74 −4.26
14th 312.69 324.75 −3.71
15th 332.30 346.36 −4.06
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The results in Table 1 indicate that the natural frequencies obtained from the proposed model are
very close to those from ANSYS shell theory, with relative errors smaller than 4.5%. The results might
be not as accurate as those of two- or three-dimensional models, but one should bear in mind that a
one-dimensional theory has achieved this with fewer than 1/10 even 1/100 degrees of freedom. It is a
great improvement on the computation efficiency. In addition, not any one-dimensional model can
predict the first 15 natural frequencies of a thin-walled structure with a similar accuracy. In this sense,
the proposed model possesses the advantage of giving balanced consideration both on the precision
and the efficiency.

In addition, the longitudinal analysis has also been carried out to prove the hierarchic capability
of the identified deformation modes. Since in-plane modes have been specially researched by
Zhang et al. [28], this study is focused on the out-of-plane ones. As shown in Figure 17, the amplitudes
of these modes (χi in Equation (2)), also known as generalized displacements, fluctuate along the beam
axis. Plainly, each modal shape consists of the components of several deformation modes. The most
typical case is that a classical mode plays the predominant role with a secondary mode being auxiliary,
such as the first, the third, the fourth, the seventh, the ninth and the tenth modes among the first
12 modes. The second case is that the participations of higher-order modes can almost be neglected
compared with those of classical modes, such as the fifth, the sixth and the eighth modes. The third
case is that the primary modes are dominant with the spare modes playing supplementary roles,
such as the second and the eleventh modes. The results confirm that the identified deformation modes
possess the hierarchic capability, being able to obtain a reduced model.
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Moreover, the proposed model may also have the potential of reproducing three-dimensional
behaviors of the thin-walled structure. To check this, the free vibration shapes are analyzed and
presented in Figure 18. The results are compared with those of a three-dimensional model based on
ANSYS Shell 181. The comparison reconfirms that the proposed model agrees well with ANSYS
shell theory. Meanwhile, it is also proved that the presented model can accurately reproduce
three-dimensional deformations of the first 12 natural modes, with the higher-order deformation
modes identified from the first 12 shell-like deformation shapes.
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Figure 18. Comparison of free vibration shapes of the cantilevered thin-walled structure between 
ANSYS shell model (right) and proposed model (left) concerning the first 12 modes. 

Figure 18. Comparison of free vibration shapes of the cantilevered thin-walled structure between
ANSYS shell model (right) and proposed model (left) concerning the first 12 modes.
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Actually, with the higher-order deformation modes identified from the first 12 shell-like
deformation shapes, the proposed one-dimensional model can also predict higher order mode shapes.
In order to validate the idea, the free vibration shapes of the 13th-15th are also studied and presented
in Figure 19. The results support the dedication that the proposed model can accurately calculate
more modal shapes with fewer sectional deformation modes. It is also a clear proof of the hierarchic
capability of the set of the deformation modes.
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4.3. Case Study 2: A Thin-Walled Structure Fixed at Two Ends

As a next example, the thin-walled structure in Figure 2, being fixed at two ends, is chosen for the
free vibration analysis. The example stems from the idea of testing the proposed model with different
boundary conditions. One should bear in mind that the set of sectional deformation modes are derived
through the cross-section analysis implemented on a cantilevered thin-walled structure; then, whether
they are applicable to a structure with different boundary conditions will be very significant for the
practicability of the derived model. In fact, they should be equally effective if the set of sectional
deformation modes are positively the natural characteristic of the thin-walled cross-section.

Table 2 presents the information about the first 10 modes, consisting of the values of the natural
frequencies, obtained with the proposed model and ANSYS shell theory, and the relative errors.
Similarly, the data of the proposed model are calculated with 90 quadratic finite elements equally
distributed along the axial direction. As a comparison, the ANSYS shell model is discretized into 1120
Shell 181 4-node elements, distributed as 30 elements along the length, and 48 over the cross-section.

Table 2. Natural frequencies of the first 10 modes of the fixed-fixed thin-walled structure.

Mode Present Model (Hz) ANSYS Shell (Hz) Relative Errors (%)

1st 192.92 199.38 −3.24
2nd 236.09 247.04 −4.43
3rd 251.2 262.52 −4.31
4th 261.05 264.38 −1.26
5th 272.95 285.35 −4.35
6th 290.23 303.77 −4.46
7th 290.85 303.95 −4.31
8th 309.11 319.79 −3.34
9th 321.77 335.58 −4.12

10th 351.7 367.43 −4.28

The results in Table 2 show that the natural frequencies obtained from the proposed model agree
well with those from ANSYS shell theory, with relative errors smaller than 4.5%. The accuracy is
similar to that of the cantilevered structure, and even the values of some modes are more accurate than
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those of the cantilevered structure, such as the first mode. Thus, it can be seen as a preliminary proof
of the supposition above.

Furthermore, the capability of reproducing three-dimensional behaviors of the model is checked
again, focusing on the modal shapes. Figure 20 provides the comparison concerning the 1st to 9th
modal shapes of the fixed-fixed thin-walled structure. The results reconfirm the good agreements
with ANSYS shell theory. Hence, it is rational to declare that the proposed model with the same set of
sectional deformation modes can accurately reproduce three-dimensional behaviors of thin-walled
structures with different boundary conditions. It also embodies the applicability and the generality of
the proposed model.
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5. Conclusions

The paper focuses on the identification of sectional deformation modes of the doubly symmetric
cross-section. The plate/shell theory is utilized to present the shell-like deformation shapes of a
thin-walled structure, which are further uncoupled by applying a proposed criterion, with residual
deformation shapes left. By introducing benchmark points, these shapes are classified into several



Symmetry 2018, 10, 759 21 of 22

deformation patterns, within which the higher-order deformation modes are derived by removing
the components of identified ones. By considering the doubly symmetric cross-section, these modes
are approximated with shape functions. The identified modes are finally used to formulate the
governing equations of the thin-walled structure. The proposed model is examined in numerical
examples, and the results validate the accuracy, the efficiency and the practicability of the new model
in reproducing three-dimensional behaviors of thin-walled structures. Actually, the authors plan
to develop a similar procedure for thin-walled cross-sections with curved walls, by improving the
method of approximating the shape functions. In addition, the approach may be also applicative for
arbitrary cross-sections, and related study is currently under development.
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