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Abstract: The spatial-based method has become the most widely used method in improving the
visibility of images. The visibility improving is mainly to remove the noise in the image, in order to
trade off denoising and detail maintaining. A novel adaptive non-local means-based nonlinear fitting
method is proposed in this paper. Firstly, according to the smoothness of the intensity around the
central pixel, eight kinds of templates with different precision are exploited to approximate the central
pixel through a novel adaptive non-local means filter design; the approximate weight coefficients
of templates are derived from the approximation credibility. Subsequently, the fractal correction is
used to smooth the denoising results. Eventually, the Rockafellar multiplier method is employed
to generalize the smooth plane fitting to any geometric surface, thus yielding the optimal fitting of
the center pixel approximation. Through a large number of experiments, it is clearly elucidated that
compared with the classical spatial iteration-based methods and the recent denoising algorithms, the
proposed algorithm is more robust and has better effect on denoising, while keeping more original
details during denoising.

Keywords: denoising; detail maintaining; non-local means; approximation; optimal

1. Introduction

Digital images are obtained by digitizing analog images, which can be stored and processed
by computer. With the development of science and technology, digital images have been widely
recognized and applied. However, there is always noise in the obtained images, which has a negative
impact on conveying real information. Thus, researchers urgently need to reduce the noise to a
minimum. Image noise-reduction, noise-suppression and noise-removal are widely used processing
technologies for images. By using these technologies, we can obtain the expected images and improve
the peak signal to noise ratio of images (SNR).

In recent years, there have been many related researches on denoising. In view of the research
direction, there are two main kinds of denoising thoughts. One is to use directly mathematical
operations and filtering methods to process images in the spatial domain. The other is to process the
images in a certain transform domain. The classical methods of denoising in the spatial domain mainly
include the threshold method, field average method, median filter, wiener filter and so on [1]. On the
basis of these researches, the direction of the improvements is mainly to simplify the operation and
improve the processing effects. Related researches mainly include: Chenglin Zuo et al. [2] proposed
an image denoising method using quadtree-based nonlocal means with locally adaptive principal
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component analysis, and the proposed method achieves spatially uniform denoising. Jian Sun et al. [3]
proposed a novel approach for color image denoising via discriminatively learned iterative shrinkage,
which can achieve good denoising result for color images. Sujit Kumar Sahoo et al. [4] analyzed
the process of introducing noise, definitely derived the noise components in a dictionary update
step, and proposed a superior solution for the desired SNR. Meng Li et al. [5] proposed a denoising
algorithm based on a fast translation invariant (FTT) algorithm and a more general K-translation
invariant (K-TI) algorithm. The algorithm has the appealing performance for general multidimensional
images with Poisson or Gaussian noise. Y. Zhan et al. [6] proposed an image denoising method based
on machine learning by using high order singular value decomposition (HOSVD). The method has
an ideal denoising effect on gray images and color images. Y. Zhan et al. [7] proposed a controlled
denoising method for non-local means image, which can adaptively tune the decay parameter for
each image pixel. Xiangchu Feng et al. [8] proposed a two-directional nonlocal variational model
(TDNL) to reduce noise according to the principle of internal similarity. Karen Panetta et al. [9]
proposed a sequence-to-sequence similarity-based filter for image denoising. Lianghai et al. [10]
proposed a two-stage quaternion switching vector filter for color impulse noise removal. Ahmed Ben
Said et al. [11] proposed a Multispectral image denoising with optimized vector non-local mean filter
to illustrate the efficiency of the approach in terms of both denoising performance and computation
complexity. Jonatas Lopes de Paivaa et al. [12] proposed an approach based on hybrid genetic algorithm
(HGA) applied to the image denoising problem. DengLiang Jian et al. [13] proposed a fast image
recovery algorithm based on splitting deblurring and denoising. Yun Zhanga et al. [14] proposed
a new fuzzy density weight SVR (FDW-SVR) denoising algorithm, which assigns fuzzy priority to
each sample according to its density weight. Xiong Xiangtuan et al. [15] proposed several variations
of the Gaussian model, which are derived from the varied diffusion variations for image denoising.
Gouchol Pok et al. [16] proposed an efficient block-based image-denoising method, which is devised
specially for fast denoising of impulse noise. Bo Du et al. [17] proposed a bandwise noise model
to denoise. Furthermore, based on the low-rank structure of the HSI, the proposed bandwise noise
model is combined with the low-rank matrix factorization to obtain a new efficient HSI denoising
algorithm. Yuzhen Niu et al. [18] proposed a region-aware image denoising algorithm (RAID) by
exploring parameter preference. Qingsong Yang et al. [19] introduced a new CT image denoising
method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual
similarity. Saeed Anwar et al. [20] present a novel image denoising algorithm that uses an external,
category-specific image database within the spatial locality of each noisy patch.

Fourier transform and wavelet are classical methods in the transform domain to reduce noise.
There are mainly three kinds of improvement directions, including denoising combined with
correlation, denoising combined with singularity detection and denoising based on the coefficient
threshold in the wavelet domain. Related researches mainly include: Sethunadh R.S et al. [21]
proposed a spatial adaptive denoising method based on directionlet transform to reduce Gaussian
noise by considering the correlation of the directionlet coefficients across different scales. Norbert
Remenyi et al. [22] proposed an image denoising method based on 2D scale-mixing complex wavelet
transforms which uses empirical Bayesian method to achieve good effect. Fumitaka Hosotani et al. [23]
proposed a zero-mean white Gaussian noise removal method via a high-resolution frequency analysis.
Jingjing Dai et al. [24] proposed a novel color image denoising called multichannel nonlocal means
fusion (MNLF) to improve the performance for various noises by denoising as a minimized threshold
function. Mina Sharifymoghaddam et al. [25] proposed a pre-processing hard thresholding algorithm
that eliminates those dissimilar patches to improve the performance of denoising. Jinn Ho et al. [26]
proposed a denoising method by using hidden Bayesian network constructed from a wavelet
coefficient to build a model for prior probability of the original image. Then, the method uses the
belief propagation (BP) algorithm as the maximum-a-posterior estimator to derive denoised wavelet
coefficients. Jose Manuel Mejia et al. [27] presented an algorithm for the denoising of small animal
positron emission images. The proposed algorithm combines a multiresolution transform with robust
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filtering of regions. Zhaoming Kong et al. [28] considered characterizing MR images with 3-D operators,
and presented a novel 4-D transform-domain method termed ‘modified nonlocal tensor-SVD’ for
MR image denoising. Urvashi Prakash Shukla [29] proposed a novel denoising method based on the
concept of Hilbert vibration decomposition (HVD). Xiao Bai et al. [30] proposed a novel hyperspectral
image denoising method based on tucker decomposition to model the nonlocal similarity across the
spatial domain and the global similarity along the spectral domain. Gulsher Baloch et al. [31] proposed
a new residual correlation-based regularization for image denoising. The regularization can effectively
render residual patches as uncorrelated as possible.

By analyzing the research achievements above, we find that the improved methods have ideal
effects and practical application value. Besides, the process is often greatly simplified. However,
these methods usually neglect the target geometry information, it makes the edge information of the
processing results incomplete and the interested information reduced for future research.

This paper aims at a prominent problem in the existing denoising algorithms, a new image
denoising algorithm based on non-local means theory in spatial domain is proposed. For the edge
information, the method gives full consideration to geometric information of the target image, an eight
asymmetric spatial templates approximate method is designed and nonlinear algebraic optimization is
used to fit the optimal solution to the approximate center pixel. The rest of the work is organized as
follows. In the second part, we will introduce the evolutionary process of the algorithm. The third part
will focus on the proposed algorithm in this paper. The fourth part will focus on the analysis of the
experiment. We will compare the proposed method with the existing denoising algorithms to obtain
the application value and processing advantages of the proposed method. The fifth part will be the
summary of the full text.

2. The Feasibility Analysis of Adaptive Geometric Non-Local Means Denosing Theory

Among traditional spatial filtering methods, linear filtering is the most classical. As shown
in Figure 1, we briefly introduce the typical Gauss convolution filtering process and convolution
operation with the n x n Gauss kernel in Figure la and the original image in Figure 1b to get the

filtered image in Figure 1c.
(@) ' (b)
(c)

Figure 1. Convolution filtering process. (a) Kernel; (b) Original image; (c) Filtered image.

However, the traditional filtering has neglected the target in the image which often contains the
geometric shape information. It can be described as plane, inclined plane or curved surface. For the
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plane and the inclined plane, the gray value of the pixel is a linear change; we can use the gray
information points surrounding the center point to replace the gray value of it. For curved surface, we
found that it can be divided into three categories: conical surface, cylindrical surface and extruded
surface. As shown in Figure 2, in a small neighborhood, the red points are on the tangent plane of the
blue point. In other word, in a small neighborhood of the curved surface, the center point can still be
represented by the surrounding neighborhood points [32,33].

z_ . —— j *
\ ¢ \ |
(@) W) ©

Figure 2. Three possible continuous surfaces of pixel distribution: (a) Conical surface; (b) cylindrical
surface and (c) extruded surface.

Thus, for the continuous surface, we can use the gray value of the surrounding points to replace
the center point, no matter if it is a plane, an inclined plane or a curved surface. For the fracture surface,
the approximation of the central point cannot be directly replaced by the surrounding points. As shown
in Figure 3, when the red center point is at the edge and the red center point with surrounding points
is on the same plane, the center points can be expressed by the gray value of the neighboring points.
If the center point is in the edge of the section, it is not reasonable to simply weight surrounding points
to express this point. Thus, this paper proposes to fit the optimal approximate solution of any plane in
the light of uncertainty of the center point. In this section, in order to demonstrate the feasibility of
geometric fractal approximation, we design asymmetric approximation templates as a spatial filter
to denoise. We divide the random plane into eight different forms, in each of which exists the best
approximation of a red center pixel.

Figure 3. The fracture surface.

The experimental results show that the approximation result of each pixel in the image is better
than the approximation of the whole image in primary vision. It can be expressed as follow: (1) In
the space domain of the image, we mainly use the convolution between functions to obtain the global
approximation. In this way, the critical value of the function is often neglected or similar, which
definitely leads to the final result losing some detailed information; (2) in the image transform domain,
the information of the original image will be changed in the process of regional transformation due to
the range of the function. However, this local mean denoising method still has the following problems:
(1) Mean approximation plays more of a role in image smoothing; however, the local image information
will become blurred. The different approximation of templates selection will produce different results
(Information of Figure 4 in box); (2) when the noise is random, the application range of the algorithm
is limited by a certain approximation. Its adaptive denoising ability is limited; (3) it does not make
full use of the information of different neighborhoods in the image. The simple local mean will often
lead to the image being over smooth or not smooth enough. In addition, the edge information of
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the restored image is not clear; (4) for the region where the gray value has a sudden change in the
image, that is, the non-local mean will lead to producing information distortion. New noise points
may appear. In order to solve the above problems, this paper puts forward a novel adaptive non-local
means denoising algorithm.

(b) (c) (d) (e)

() (8) (h) (@)

Figure 4. Simulation experiments of eight different templates. (a) Eight approximation templates,
(b—i) eight approximation results.

3. Design of Spatial Geometric Fractal Iterative Denoising Algorithm

In Figure 4, each center point has eight kinds of geometric forms. In the image filtering process,
eight kinds of geometric approximation will produce eight results. In another way, the gray value
of each center f(s) (the red point in the figure) can produce eight approximation g;(x) i=1,2,...,8.
Thus, we need to represent the gray value of the red point by the eight geometric approximation
results [34,35].

flx) =F(gi(x)) i=12...,8 )

where f(x) is the estimated result of x, F is assumed as an estimation arithmetic and g;(x) denotes one
of the estimated results.

In this paper, on the basis of the idea of non-local mean approximation, we design an adaptive
approximation kernel function and use fractal theory for smoothing. This method makes full use
of different neighborhood information of the noise image; the adaptive denoising performance is
guaranteed under different noise scales. Meanwhile, in the fitting process, eight asymmetric spatial
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filtering templates and nonlinear algebraic optimization are used to give full consideration of the
subject’s information and edge section information to retain the details of original image. In addition,
we use graph theory to optimize the preliminary approximation results to ensure that the information
in the case of mutation still gets the desired denoising effect.

The software process in this paper is shown in Figure 5.
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Figure 5. Software flow diagram of this paper.

3.1. Adaptive Geometry Non-Local Means Denoising Model

In terms of probability, if the approximation result is closer to the actual value, the weight is
greater; if the approximation result is not suitable for the actual value, the weight is relatively small.
Equation (1) can be converted to Equation (2).
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8
flx) = ;wigi(x)/ Ywi=1 )

where, w; is the corresponding weight of the ith template. Equation (2) represents that the ultimate
replacement value of the red point is the result of the linear combination of eight approximation values.
Within a certain range of noise, we can use the eight types of approximation methods for images with
different SNR. The smaller the difference between the result and the clear image is, the greater the
probability that the estimation point and center point are in the continuous surface. On the contrary,
when the difference is large, the probability that the gray value between the estimation point and the
center point may exist cross section, and the estimated result is not reliable.

w; = fri(D) 3)

where A is the difference between the estimated value and the center point, fi ;() is the relation between
the difference and the weight. Finding an appropriate mapping relationship can accurately determine
the weight w;.

Thus, determining the weights of the non-local weighted mean filter has two key issues. One of
them is that we must obtain the similarity between the central pixel and the eight different approximation
methods. The other issue is the design of the approximation kernel function.

3.1.1. New Similarity Description Method

According to the row priority principle, the gray level matrix is expanded to build two sets of
six-dimensional gray vectors. One of set is Z,, which consists of a central pixel value in the image, and
the other is Z1~Zg consisting of eight approximating templates. According to the theory of non-local
mean denoising, when the center pixels are approximated by different templates, the error is caused
by the difference of similarity. Usually, the similarity of vectors can be obtained by the Euler distance.
However, this method may lead to the following problems: (1) Two kinds of vectors are composed
of image pixels, they not only have numerical information but also have the content of the image
information, such as boundary information. If we only consider the numerical similarity of the vector,
it will cause the distortion of the image content information, and it will be possible to bring the artificial
features such as ring or pixel-ladder; (2) when the image has strong noise, the Euclidean distance
cannot reflect ideally the similarity between the vectors.

In order to solve the above two problems, this paper introduces the principle of cosine distance
and gray region similarity to modify the weight of the non-local mean method. The weighted distance
Equation of regional similarity Q)(i, j) can be obtained by Equation (4):

we(a, k)ws(a, k)||g(Za) — g(Zy)
8cos < Zy, Zy >

Q(,j) = 22 ke [1,8] @)

where, wc(a,k) is the similarity weight for Zi~Zg and Z,, which is shown in Equation (5).
18(Za) — §(Zy) ||, 5 is the Euclidean distance between Z;~Zg and Z,, and A is the standard deviation
of Gauss kernel. cos < Z,, Zy > represents cosine distance between Z~Zg and Z,.

wela k) = # ke 1,8] 5)

where, corr is the correlation coefficient between Z,~Zg and Z,, it is between 0 and 1, ws(a, k) is the
distance weight for Z~Zg and Z,.

ws(a k) = %Hl(a) 1K), k € [1,8 ©)
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where, ||I(a) —I(k)]| is the coordinate distance between the center pixel and the gravity pixel of the
eight kinds of approximation templates.

3.1.2. New Adaptive Association Approximation Kernel Function

Original Non-local Means (ONLM) uses the exponential kernel function:

fimew( -2 ) kel ”

where, 0 is the attenuation factor of the exponential function, it also affects the denoising performance

of the algorithm; D(a, k) is the Euclidean distance between the center and neighborhood pixel.
Combining the analysis of different kernel functions, we propose a novel adaptive association

approximation kernel function by the analysis of the actual data, as shown in Equation (8).

o2

exp (-5 cos(3261) (1 B42)' 0 < <o

fr(x) = (8)

0, else

where, the parameter ¢ is the attenuation factor of the function. Through the analysis of different
commonly used nonlinear filter functions, we can get the response curves of different functions as
shown in Figure 6.

12 5 i The proposed kernel
1 o function
0.8 ' > Gauss kernel function
= U ; N\
L0 06 \\ \\ Cosine Gauss kernel
g 0.4 N\ N N function
: N \\ \\ == Cosine kernel function
0.2 SEAN
0 i _\\L \ > Exponential kernel
0 50 100 150 function

Region similarity weighted distance
Figure 6. Response curves of different kernel functions.

From Figure 6, in the effective similarity domain, the proposed approximate kernel function is
given a large weight when the neighborhood has high similarity. At the same time, as the similarity
distance increases, the output decreases rapidly until 0. In addition, the weight of the intermediate
segment is smooth, which makes up for the disadvantage that the Gauss function is insufficient and
the cosine function is over weighted.

The method of image denoising is proposed by the similarity weight, as shown in Equation (9):

8 2;
b=zl B en(- ) 0)

=1,(i,j) el

S.T.

; 02(i)
Ziap) = exp(— 22 ) f(x 9
(@) k:1,(2i,j)el P( 2 )f( )
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The noisy image is repetitively iterated by this method until the energy function of the image is
stable. After the weighted approximation, because of the replacement of the pixels and the limited
weight section of the weighting function, the image is usually generated blurry. The fractal correction
is used to smooth the denoising results. In this paper, the fractal dimension is used to characterize
the roughness of the image. The larger the fractal dimension is, the larger the pixel value variation
is. Fractal denoising correction cannot only remove small blurs generated by the variational filtering
function, but also can remove the noise signals of the image. The fitting value is composed of nine
related values in the image, thus the image is smoothed.

In this paper, the steps of fractal denoising correction are shown as follows:

(1) Calculating the fractal dimension D of non-local weighted image I.

(2) Creating a new image B, the image size is equal to the non-local weighted image I'. Set the initial
value for each pixel to 0.

(3) The first row and the first column of the new image B are equal to the original image I, and the
value of each pixel in the image from the second row and the second column B(i, ) is:

_ 1
B(i,j) = al'(i,]) + 15" Y Bli-kj—k) (10)

where, according to the fractal dimension, the correction parameter a is estimated
a = 258—D)* [36]. The final result can be applied to the denoised image with
continuous information.

3.2. The Optimal Fitting Solution of Centre Pixel Approximation in Arbitrary Geometric Plane

In order to guarantee the denoising performance of the algorithm under the condition of image
information has a sudden change. This paper assumes that the final optimization estimate value for
each y; is described in Equation (11).

yi =ax;i+p (11)

where, &, B are undetermined coefficients, x; is the approximation result after the preliminary design
of the weight. We proposed three prior bits of knowledge in order to make the estimated result more
reasonable. Firstly, for the noiseless image, in a small window of 3 x 3 pixels the scene in the image is
uniform and continuous. That is to say, in this window;, all the estimated values of y; and the average
of the window gray mean variance should be as small as possible. It is also a reasonable assumption in
the graph theory for the limited neighborhood of the clear image. Secondly, in order to improve the
image edge preservation, the difference gradient of this neighborhood is as large as possible. Finally,
it is assumed that the noise from the image is in a controllable range. In other words, the absolute
value of the difference between each estimated value y; and real observation value y; should be less
than a preset threshold.

In the original image, a schematic diagram of a 3 x 3 pixels window is shown in Figure 7.
Assuming that there is a random noise in the image, the relationship between the actual gray value of
each pixel yp; and its true value ¥,; can be described as in Equation (12).

Yoi = Yo; T & (12)

9
where, ¢ ~ N(0, 02),s0, E(3 ¥ €) = 0. We can obtain the expectation of the average value of the gray
i=1

1=
value in the window. As Equation (13);
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9 9

21/01 ) = E( z<y01+s>> = E(5YTu) +E(5X0) = (g

i=1 i=1

? i) (13)

] m\o

According to Figure 7, the mean value of the actual gray value in the window is an unbiased

9
estimate of the true gray value. we can use % Y- yoi to estimate the expectation of window.
i=1

Yo1 Yo2 Yo3
Yo4 Yos Yoe
Yo7 Y08 Y09

Figure 7. 3 x 3 pixels window in the original image.

In addition, g(y;)(i = 1,2,3,...,9) represents the differential gradient of the 3 x 3 neighborhood,
as in Equation (14)

2 2 2 2
g(yi)(i — 1,2,3,_”,9) — (y2*2y1) + (ysfz]/z) + (y53y4) + (yGEVS)
7 e ‘il (i),
1=

, (14)

Then, the three prior bits of knowledge proposed in the first paragraph of this section can be
written as follows;

(yi —p)* —ag(y)(i=1,2,3,...,9)

min S =

Lr7e

1=

S.T. , (15)
lvi —yoil < T,

y12011:1,2119

where, p is the expectation of the 3 x 3 pixels window, T; is a small enough empirical threshold. a is a
proportionality coefficient. The condition in Equation (15) contains the absolute value function. Since
the absolute value function is not differentiable at the inflection point, Equation (15) is not suitable for
mathematical process. We rewrite Equation (15) into a form suitable for mathematical processing.

9
min S=Y (y;—p)*—agy)(i=1,23,...,9)

i=1
S.T. (16)

(yz yoi)* < T
]/ 201121/2/”'/9

e

where, p is the expectation of the 3 x 3 pixels window, T; is a small enough empirical threshold. a
is a proportionality coefficient. The optimization of Equation (16) is described in detail as follows.
The objective function of Equation (16) can be rewritten as Equation (17).

S =

II'Te

FR— 2 —_ . ; —
(i —p)" —ag(yi)(i=1,23,...,9) 17)
=2(YIIY + VT'Y 4 @) — aYTUY,

1

T T
where, Y = [ yio Yo } , V= { —20 -+ =2 } , @ = 90?,iis a nine-dimensional unit matrix.
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60 -1 3 -1 0 -1
-1 0 -1 6 -1 0 -1
U= -1 0 -1 6 -1 0 -1 , The blank part of the matrix is zero.
-1 0 -1 6 -1 0 -1
-1 0 -1 3 -1 0
-1 0 -1 3 -1
-1 0 -1 2

T
IfX= [ X1 o X9 } , from Equation (11) is known, then Equation (18) can be stated.

Y =aX+ BQ, (18)

where Q is a nine-dimensional vector in which all elements are 1. Introducing Equation (18) into
Equation (17), we obtain

S =a2XTX+2apXTQ + B*QTQ + aVIX 4 BVIQ + & — aYTUY

B { . } V2XTX — /aXTux V2XTQ — 2+/a(x4 + x5+ x6) w
N B V2XTQ —2\/a(xy + x5 +x5) 9vV2—6y/a B
1
+[ vix viQ ] ‘; s (19)
=« ﬁ}ng +PT 2 +@
Adding Equation (18) into the first condition of Equation (16), Equation (20) is obtained
xX'x X'Q || T T a T
[a ﬁ] o o /3 +[—2YOX ZYOQ} g | TYYo
(20)
& T| & T
=« pla g | TR g [F WS
T
where Y = { Yor - Yoo } ; adding Equation (18) into the second condition of Equation (16) once
again, a more compact Equation (21) can be obtained
Ml 2 ] <o. 1)

where M = [ -X -Q }, combining Equations (19)—(21) into Equation (16), we can finally obtain the
optimization Equation (22).

min 5=« ﬁ}H[; +PT 2 +o

S.T.
f(“/ﬁ):[a ﬁ}A Z +RT FYTY, < T (22)
g(a,ﬁ)=M[“ <0
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In function (20), the second order main sub-determinant of A is

A] =9XTX — (xTQ)’

) 2 I L2
=93 x _(sz) :9(‘Z Xi _9(§2x1) )
i=1 i=1 i=1 i=1 )
J J 23
=X x*—18Y x(5 L %) +9(5 L xi) ) )
i=1 i= j=1 i=1
9 Lo 2
=9Y (xi— 92 x])
i=1 j=1
Generally, at least two elements in X are different, therefore Equation (24) can be obtained
9 19 2
Al =9 (x; — §ij) > 0. (24)
i=1 =1
Since the determinant of A is greater than zero, the first condition of Equation (22) defines the inner
region of an ellipse which is expressed as [ a B }A ; +RT Z +YyTYy — T = 0. Assuming

that x;,; is maximum among X and x;, is minimum among X, the second condition is made up of the
area enclosed by the upside of x,,& + f = 0 and x,& 4+ B = 0. The restricted condition enclosed area is
shown in Figure 8.

xa+p=0 | /

[ p] A{;}+ RT {;}+YOTYO ~T=0

Xno + =0

Figure 8. Area enclosed by restricted conditions.

Equation (22) can be simplified to

min S:[a IB}H[; -i-PT ; + o
S.T.
f(arﬁ)=[zx /B}A g +RT 2 Y TY, <T " (25)
—x; —1 o
g(mﬁ)—l_xm _1] g | <0

The minimum value of S must be obtained on the boundary of the constraint conditions. At this
time, we can use Rockafellar Multiplier optimization Equation (25). In order to use the Rockafellar
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Multiplier optimization function, we must find a feasible initial point in the feasible region. The method
of selecting initial points is as follows. Firstly, we should find the center of the ellipse x;.

)

T T
{ x 1 } is the homogeneous coordinates of xg, # is the arbitrary constant. If xy = [ u v } ,

A R o
, 26
RT v, Ty,—T ] (1) (26)

intersection of B = v and x;,a + B = 0, x,& + B = 0 are respectively pl and p2. The intersection in the
feasible region is the initial value of the Rockafellar Multiplier optimization Equation (25).
Equation (25) of the Jacobian matrix and Hessian matrix respectively are

Vi '8]522[“ ﬁ}H+PT, 27)
Vi P ]25 = 2H, (28)

Vi ﬁ]f(a,ﬁ)zz[a ﬁ]A+RT, (29)
Vie p1flp =24 (30)

Vi p 8B = [ e ] 61
Vie p 8, p) =0. (32)

Based on the initial value and Equations (28)—(32), the optimal solution of Equation (25) can be
obtained by the Rockafellar Multiplier.

4. Experimental Analysis

In order to verify the robustness and effectiveness of the proposed algorithm, this paper conducted
two groups of experiments. One group, through computer simulation of the noisy environment,
compares the denoising results of different algorithms under the different noisy conditions by
quantitative curves. The other group, using the physical image under different noisy environments,
uses visual comparison to compare the denoising results of different algorithms.

4.1. Computer Simulation Experiment

In this paper, in order to carry out the computer simulation experiment, we firstly reduce the
quality of the known clear test image. Images with different SNR are divided into 10 groups. The 10
groups of test images were labeledas¢ =0, =1, =2,6=3,6=4,6=5,6=6,c=7,6 =8,
¢ = 9. ¢ = 0is the clear image and ¢ = 9 is the image with the lowest SNR. The denoising result is
judged by the global fitting mean difference. This index is the average value of the pixel differences
between the result and the original image.

Comparing the denoising experimental results with the Bilateral algebraic iterative method,
wavelet transform, Multi-scales Total Least Squares [37], Adaptive sparse gradients field method
(ASGF method) [38] and the proposed method, the results are shown in Figures 9-11. In addition,
in order to reflect the performance difference between the proposed algorithm and the other algorithms
more intuitively. Figures 9h,i, 10h,i and 11h,i show the comparison of the PSNR comparison and edge
preserving index(EPI) of the algorithms under different noise standard deviations.
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Figure 11. Saturn noise simulation image and experimental result curve. (a) ¢ = 0; (b) ¢ = 1;(¢) ¢ = 3;
(d) g =5;(e)g =7; (f) ¢ =9; (g) the evaluation index curve; (h) the PSNR comparison curve; and
(i) the edge preserving index comparison curve.

Over analysis can be obtained, comparing the Bilateral algebraic iterative method, Wavelet transform,
Multi-scales Total Least Squares method and ASGF method. The global fitting mean difference
of the proposed method is obviously minimal. That is to say, compared with other methods, the
proposed method has a higher denoising robustness for images with different definitions. In addition,
Figures 9h,i, 10h,i and 11h,i show that the proposed method has the advantage in improving the PSNR
of the image and the image structure information preservation.
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4.2. Physical Image Experiment

This paper uses 10 different types of images—A black and white edge map, a flower image, a straw
rope image, two character images, two architectural images, and three animal images. Comparing the
denoising experimental results with (b) Bilateral algebraic iterative method (BAI); (c) Wavelet transform
(WT); (d) Multi-scales Total Least Squares (MTLS); (e) Adaptive sparse gradients field method (ASGF);
(f) Region-aware image denoising algorithm (RAID); (g) Hilbert vibration decomposition (HVD) and
(h) The proposed method. The results are shown in Figures 12-21.

(@) (b) © | (d)

(8) (h)
Figure 12. Black and white edge map denoising results by different method. (a) Noisy image; (b) BAL
(c) WT; (d) MTLS; (e) ASGF; (f) RAID; (g) HVD and (h) The proposed method.

(a) - (b)

Figure 13. Cont.
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(®) TS

Figure 13. Chinese rural elderly lady image denoising results by different method. (a) Noisy image;
(b) BAIL (c) WT; (d) MTLS; (e) ASGF; (f) RAID; (g) HVD and (h) The proposed method.

Figure 14. Cont.
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(® S

Figure 14. Italy architectural image denoising results by different method. (a) Noisy image; (b) BAL
(c) WT; (d) MTLS; (e) ASGF; (f) RAID; (g) HVD and (h) The proposed method.

Figure 15. Cont.
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® S

Figure 15. Butterfly image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.

(8) ’ (h)

Figure 16. Christ Church image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.
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(a) (b)

(8) (h)

Figure 17. Tiger image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.

(a) (b)

Figure 18. Cont.
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8 | ' (h)

Figure 18. Flower image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.

© | | )

Figure 19. Cont.
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(® o ()

Figure 19. Bear image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.

(e) ()

Figure 20. Cont.
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(8) (h)

Figure 20. Girl image denoising results by different method. (a) Noisy image; (b) BAL (c) WT; (d) MTLS;
(e) ASGEF; (f) RAID; (g) HVD and (h) The proposed method.

Figure 21. Straw rope image denoising results by different method. (a) Noisy image; (b) BAL (c) WT;
(d) MTLS; (e) ASGEF; (f) RAID; (g) HVD and (h)The proposed method.
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We can get the following conclusions by analyzing results. For the Bilateral iterative denoising
algorithm, due to the uncertainty of the iterative initial value, the result is usually associated with the
speckle noise belt in the denoising process. Then, in the process of iteration, there is no optimized
reference data, which will lead to visual distortion. In addition, this classical method takes the pixel
matrix of the entire image as an input. It usually disregards the geometric shapes of the target or
interesting region. In this case, target edge information is fuzzy, which will be harmful to the following
image analysis. The traditional wavelet denoising is used to put the noise into different scales under
the multi resolution. If the threshold value is too high, it will cause serious loss of image detail. On the
contrary, if the threshold value is too low, it will cause more noise not to be filtered. So it is the key to
select the threshold when using wavelet denoising. In the case of serious noise pollution, threshold
selection will be more difficult. The results of the wavelet denoising are not ideal.

Global least square method estimates the signal wavelet coefficients by total least square method
and considers the correlation between different scale wavelet coefficients. It uses the optimizing
wavelet threshold to reduce noise. Compared with classical methods, the denoising result of
this method is obviously improved. However, it is difficult to determine the number of wavelet
decomposition levels and it always need to be tuned artificially. Thus, both the scope of application
and the definition of denoising are limited. Sparse gradients field denoising method provides an
adaptive sparse gradients field (ASGF) model. This method solves the problem that the traditional
gradient field is sensitive to noise. However, there are still problems that color fidelity is not enough
for color image processing and the massive noise treatment effect is not ideal. For Region-aware image
denoising algorithm (RAID), the effect depends mainly on exploring parameter preference; for random
noisy images, the selection effect of this parameter is unstable, so the output of the result is unstable.
Hilbert vibration decomposition (HVD) mainly depends on the convergence of different transform
domains. When there is a pixel mutation in the image, the convergence will be unstable, and the
denoising effect of the mutation region is not ideal.

In this paper, the proposed adaptive geometric non-means denoising method takes full account
of geometric information. Besides, the method divides the center pixel and its neighborhood into
continuous surface and section. Using nonlinear fitting theory, we can apply the method into any
surfaces. The experimental results show that the proposed method has a wide range of application,
high definition and high ability to restore the full information of the edge of the image.

Linear fuzzy index [39], definition [40] and standard deviation [41] are commonly used parameters
for quantitative analysis of the image denoising effect. By calculating the size of the three parameters
above, we quantitatively analyze the denoising performance of each algorithm. Make f (x, y) be the
pixel value of each position in the image, the image size is M x N, then:

(1) linear fuzzy index measurement

fEn = % Z Z mln{ny/ — Pxy } (33)
x=1y=1
where, pyy = sin[F x (1 — f ;x’y) )] is the pixel for the image; f (x, y) is the gray value of the pixel pyy;

fmax is the maximum gray value of the image f.

Based on the linear fuzzy index measurement of spatial domain analysis, the denoising performance
of different algorithms can be compared quantitatively. The smaller the value of v, the better the
denoising performance.

(2) Definition

lN 1
Def—* % (m+1,m) — Fm, m)P + [Fm,n+1) — F(m,m)]2. (34)

mln

The contrast of the image and the contrast of the local details can be reflected by (34). The clearer
the image, the greater the Def value is.
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(3) Standard deviation

1 M=1N-1 2 2
op = {mx; y;l [floy)—f} . (35)

Among them, f represents the mean value of the gray level of the image. The larger the standard
difference is, the more gray level distribution in the image will be. This indicates that the target image
contains more details.

According to the above three functions, the quantitative analysis results for Figure 12 of the
denoising effect of various algorithms are shown in Table 1.

Table 1. The quantitative analysis results for Figure 12 of the denoising effect of various algorithms.

Noisy Image BAI WT MTLS ASGF RAID HVD The Proposed Method

Y(fEn) 0.86 064 059 0.51 0.39 0.33 0.35 0.24
Def 6.33 798  6.89 9.11 9.98 9.19 10.09 11.21
of 62.78 71.57 734 81.05 89.30 88.86 79.25 95.76

It can be seen from Table 1, this paper presents an image performance index algorithm which
was better than the other algorithms; this algorithm shows the best enhancement effect. For MSM
algorithm, the definition of value is greater than the histogram equalization and partial differential
equations, and the standard deviation of the values, indicating that the algorithm enhanced the edge
contrast, but failed to highlight the details and enhance the texture. In the partial differential equations,
there was a larger standard deviation of image clarity, but with the original approach, which shows
that the algorithms can enhance the arts and details at the same time will damage the overall clarity
and image edge contrast. In this paper, the edge enhancement and the detailed texture are both taken
into account.

5. Conclusions

In this paper, we have discussed a new method to recover the image corrupted by random noise.
In order to make a tradeoff between image denoising and detail maintenance, a novel non-local
means approximation method is proposed to initially denoise the image by a weighted non-local
approximation kernel function, and then with this initialization, the final restored image is determined
by a novel nonlinear optimization under the constraint of intensity change. During the processing,
each pixel’s value in the original image is replaced by the obtained optimal value so that the scene
change does not influence the denoising results. Plenty of experiments manifest that the algorithm in
this paper can effectively remove the noise, while maintaining as much image edge information as
possible. In addition, because of strong adaptability, the proposed algorithm does not need manual
modification for denoising parameters. The further effort will be focused on real-time performance,
denoising efficiency and establishing a set of more complete criteria for image denoising evaluation.
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